test_seq2seq_examples.py 22.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import argparse
import logging
import os
import sys
import tempfile
import unittest
from pathlib import Path
from unittest.mock import patch

import pytest
11
import pytorch_lightning as pl
12
13
14
import torch
from torch.utils.data import DataLoader

15
import lightning_base
16
17
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.hf_api import HfApi
18
from transformers.modeling_bart import shift_tokens_right
19
from transformers.testing_utils import CaptureStderr, CaptureStdout, require_multigpu, require_torch_and_cuda, slow
20

21
from .convert_pl_checkpoint_to_hf import convert_pl_to_hf
22
from .distillation import distill_main, evaluate_checkpoint
23
from .finetune import SummarizationModule, main
24
from .pack_dataset import pack_data_dir
25
from .run_eval import generate_summaries_or_translations, run_generate
26
from .run_eval_search import run_search
27
from .utils import LegacySeq2SeqDataset, Seq2SeqDataset, label_smoothed_nll_loss, lmap, load_json
28
29
30
31
32
33
34


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
35
36
    "supervise_forward": True,
    "normalize_hidden": True,
37
    "label_smoothing": 0.2,
38
    "eval_max_gen_length": None,
39
    "eval_beams": 1,
40
    "val_metric": "loss",
41
    "save_top_k": 1,
Sam Shleifer's avatar
Sam Shleifer committed
42
    "adafactor": True,
43
    "early_stopping_patience": 2,
44
    "logger_name": "default",
45
46
47
48
49
50
51
52
53
54
55
56
57
    "length_penalty": 0.5,
    "cache_dir": "",
    "task": "summarization",
    "num_workers": 2,
    "alpha_hid": 0,
    "freeze_embeds": True,
    "enc_only": False,
    "tgt_suffix": "",
    "resume_from_checkpoint": None,
    "sortish_sampler": True,
    "student_decoder_layers": 1,
    "val_check_interval": 1.0,
    "output_dir": "",
Sam Shleifer's avatar
Sam Shleifer committed
58
    "fp16": False,  # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
59
60
61
62
63
64
65
    "no_teacher": False,
    "fp16_opt_level": "O1",
    "gpus": 1 if CUDA_AVAILABLE else 0,
    "n_tpu_cores": 0,
    "max_grad_norm": 1.0,
    "do_train": True,
    "do_predict": True,
66
    "accumulate_grad_batches": 1,
67
68
69
70
71
72
73
74
    "server_ip": "",
    "server_port": "",
    "seed": 42,
    "model_name_or_path": "sshleifer/bart-tiny-random",
    "config_name": "",
    "tokenizer_name": "facebook/bart-large",
    "do_lower_case": False,
    "learning_rate": 0.3,
75
    "lr_scheduler": "linear",
76
77
78
    "weight_decay": 0.0,
    "adam_epsilon": 1e-08,
    "warmup_steps": 0,
79
    "max_epochs": 1,
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    "train_batch_size": 2,
    "eval_batch_size": 2,
    "max_source_length": 12,
    "max_target_length": 12,
    "val_max_target_length": 12,
    "test_max_target_length": 12,
    "fast_dev_run": False,
    "no_cache": False,
    "n_train": -1,
    "n_val": -1,
    "n_test": -1,
    "student_encoder_layers": 1,
    "alpha_loss_encoder": 0.0,
    "freeze_encoder": False,
    "auto_scale_batch_size": False,
}


def _dump_articles(path: Path, articles: list):
99
100
    content = "\n".join(articles)
    Path(path).open("w").writelines(content)
101
102


103
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
104
105
106
107
108
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
109
110
111
BERT_BASE_CASED = "bert-base-cased"
PEGASUS_XSUM = "google/pegasus-xsum"

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks


def make_test_data_dir(**kwargs):
    tmp_dir = Path(tempfile.mkdtemp(**kwargs))
    for split in ["train", "val", "test"]:
        _dump_articles((tmp_dir / f"{split}.source"), ARTICLES)
        _dump_articles((tmp_dir / f"{split}.target"), SUMMARIES)
    return tmp_dir


class TestSummarizationDistiller(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    @slow
    @require_torch_and_cuda
    def test_hub_configs(self):
        """I put require_torch_and_cuda cause I only want this to run with self-scheduled."""

