test_seq2seq_examples.py 20 KB
Newer Older
1
2
3
4
5
6
7
8
9
import argparse
import logging
import os
import sys
import tempfile
from pathlib import Path
from unittest.mock import patch

import pytest
10
import pytorch_lightning as pl
11
12
import torch

13
import lightning_base
14
from convert_pl_checkpoint_to_hf import convert_pl_to_hf
15
from distillation import distill_main
16
from finetune import SummarizationModule, main
17
from parameterized import parameterized
18
19
from run_eval import generate_summaries_or_translations, run_generate
from run_eval_search import run_search
20
from transformers import AutoConfig, AutoModelForSeq2SeqLM
21
from transformers.hf_api import HfApi
22
23
24
25
26
27
28
29
from transformers.testing_utils import (
    CaptureStderr,
    CaptureStdout,
    TestCasePlus,
    require_torch_gpu,
    require_torch_non_multigpu_but_fix_me,
    slow,
)
30
from utils import ROUGE_KEYS, label_smoothed_nll_loss, lmap, load_json
31
32
33
34
35
36
37


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
38
    "max_tokens_per_batch": None,
39
40
    "supervise_forward": True,
    "normalize_hidden": True,
41
    "label_smoothing": 0.2,
42
    "eval_max_gen_length": None,
43
    "eval_beams": 1,
44
    "val_metric": "loss",
45
    "save_top_k": 1,
Sam Shleifer's avatar
Sam Shleifer committed
46
    "adafactor": True,
47
    "early_stopping_patience": 2,
48
    "logger_name": "default",
49
50
51
52
53
54
55
56
57
58
59
60
61
    "length_penalty": 0.5,
    "cache_dir": "",
    "task": "summarization",
    "num_workers": 2,
    "alpha_hid": 0,
    "freeze_embeds": True,
    "enc_only": False,
    "tgt_suffix": "",
    "resume_from_checkpoint": None,
    "sortish_sampler": True,
    "student_decoder_layers": 1,
    "val_check_interval": 1.0,
    "output_dir": "",
62
    "fp16": False,  # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
63
64
65
66
67
68
69
    "no_teacher": False,
    "fp16_opt_level": "O1",
    "gpus": 1 if CUDA_AVAILABLE else 0,
    "n_tpu_cores": 0,
    "max_grad_norm": 1.0,
    "do_train": True,
    "do_predict": True,
70
    "accumulate_grad_batches": 1,
71
72
73
74
75
76
77
78
    "server_ip": "",
    "server_port": "",
    "seed": 42,
    "model_name_or_path": "sshleifer/bart-tiny-random",
    "config_name": "",
    "tokenizer_name": "facebook/bart-large",
    "do_lower_case": False,
    "learning_rate": 0.3,
79
    "lr_scheduler": "linear",
80
81
82
    "weight_decay": 0.0,
    "adam_epsilon": 1e-08,
    "warmup_steps": 0,
83
    "max_epochs": 1,
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    "train_batch_size": 2,
    "eval_batch_size": 2,
    "max_source_length": 12,
    "max_target_length": 12,
    "val_max_target_length": 12,
    "test_max_target_length": 12,
    "fast_dev_run": False,
    "no_cache": False,
    "n_train": -1,
    "n_val": -1,
    "n_test": -1,
    "student_encoder_layers": 1,
    "freeze_encoder": False,
    "auto_scale_batch_size": False,
98
    "overwrite_output_dir": False,
99
100
101
102
}


def _dump_articles(path: Path, articles: list):
103
104
    content = "\n".join(articles)
    Path(path).open("w").writelines(content)
105
106


107
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
108
109
110
111
112
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
113
FSMT_TINY = "stas/tiny-wmt19-en-de"
114

115

116
117
118
119
120
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks


121
def make_test_data_dir(tmp_dir):
122
    for split in ["train", "val", "test"]:
123
124
        _dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES)
        _dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES)
125
126
127
    return tmp_dir


128
class TestSummarizationDistiller(TestCasePlus):
129
130
131
132
133
    @classmethod
    def setUpClass(cls):
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

134
    @slow
135
    @require_torch_gpu
136
    @require_torch_non_multigpu_but_fix_me
137
    def test_hub_configs(self):
138
        """I put require_torch_gpu cause I only want this to run with self-scheduled."""
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

        model_list = HfApi().model_list()
        org = "sshleifer"
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
        allowed_to_be_broken = ["sshleifer/blenderbot-3B", "sshleifer/blenderbot-90M"]
        failures = []
        for m in model_ids:
            if m in allowed_to_be_broken:
                continue
            try:
                AutoConfig.from_pretrained(m)
            except Exception:
                failures.append(m)
        assert not failures, f"The following models could not be loaded through AutoConfig: {failures}"

