run_glue.py 28.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa, Albert, XLM-RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19


import argparse
thomwolf's avatar
thomwolf committed
20
import glob
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import json
thomwolf's avatar
thomwolf committed
22
23
24
25
26
27
import logging
import os
import random

import numpy as np
import torch
28
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
thomwolf's avatar
thomwolf committed
29
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
30
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
31

32
from transformers import (
33
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
34
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
35
    AdamW,
36
37
38
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
39
    get_linear_schedule_with_warmup,
40
)
41
from transformers import glue_compute_metrics as compute_metrics
Aymeric Augustin's avatar
Aymeric Augustin committed
42
from transformers import glue_convert_examples_to_features as convert_examples_to_features
43
44
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
Aymeric Augustin's avatar
Aymeric Augustin committed
45
46
47
48


try:
    from torch.utils.tensorboard import SummaryWriter
49
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
50
51
    from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
52
53
54

logger = logging.getLogger(__name__)

55
56
MODEL_CONFIG_CLASSES = list(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
57

58
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in MODEL_CONFIG_CLASSES), (),)
thomwolf's avatar
thomwolf committed
59

thomwolf's avatar
thomwolf committed
60
61
62
63
64
65
66
67
68

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
69
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
70
71
72
73
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
74
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
75
76
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
77

thomwolf's avatar
thomwolf committed
78
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
79
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
80
81
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
82
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
83

thomwolf's avatar
thomwolf committed
84
    # Prepare optimizer and schedule (linear warmup and decay)
85
    no_decay = ["bias", "LayerNorm.weight"]
thomwolf's avatar
thomwolf committed
86
    optimizer_grouped_parameters = [
87
88
89
90
91
92
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
Lysandre's avatar
Lysandre committed
93

thomwolf's avatar
thomwolf committed
94
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
95
96
97
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
98
99

    # Check if saved optimizer or scheduler states exist
100
101
102
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
103
        # Load in optimizer and scheduler states
104
105
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
106

thomwolf's avatar
thomwolf committed
107
108
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
109
            from apex import amp
thomwolf's avatar
thomwolf committed
110
111
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
112
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
113

114
115
116
117
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
118
119
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
120
        model = torch.nn.parallel.DistributedDataParallel(
121
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True,
122
        )
thomwolf's avatar
thomwolf committed
123

thomwolf's avatar
thomwolf committed
124
125
    # Train!
    logger.info("***** Running training *****")
126
127
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
128
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
129
130
131
132
133
134
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
135
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
136
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
137
138

    global_step = 0
139
140
141
142
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
143
144
145
146
147
        # set global_step to global_step of last saved checkpoint from model path
        try:
            global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
        except ValueError:
            global_step = 0
148
149
150
151
152
153
154
155
        epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)

thomwolf's avatar
thomwolf committed
156
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
157
    model.zero_grad()
158
    train_iterator = trange(
159
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0],
160
    )
161
    set_seed(args)  # Added here for reproductibility
thomwolf's avatar
thomwolf committed
162
163
164
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
165
166
167
168
169
170

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

thomwolf's avatar
thomwolf committed
171
            model.train()
thomwolf's avatar
thomwolf committed
172
            batch = tuple(t.to(args.device) for t in batch)
173
174
175
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = (
176
177
                    batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
                )  # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
Peiqin Lin's avatar
typos  
Peiqin Lin committed
178
            outputs = model(**inputs)
179
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
180
181

            if args.n_gpu > 1:
182
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
thomwolf's avatar
thomwolf committed
183
184
185
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
186
187
188
189
190
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
191
192

            tr_loss += loss.item()
193
194
195
196
197
            if (step + 1) % args.gradient_accumulation_steps == 0 or (
                # last step in epoch but step is always smaller than gradient_accumulation_steps
                len(epoch_iterator) <= args.gradient_accumulation_steps
                and (step + 1) == len(epoch_iterator)
            ):
198
199
200
201
202
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

thomwolf's avatar
thomwolf committed
203
                optimizer.step()
thomwolf's avatar
thomwolf committed
204
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
205
                model.zero_grad()
thomwolf's avatar
thomwolf committed
206
                global_step += 1
thomwolf's avatar
thomwolf committed
207

thomwolf's avatar
thomwolf committed
208
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
Juha Kiili's avatar
Juha Kiili committed
209
                    logs = {}
210
211
212
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
213
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
214
                        for key, value in results.items():
215
                            eval_key = "eval_{}".format(key)
Juha Kiili's avatar
Juha Kiili committed
216
217
                            logs[eval_key] = value