        model_list = HfApi().model_list()
        org = "sshleifer"
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
        allowed_to_be_broken = ["sshleifer/blenderbot-3B", "sshleifer/blenderbot-90M"]
        failures = []
        for m in model_ids:
            if m in allowed_to_be_broken:
                continue
            try:
                AutoConfig.from_pretrained(m)
            except Exception:
                failures.append(m)
        assert not failures, f"The following models could not be loaded through AutoConfig: {failures}"

150
    @require_multigpu
151
    def test_multigpu(self):
Lysandre's avatar
Lysandre committed
152
153
154
155
        updates = dict(
            no_teacher=True,
            freeze_encoder=True,
            gpus=2,
156
            sortish_sampler=True,
Lysandre's avatar
Lysandre committed
157
        )
158
        self._test_distiller_cli(updates, check_contents=False)
159
160
161
162
163
164
165
166
167

    def test_distill_no_teacher(self):
        updates = dict(student_encoder_layers=2, student_decoder_layers=1, no_teacher=True)
        self._test_distiller_cli(updates)

    def test_distill_checkpointing_with_teacher(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
168
            max_epochs=4,
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
            val_check_interval=0.25,
            alpha_hid=2.0,
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
        )
        model = self._test_distiller_cli(updates, check_contents=False)

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        self.assertEqual(len(transformer_ckpts), 2)
        examples = lmap(str.strip, model.hparams.data_dir.joinpath("test.source").open().readlines())
        out_path = tempfile.mktemp()
        generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr"))
        self.assertTrue(Path(out_path).exists())

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))
185
186
187
        out_path_new = tempfile.mkdtemp()
        convert_pl_to_hf(ckpts[0], transformer_ckpts[0].parent, out_path_new)
        assert os.path.exists(os.path.join(out_path_new, "pytorch_model.bin"))
188

189
    def test_loss_fn(self):
190
        model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY, return_dict=True)
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"]
        target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device)
        decoder_input_ids = target_ids[:, :-1].contiguous()  # Why this line?
        lm_labels = target_ids[:, 1:].clone()  # why clone?
        model_computed_loss = model(
            input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False
        ).loss

        logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits

        lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
        smoothed_loss, nll_loss = label_smoothed_nll_loss(
            lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id
        )
        with self.assertRaises(AssertionError):
            # TODO: understand why this breaks
            self.assertEqual(nll_loss, model_computed_loss)

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def test_distill_mbart(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
            num_train_epochs=4,
            val_check_interval=0.25,
            alpha_hid=2.0,
            task="translation",
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
            tokenizer_name=MBART_TINY,
            teacher=MBART_TINY,
            src_lang="en_XX",
            tgt_lang="ro_RO",
        )
        model = self._test_distiller_cli(updates, check_contents=False)
224
        assert model.model.config.model_type == "mbart"
225
226
227
228
229
230
231
232
233
234

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        all_files = list(Path(model.output_dir).glob("best_tfmr/*"))
        assert len(all_files) > 2
        self.assertEqual(len(transformer_ckpts), 2)

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))

235
236
237
238
239
240
241
242
243
244
245
246
247
248
    @unittest.skip("T5 distillation is broken at the moment")
    def test_distill_t5(self):
        updates = dict(
            student_encoder_layers=1,
            student_decoder_layers=1,
            alpha_hid=2.0,
            teacher=T5_TINY,
            model_name_or_path=T5_TINY,
            tokenizer_name=T5_TINY,
        )
        self._test_distiller_cli(updates)