154
    @require_torch_non_multigpu_but_fix_me
155
156
157
158
    def test_distill_no_teacher(self):
        updates = dict(student_encoder_layers=2, student_decoder_layers=1, no_teacher=True)
        self._test_distiller_cli(updates)

159
    @require_torch_non_multigpu_but_fix_me
160
161
162
163
    def test_distill_checkpointing_with_teacher(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
164
            max_epochs=4,
165
166
167
168
169
170
171
172
173
174
            val_check_interval=0.25,
            alpha_hid=2.0,
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
        )
        model = self._test_distiller_cli(updates, check_contents=False)

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        self.assertEqual(len(transformer_ckpts), 2)
175
176
        examples = lmap(str.strip, Path(model.hparams.data_dir).joinpath("test.source").open().readlines())
        out_path = tempfile.mktemp()  # XXX: not being cleaned up
177
178
179
        generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr"))
        self.assertTrue(Path(out_path).exists())

180
        out_path_new = self.get_auto_remove_tmp_dir()
181
182
        convert_pl_to_hf(ckpts[0], transformer_ckpts[0].parent, out_path_new)
        assert os.path.exists(os.path.join(out_path_new, "pytorch_model.bin"))
183

184
    @require_torch_non_multigpu_but_fix_me
185
    def test_loss_fn(self):
186
        model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY, return_dict=True)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"]
        target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device)
        decoder_input_ids = target_ids[:, :-1].contiguous()  # Why this line?
        lm_labels = target_ids[:, 1:].clone()  # why clone?
        model_computed_loss = model(
            input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False
        ).loss

        logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits

        lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
        smoothed_loss, nll_loss = label_smoothed_nll_loss(
            lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id
        )
        with self.assertRaises(AssertionError):
            # TODO: understand why this breaks
            self.assertEqual(nll_loss, model_computed_loss)

205
    @require_torch_non_multigpu_but_fix_me
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    def test_distill_mbart(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
            num_train_epochs=4,
            val_check_interval=0.25,
            alpha_hid=2.0,
            task="translation",
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
            tokenizer_name=MBART_TINY,
            teacher=MBART_TINY,
            src_lang="en_XX",
            tgt_lang="ro_RO",
        )
        model = self._test_distiller_cli(updates, check_contents=False)
221
        assert model.model.config.model_type == "mbart"
222
223
224
225
226
227
228
229

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        all_files = list(Path(model.output_dir).glob("best_tfmr/*"))
        assert len(all_files) > 2
        self.assertEqual(len(transformer_ckpts), 2)

230
    @require_torch_non_multigpu_but_fix_me
231
232
233
234
235
236
237
238
239
240
241
242
243
    def test_distill_t5(self):
        updates = dict(
            student_encoder_layers=1,
            student_decoder_layers=1,
            alpha_hid=2.0,
            teacher=T5_TINY,
            model_name_or_path=T5_TINY,
            tokenizer_name=T5_TINY,
        )
        self._test_distiller_cli(updates)

    def _test_distiller_cli(self, updates, check_contents=True):
        default_updates = dict(
244
            label_smoothing=0.0,
245
            early_stopping_patience=-1,
246
247
            train_batch_size=1,
            eval_batch_size=2,
248
            max_epochs=2,
249
250
251
252
253
254
255
256
257
            alpha_mlm=0.2,
            alpha_ce=0.8,
            do_predict=True,
            model_name_or_path="sshleifer/tinier_bart",
            teacher=CHEAP_ARGS["model_name_or_path"],
            val_check_interval=0.5,
        )
        default_updates.update(updates)
        args_d: dict = CHEAP_ARGS.copy()
258
259
        tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
        output_dir = self.get_auto_remove_tmp_dir()
260
261
262
263
264
265
266

        args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
        model = distill_main(argparse.Namespace(**args_d))
        if not check_contents:
            return model
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
267
268
        ckpt_files = [p for p in contents if p.endswith("ckpt")]
        assert len(ckpt_files) > 0
269
270
271
272
273
274
275
276
277

        self.assertIn("test_generations.txt", contents)
        self.assertIn("test_results.txt", contents)

        metrics = load_json(model.metrics_save_path)
        last_step_stats = metrics["val"][-1]
        self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
        self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"])
        self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
278
        desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1)
279
280
281
282
283
        self.assertEqual(len(metrics["val"]), desired_n_evals)
        self.assertEqual(len(metrics["test"]), 1)
        return model