218
219
                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
220
221
                    logs["learning_rate"] = learning_rate_scalar
                    logs["loss"] = loss_scalar
thomwolf's avatar
thomwolf committed
222
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
223

Juha Kiili's avatar
Juha Kiili committed
224
225
                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
226
                    print(json.dumps({**logs, **{"step": global_step}}))
thomwolf's avatar
thomwolf committed
227
228
229

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
230
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
thomwolf's avatar
thomwolf committed
231
232
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
233
234
235
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
thomwolf's avatar
thomwolf committed
236
                    model_to_save.save_pretrained(output_dir)
237
238
                    tokenizer.save_pretrained(output_dir)

239
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
thomwolf's avatar
thomwolf committed
240
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
241

242
243
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
244
245
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)

thomwolf's avatar
thomwolf committed
246
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
247
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
248
249
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
250
            train_iterator.close()
thomwolf's avatar
thomwolf committed
251
            break
thomwolf's avatar
thomwolf committed
252

thomwolf's avatar
thomwolf committed
253
254
255
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
256
257
258
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
259
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
260
261
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
262
    eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
thomwolf's avatar
thomwolf committed
263
264
265
266
267
268
269
270

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
271
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
272
        # Note that DistributedSampler samples randomly
273
        eval_sampler = SequentialSampler(eval_dataset)
thomwolf's avatar
thomwolf committed
274
275
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
276
        # multi-gpu eval
277
        if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
ronakice's avatar
ronakice committed
278
279
            model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
280
        # Eval!
thomwolf's avatar
thomwolf committed
281
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
282
283
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
284
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
285
286
287
288
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
289
            model.eval()
thomwolf's avatar
thomwolf committed
290
291
292
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
293
294
295
                inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
                if args.model_type != "distilbert":
                    inputs["token_type_ids"] = (
296
297
                        batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
                    )  # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
298
299
300
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
301
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
302
303
304
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
305
                out_label_ids = inputs["labels"].detach().cpu().numpy()
thomwolf's avatar
thomwolf committed
306
307
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
308
                out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
thomwolf's avatar
thomwolf committed
309
310
311
312
313
314
315
316
317

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

318
        output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
thomwolf's avatar
thomwolf committed
319
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
320
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
321
322
323
324
325
326
327
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
328
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
329
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
330
331
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
332
    processor = processors[task]()
333
334
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
335
336
337
338
339
340
341
342
343
    cached_features_file = os.path.join(
        args.data_dir,
        "cached_{}_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
            str(task),
        ),
    )
344
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
thomwolf's avatar
thomwolf committed
345
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
346
347
        features = torch.load(cached_features_file)
    else:
348
349
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
350
        if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]:
351
            # HACK(label indices are swapped in RoBERTa pretrained model)
352
            label_list[1], label_list[2] = label_list[2], label_list[1]
353
354
355
356
        examples = (
            processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
        )
        features = convert_examples_to_features(
357
            examples, tokenizer, max_length=args.max_seq_length, label_list=label_list, output_mode=output_mode,
358
        )
359
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
360
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
361
362
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
363
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
364
365
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

366
367
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
368
369
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
370
    if output_mode == "classification":
thomwolf's avatar
thomwolf committed
371
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
372
    elif output_mode == "regression":
thomwolf's avatar
thomwolf committed
373
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
374

thomwolf's avatar
thomwolf committed
375
    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
376
    return dataset
thomwolf's avatar
thomwolf committed
377
378


thomwolf's avatar
thomwolf committed
379
380
381
def main():
    parser = argparse.ArgumentParser()