    def _test_distiller_cli(self, updates, check_contents=True):
        default_updates = dict(
249
            label_smoothing=0.0,
250
            early_stopping_patience=-1,
251
252
            train_batch_size=1,
            eval_batch_size=2,
253
            max_epochs=2,
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
            alpha_mlm=0.2,
            alpha_ce=0.8,
            do_predict=True,
            model_name_or_path="sshleifer/tinier_bart",
            teacher=CHEAP_ARGS["model_name_or_path"],
            val_check_interval=0.5,
            alpha_encoder_loss=0.4,
        )
        default_updates.update(updates)
        args_d: dict = CHEAP_ARGS.copy()
        tmp_dir = make_test_data_dir()
        output_dir = tempfile.mkdtemp(prefix="output_")

        args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
        model = distill_main(argparse.Namespace(**args_d))
        if not check_contents:
            return model
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
273
274
        ckpt_files = [p for p in contents if p.endswith("ckpt")]
        assert len(ckpt_files) > 0
275
276
277
278
279
280
281
282
283

        self.assertIn("test_generations.txt", contents)
        self.assertIn("test_results.txt", contents)

        metrics = load_json(model.metrics_save_path)
        last_step_stats = metrics["val"][-1]
        self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
        self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"])
        self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
284
        desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1)
285
286
287
288
289
        self.assertEqual(len(metrics["val"]), desired_n_evals)
        self.assertEqual(len(metrics["test"]), 1)
        return model


290
def run_eval_tester(model):
291
292
    input_file_name = Path(tempfile.mkdtemp()) / "utest_input.source"
    output_file_name = input_file_name.parent / "utest_output.txt"
293
294
    assert not output_file_name.exists()
    articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
295
    _dump_articles(input_file_name, articles)
296
297
    score_path = str(Path(tempfile.mkdtemp()) / "scores.json")
    task = "translation_en_to_de" if model == T5_TINY else "summarization"
298
299
300
301
302
303
304
305
306
307
308
    testargs = f"""
        run_eval_search.py
        {model}
        {input_file_name}
        {output_file_name}
        --score_path {score_path}
        --task {task}
        --num_beams 2
        --length_penalty 2.0
        """.split()

309
310
311
312
313
    with patch.object(sys, "argv", testargs):
        run_generate()
        assert Path(output_file_name).exists()
        os.remove(Path(output_file_name))

sgugger's avatar
sgugger committed
314

315
316
317
318
319
320
321
# test one model to quickly (no-@slow) catch simple problems and do an
# extensive testing of functionality with multiple models as @slow separately
def test_run_eval():
    run_eval_tester(T5_TINY)


# any extra models should go into the list here - can be slow
322
@slow
323
324
325
326
327
328
329
330
@pytest.mark.parametrize("model", [BART_TINY, MBART_TINY])
def test_run_eval_slow(model):
    run_eval_tester(model)


# testing with 2 models to validate: 1. translation (t5) 2. summarization (mbart)
@slow
@pytest.mark.parametrize("model", [T5_TINY, MBART_TINY])
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
def test_run_eval_search(model):
    input_file_name = Path(tempfile.mkdtemp()) / "utest_input.source"
    output_file_name = input_file_name.parent / "utest_output.txt"
    assert not output_file_name.exists()

    text = {
        "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
        "de": [
            "Maschinelles Lernen ist gro脽artig, oder?",
            "Ich esse gerne Bananen",
            "Morgen ist wieder ein toller Tag!",
        ],
    }

    tmp_dir = Path(tempfile.mkdtemp())
    score_path = str(tmp_dir / "scores.json")
    reference_path = str(tmp_dir / "val.target")
    _dump_articles(input_file_name, text["en"])
    _dump_articles(reference_path, text["de"])
    task = "translation_en_to_de" if model == T5_TINY else "summarization"
351
352
353
354
355
356
357
358
359
360
361
    testargs = f"""
        run_eval_search.py
        --model_name {model}
        --data_dir {str(input_file_name)}
        --save_dir {str(output_file_name)}
        --score_path {score_path}
        --reference_path {reference_path},
        --task {task}
        --search num_beams=1:2 length_penalty=0.9:1.0
        """.split()