284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
class TestTheRest(TestCasePlus):
    def run_eval_tester(self, model):
        input_file_name = Path(self.get_auto_remove_tmp_dir()) / "utest_input.source"
        output_file_name = input_file_name.parent / "utest_output.txt"
        assert not output_file_name.exists()
        articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
        _dump_articles(input_file_name, articles)

        score_path = str(Path(self.get_auto_remove_tmp_dir()) / "scores.json")
        task = "translation_en_to_de" if model == T5_TINY else "summarization"
        testargs = f"""
            run_eval_search.py
            {model}
            {input_file_name}
            {output_file_name}
            --score_path {score_path}
            --task {task}
            --num_beams 2
            --length_penalty 2.0
            """.split()

        with patch.object(sys, "argv", testargs):
            run_generate()
            assert Path(output_file_name).exists()
            # os.remove(Path(output_file_name))

    # test one model to quickly (no-@slow) catch simple problems and do an
    # extensive testing of functionality with multiple models as @slow separately
312
    @require_torch_non_multigpu_but_fix_me
313
314
315
316
317
318
    def test_run_eval(self):
        self.run_eval_tester(T5_TINY)

    # any extra models should go into the list here - can be slow
    @parameterized.expand([BART_TINY, MBART_TINY])
    @slow
319
    @require_torch_non_multigpu_but_fix_me
320
321
    def test_run_eval_slow(self, model):
        self.run_eval_tester(model)
322

323
324
325
    # testing with 2 models to validate: 1. translation (t5) 2. summarization (mbart)
    @parameterized.expand([T5_TINY, MBART_TINY])
    @slow
326
    @require_torch_non_multigpu_but_fix_me
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    def test_run_eval_search(self, model):
        input_file_name = Path(self.get_auto_remove_tmp_dir()) / "utest_input.source"
        output_file_name = input_file_name.parent / "utest_output.txt"
        assert not output_file_name.exists()

        text = {
            "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
            "de": [
                "Maschinelles Lernen ist gro脽artig, oder?",
                "Ich esse gerne Bananen",
                "Morgen ist wieder ein toller Tag!",
            ],
        }

        tmp_dir = Path(self.get_auto_remove_tmp_dir())
        score_path = str(tmp_dir / "scores.json")
        reference_path = str(tmp_dir / "val.target")
        _dump_articles(input_file_name, text["en"])
        _dump_articles(reference_path, text["de"])
        task = "translation_en_to_de" if model == T5_TINY else "summarization"
        testargs = f"""
            run_eval_search.py
            {model}
            {str(input_file_name)}
            {str(output_file_name)}
            --score_path {score_path}
            --reference_path {reference_path}
            --task {task}
            """.split()
        testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"])

        with patch.object(sys, "argv", testargs):
            with CaptureStdout() as cs:
                run_search()
            expected_strings = [" num_beams | length_penalty", model, "Best score args"]
            un_expected_strings = ["Info"]
            if "translation" in task:
                expected_strings.append("bleu")
            else:
                expected_strings.extend(ROUGE_KEYS)
            for w in expected_strings:
                assert w in cs.out
            for w in un_expected_strings:
                assert w not in cs.out
            assert Path(output_file_name).exists()
            os.remove(Path(output_file_name))

    @parameterized.expand(
        [T5_TINY, BART_TINY, MBART_TINY, MARIAN_TINY, FSMT_TINY],
376
    )
377
    @require_torch_non_multigpu_but_fix_me
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    def test_finetune(self, model):
        args_d: dict = CHEAP_ARGS.copy()
        task = "translation" if model in [MBART_TINY, MARIAN_TINY, FSMT_TINY] else "summarization"
        args_d["label_smoothing"] = 0.1 if task == "translation" else 0

        tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
        output_dir = self.get_auto_remove_tmp_dir()
        args_d.update(
            data_dir=tmp_dir,
            model_name_or_path=model,
            tokenizer_name=None,
            train_batch_size=2,
            eval_batch_size=2,
            output_dir=output_dir,
            do_predict=True,
            task=task,
            src_lang="en_XX",
            tgt_lang="ro_RO",
            freeze_encoder=True,
            freeze_embeds=True,
        )
        assert "n_train" in args_d
        args = argparse.Namespace(**args_d)
        module = main(args)