382
    # Required parameters
383
384
385
386
387
388
389
390
391
392
393
394
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
395
        help="Model type selected in the list: " + ", ".join(MODEL_TYPES),
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
thomwolf's avatar
thomwolf committed
418

419
    # Other parameters
420
    parser.add_argument(
421
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name",
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
Hang Le's avatar
Hang Le committed
445
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step.",
446
447
    )
    parser.add_argument(
448
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.",
449
450
451
    )

    parser.add_argument(
452
453
454
455
        "--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.",
    )
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.",
456
457
458
459
460
461
462
463
464
465
466
467
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
468
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.",
469
470
471
472
473
474
475
476
477
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

478
479
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
480
481
482
483
484
485
486
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
487
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory",
488
489
    )
    parser.add_argument(
490
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets",
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
thomwolf's avatar
thomwolf committed
509
510
    args = parser.parse_args()

511
512
513
514
515
516
517
518
519
520
521
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
thomwolf's avatar
thomwolf committed
522

thomwolf's avatar
thomwolf committed
523
524
525
526
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
527

thomwolf's avatar
thomwolf committed
528
529
530
531
532
533
534
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
535
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
536
537
538
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
539
        torch.distributed.init_process_group(backend="nccl")
thomwolf's avatar
thomwolf committed
540
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
541
542
543
    args.device = device

    # Setup logging
544
545
546
547
548
549
550
551
552
553
554
555
556
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
thomwolf's avatar
thomwolf committed
557

thomwolf's avatar
thomwolf committed
558
559
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
560
561

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
562
563
564
565
566
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
567
568
569
570
571
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
572
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
573

574
    args.model_type = args.model_type.lower()
575
    config = AutoConfig.from_pretrained(
576
577
578
579
580
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
581
    tokenizer = AutoTokenizer.from_pretrained(
582
583
584
585
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
586
    model = AutoModelForSequenceClassification.from_pretrained(
587
588
589
590
591
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
thomwolf's avatar
thomwolf committed
592
593

    if args.local_rank == 0:
594
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
595

thomwolf's avatar
thomwolf committed
596
    model.to(args.device)
thomwolf's avatar
thomwolf committed
597

thomwolf's avatar
thomwolf committed
598
599
    logger.info("Training/evaluation parameters %s", args)

thomwolf's avatar
thomwolf committed
600
    # Training
thomwolf's avatar
thomwolf committed
601
    if args.do_train:
602
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
603
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
604
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
605

thomwolf's avatar
thomwolf committed
606
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
607
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
608
609
610
611
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
612
        logger.info("Saving model checkpoint to %s", args.output_dir)
613
614
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
615
616
617
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
thomwolf's avatar
thomwolf committed
618
        model_to_save.save_pretrained(args.output_dir)
619
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
620
621

        # Good practice: save your training arguments together with the trained model
622
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
thomwolf's avatar
thomwolf committed
623

624
        # Load a trained model and vocabulary that you have fine-tuned
625
626
        model = AutoModelForSequenceClassification.from_pretrained(args.output_dir)
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
627
        model.to(args.device)
thomwolf's avatar
thomwolf committed
628

thomwolf's avatar
thomwolf committed
629
    # Evaluation
thomwolf's avatar
thomwolf committed
630
    results = {}
thomwolf's avatar
thomwolf committed
631
    if args.do_eval and args.local_rank in [-1, 0]:
632
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
633
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
634
        if args.eval_all_checkpoints:
635
636
637
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
638
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
639
640
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
641
642
643
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

644
            model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
645
            model.to(args.device)
646
            result = evaluate(args, model, tokenizer, prefix=prefix)
647
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
thomwolf's avatar
thomwolf committed
648
649
            results.update(result)

thomwolf's avatar
thomwolf committed
650
    return results
thomwolf's avatar
thomwolf committed
651
652
653
654


if __name__ == "__main__":
    main()