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    with patch.object(sys, "argv", testargs):
        with CaptureStdout() as cs:
            run_search()
        expected_strings = [" num_beams | length_penalty", model, "Best score args"]
        un_expected_strings = ["Info"]
        if "translation" in task:
            expected_strings.append("bleu")
        else:
            expected_strings.extend(["rouge1", "rouge2", "rougeL"])
        for w in expected_strings:
            assert w in cs.out
        for w in un_expected_strings:
            assert w not in cs.out
        assert Path(output_file_name).exists()
        os.remove(Path(output_file_name))

378
379

@pytest.mark.parametrize(
380
381
    "model",
    [T5_TINY, BART_TINY, MBART_TINY, MARIAN_TINY],
382
383
384
385
)
def test_finetune(model):
    args_d: dict = CHEAP_ARGS.copy()
    task = "translation" if model in [MBART_TINY, MARIAN_TINY] else "summarization"
386
387
    args_d["label_smoothing"] = 0.1 if task == "translation" else 0

388
389
390
391
392
393
394
395
396
397
398
    tmp_dir = make_test_data_dir()
    output_dir = tempfile.mkdtemp(prefix="output_")
    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        output_dir=output_dir,
        do_predict=True,
        task=task,
399
400
401
402
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
403
404
405
    )
    assert "n_train" in args_d
    args = argparse.Namespace(**args_d)
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    module = main(args)

    input_embeds = module.model.get_input_embeddings()
    assert not input_embeds.weight.requires_grad
    if model == T5_TINY:
        lm_head = module.model.lm_head
        assert not lm_head.weight.requires_grad
        assert (lm_head.weight == input_embeds.weight).all().item()

    else:
        bart = module.model.model
        embed_pos = bart.decoder.embed_positions
        assert not embed_pos.weight.requires_grad
        assert not bart.shared.weight.requires_grad
        # check that embeds are the same
        assert bart.decoder.embed_tokens == bart.encoder.embed_tokens
        assert bart.decoder.embed_tokens == bart.shared
423
424


425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
def test_finetune_extra_model_args():
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    args_d.update(
        data_dir=tmp_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # test models whose config includes the extra_model_args
    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")
    args_d1 = args_d.copy()
    args_d1.update(
Lysandre's avatar
Lysandre committed
449
450
        model_name_or_path=model,
        output_dir=output_dir,
451
452
453
454
455
456
457
458
459
460
461
462
463
464
    )
    extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
    for p in extra_model_params:
        args_d1[p] = 0.5
    args = argparse.Namespace(**args_d1)
    model = main(args)
    for p in extra_model_params:
        assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}"

    # test models whose config doesn't include the extra_model_args
    model = T5_TINY
    output_dir = tempfile.mkdtemp(prefix="output_2_")
    args_d2 = args_d.copy()
    args_d2.update(
Lysandre's avatar
Lysandre committed
465
466
        model_name_or_path=model,
        output_dir=output_dir,
467
468
469
470
471
472
473
474
475
    )
    unsupported_param = "encoder_layerdrop"
    args_d2[unsupported_param] = 0.5
    args = argparse.Namespace(**args_d2)
    with pytest.raises(Exception) as excinfo:
        model = main(args)
    assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute"


476
def test_finetune_lr_schedulers():
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")

    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        output_dir=output_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # emulate finetune.py
    parser = argparse.ArgumentParser()
    parser = pl.Trainer.add_argparse_args(parser)
    parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
    args = {"--help": True}

    # --help test
    with pytest.raises(SystemExit) as excinfo:
508
509
        with CaptureStdout() as cs:
            args = parser.parse_args(args)
510
511
512
        assert False, "--help is expected to sys.exit"
    assert excinfo.type == SystemExit
    expected = lightning_base.arg_to_scheduler_metavar
513
    assert expected in cs.out, "--help is expected to list the supported schedulers"
514
515
516
517
518