        input_embeds = module.model.get_input_embeddings()
        assert not input_embeds.weight.requires_grad
        if model == T5_TINY:
            lm_head = module.model.lm_head
            assert not lm_head.weight.requires_grad
            assert (lm_head.weight == input_embeds.weight).all().item()
        elif model == FSMT_TINY:
            fsmt = module.model.model
            embed_pos = fsmt.decoder.embed_positions
            assert not embed_pos.weight.requires_grad
            assert not fsmt.decoder.embed_tokens.weight.requires_grad
            # check that embeds are not the same
            assert fsmt.decoder.embed_tokens != fsmt.encoder.embed_tokens
        else:
            bart = module.model.model
            embed_pos = bart.decoder.embed_positions
            assert not embed_pos.weight.requires_grad
            assert not bart.shared.weight.requires_grad
            # check that embeds are the same
            assert bart.decoder.embed_tokens == bart.encoder.embed_tokens
            assert bart.decoder.embed_tokens == bart.shared

        example_batch = load_json(module.output_dir / "text_batch.json")
        assert isinstance(example_batch, dict)
        assert len(example_batch) >= 4

429
    @require_torch_non_multigpu_but_fix_me
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    def test_finetune_extra_model_args(self):
        args_d: dict = CHEAP_ARGS.copy()

        task = "summarization"
        tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())

        args_d.update(
            data_dir=tmp_dir,
            tokenizer_name=None,
            train_batch_size=2,
            eval_batch_size=2,
            do_predict=False,
            task=task,
            src_lang="en_XX",
            tgt_lang="ro_RO",
            freeze_encoder=True,
            freeze_embeds=True,
        )

        # test models whose config includes the extra_model_args
        model = BART_TINY
        output_dir = self.get_auto_remove_tmp_dir()
        args_d1 = args_d.copy()
        args_d1.update(
            model_name_or_path=model,
            output_dir=output_dir,
        )
        extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
        for p in extra_model_params:
            args_d1[p] = 0.5
        args = argparse.Namespace(**args_d1)
461
        model = main(args)
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
        for p in extra_model_params:
            assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}"

        # test models whose config doesn't include the extra_model_args
        model = T5_TINY
        output_dir = self.get_auto_remove_tmp_dir()
        args_d2 = args_d.copy()
        args_d2.update(
            model_name_or_path=model,
            output_dir=output_dir,
        )
        unsupported_param = "encoder_layerdrop"
        args_d2[unsupported_param] = 0.5
        args = argparse.Namespace(**args_d2)
        with pytest.raises(Exception) as excinfo:
            model = main(args)
        assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute"

480
    @require_torch_non_multigpu_but_fix_me
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    def test_finetune_lr_schedulers(self):
        args_d: dict = CHEAP_ARGS.copy()

        task = "summarization"
        tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())

        model = BART_TINY
        output_dir = self.get_auto_remove_tmp_dir()

        args_d.update(
            data_dir=tmp_dir,
            model_name_or_path=model,
            output_dir=output_dir,
            tokenizer_name=None,
            train_batch_size=2,
            eval_batch_size=2,
            do_predict=False,
            task=task,
            src_lang="en_XX",
            tgt_lang="ro_RO",
            freeze_encoder=True,
            freeze_embeds=True,
        )
504

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
        # emulate finetune.py
        parser = argparse.ArgumentParser()
        parser = pl.Trainer.add_argparse_args(parser)
        parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
        args = {"--help": True}

        # --help test
        with pytest.raises(SystemExit) as excinfo:
            with CaptureStdout() as cs:
                args = parser.parse_args(args)
            assert False, "--help is expected to sys.exit"
        assert excinfo.type == SystemExit
        expected = lightning_base.arg_to_scheduler_metavar
        assert expected in cs.out, "--help is expected to list the supported schedulers"

        # --lr_scheduler=non_existing_scheduler test
        unsupported_param = "non_existing_scheduler"
        args = {f"--lr_scheduler={unsupported_param}"}
        with pytest.raises(SystemExit) as excinfo:
            with CaptureStderr() as cs:
                args = parser.parse_args(args)
            assert False, "invalid argument is expected to sys.exit"
        assert excinfo.type == SystemExit
        expected = f"invalid choice: '{unsupported_param}'"
        assert expected in cs.err, f"should have bailed on invalid choice of scheduler {unsupported_param}"

        # --lr_scheduler=existing_scheduler test
        supported_param = "cosine"
        args_d1 = args_d.copy()
        args_d1["lr_scheduler"] = supported_param
        args = argparse.Namespace(**args_d1)
        model = main(args)
        assert (
            getattr(model.hparams, "lr_scheduler") == supported_param
        ), f"lr_scheduler={supported_param} shouldn't fail"