    # --lr_scheduler=non_existing_scheduler test
    unsupported_param = "non_existing_scheduler"
    args = {f"--lr_scheduler={unsupported_param}"}
    with pytest.raises(SystemExit) as excinfo:
519
520
        with CaptureStderr() as cs:
            args = parser.parse_args(args)
521
522
523
        assert False, "invalid argument is expected to sys.exit"
    assert excinfo.type == SystemExit
    expected = f"invalid choice: '{unsupported_param}'"
524
    assert expected in cs.err, f"should have bailed on invalid choice of scheduler {unsupported_param}"
525
526
527
528
529
530
531
532
533
534

    # --lr_scheduler=existing_scheduler test
    supported_param = "cosine"
    args_d1 = args_d.copy()
    args_d1["lr_scheduler"] = supported_param
    args = argparse.Namespace(**args_d1)
    model = main(args)
    assert getattr(model.hparams, "lr_scheduler") == supported_param, f"lr_scheduler={supported_param} shouldn't fail"


535
536
def test_pack_dataset():
    tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
537

538
    tmp_dir = Path(make_test_data_dir())
539
    orig_examples = tmp_dir.joinpath("train.source").open().readlines()
540
541
542
543
    save_dir = Path(tempfile.mkdtemp(prefix="packed_"))
    pack_data_dir(tokenizer, tmp_dir, 128, save_dir)
    orig_paths = {x.name for x in tmp_dir.iterdir()}
    new_paths = {x.name for x in save_dir.iterdir()}
544
545
546
547
548
549
    packed_examples = save_dir.joinpath("train.source").open().readlines()
    # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
    # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
    assert len(packed_examples) < len(orig_examples)
    assert len(packed_examples) == 1
    assert len(packed_examples[0]) == sum(len(x) for x in orig_examples)
550
551
552
    assert orig_paths == new_paths


553
@pytest.mark.parametrize(
554
    "tok_name",
555
    [
556
557
558
559
560
        MBART_TINY,
        MARIAN_TINY,
        T5_TINY,
        BART_TINY,
        PEGASUS_XSUM,
561
562
563
    ],
)
def test_seq2seq_dataset_truncation(tok_name):
564
    tokenizer = AutoTokenizer.from_pretrained(tok_name)
565
566
567
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
568
569
    max_src_len = 4
    max_tgt_len = 8
570
571
572
573
    assert max_len_target > max_src_len  # Will be truncated
    assert max_len_source > max_src_len  # Will be truncated
    src_lang, tgt_lang = "ro_RO", "de_DE"  # ignored for all but mbart, but never causes error.
    train_dataset = Seq2SeqDataset(
574
575
576
        tokenizer,
        data_dir=tmp_dir,
        type_path="train",
577
578
        max_source_length=max_src_len,
        max_target_length=max_tgt_len,  # ignored
579
580
581
582
583
584
585
586
        src_lang=src_lang,
        tgt_lang=tgt_lang,
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert isinstance(batch, dict)
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
587
        assert batch["input_ids"].shape[1] == max_src_len
588
        # show that targets are the same len
589
590
        assert batch["labels"].shape[1] == max_tgt_len
        if tok_name != MBART_TINY:
591
            continue
592
        # check language codes in correct place
593
        batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], tokenizer.pad_token_id)
594
595
596
597
598
599
600
601
        assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
        assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]

        break  # No need to test every batch


602
@pytest.mark.parametrize("tok", [BART_TINY, BERT_BASE_CASED])
603
def test_legacy_dataset_truncation(tok):
604
605
606
607
608
    tokenizer = AutoTokenizer.from_pretrained(tok)
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
    trunc_target = 4
609
    train_dataset = LegacySeq2SeqDataset(
Lysandre's avatar
Lysandre committed
610
611
612
613
614
        tokenizer,
        data_dir=tmp_dir,
        type_path="train",
        max_source_length=20,
        max_target_length=trunc_target,
615
616
617
618
619
620
621
622
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
        assert batch["input_ids"].shape[1] == max_len_source
        assert 20 >= batch["input_ids"].shape[1]  # trimmed significantly
        # show that targets were truncated
623
        assert batch["labels"].shape[1] == trunc_target  # Truncated
624
        assert max_len_target > trunc_target  # Truncated
625
        break  # No need to test every batch