"src/webui/vscode:/vscode.git/clone" did not exist on "2a0fdd3d94d576812032ee80a50730af9863ad6f"
test_seq2seq_examples.py 13.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
import argparse
import logging
import os
import sys
import tempfile
import unittest
from pathlib import Path
from unittest.mock import patch

import pytest
import torch
12
from pytest import param
13
14
from torch.utils.data import DataLoader

15
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, MBartTokenizer
16
from transformers.testing_utils import require_multigpu
17
18
19

from .distillation import distill_main, evaluate_checkpoint
from .finetune import main
20
from .pack_dataset import pack_data_dir
21
from .run_eval import generate_summaries_or_translations, run_generate
22
from .utils import MBartDataset, Seq2SeqDataset, label_smoothed_nll_loss, lmap, load_json
23
24
25
26
27
28
29


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
30
31
    "label_smoothing": 0.2,
    "early_stopping_patience": 2,
32
    "logger_name": "default",
33
34
35
36
37
38
39
40
41
42
43
44
45
    "length_penalty": 0.5,
    "cache_dir": "",
    "task": "summarization",
    "num_workers": 2,
    "alpha_hid": 0,
    "freeze_embeds": True,
    "enc_only": False,
    "tgt_suffix": "",
    "resume_from_checkpoint": None,
    "sortish_sampler": True,
    "student_decoder_layers": 1,
    "val_check_interval": 1.0,
    "output_dir": "",
Sam Shleifer's avatar
Sam Shleifer committed
46
    "fp16": False,  # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
47
48
49
50
51
52
53
    "no_teacher": False,
    "fp16_opt_level": "O1",
    "gpus": 1 if CUDA_AVAILABLE else 0,
    "n_tpu_cores": 0,
    "max_grad_norm": 1.0,
    "do_train": True,
    "do_predict": True,
54
    "accumulate_grad_batches": 1,
55
56
57
58
59
60
61
62
63
64
65
    "server_ip": "",
    "server_port": "",
    "seed": 42,
    "model_name_or_path": "sshleifer/bart-tiny-random",
    "config_name": "",
    "tokenizer_name": "facebook/bart-large",
    "do_lower_case": False,
    "learning_rate": 0.3,
    "weight_decay": 0.0,
    "adam_epsilon": 1e-08,
    "warmup_steps": 0,
66
    "max_epochs": 1,
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    "train_batch_size": 2,
    "eval_batch_size": 2,
    "max_source_length": 12,
    "max_target_length": 12,
    "val_max_target_length": 12,
    "test_max_target_length": 12,
    "fast_dev_run": False,
    "no_cache": False,
    "n_train": -1,
    "n_val": -1,
    "n_test": -1,
    "student_encoder_layers": 1,
    "alpha_loss_encoder": 0.0,
    "freeze_encoder": False,
    "auto_scale_batch_size": False,
}


def _dump_articles(path: Path, articles: list):
86
87
    content = "\n".join(articles)
    Path(path).open("w").writelines(content)
88
89


90
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks


def make_test_data_dir(**kwargs):
    tmp_dir = Path(tempfile.mkdtemp(**kwargs))
    for split in ["train", "val", "test"]:
        _dump_articles((tmp_dir / f"{split}.source"), ARTICLES)
        _dump_articles((tmp_dir / f"{split}.target"), SUMMARIES)
    return tmp_dir


class TestSummarizationDistiller(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

115
    @require_multigpu
116
117
118
119
120
121
122
123
124
125
126
127
    def test_multigpu(self):
        updates = dict(no_teacher=True, freeze_encoder=True, gpus=2, sortish_sampler=False,)
        self._test_distiller_cli(updates)

    def test_distill_no_teacher(self):
        updates = dict(student_encoder_layers=2, student_decoder_layers=1, no_teacher=True)
        self._test_distiller_cli(updates)

    def test_distill_checkpointing_with_teacher(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
128
            max_epochs=4,
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
            val_check_interval=0.25,
            alpha_hid=2.0,
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
        )
        model = self._test_distiller_cli(updates, check_contents=False)

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        self.assertEqual(len(transformer_ckpts), 2)
        examples = lmap(str.strip, model.hparams.data_dir.joinpath("test.source").open().readlines())
        out_path = tempfile.mktemp()
        generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr"))
        self.assertTrue(Path(out_path).exists())

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    def test_loss_fn(self):
        model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY)
        input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"]
        target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device)
        decoder_input_ids = target_ids[:, :-1].contiguous()  # Why this line?
        lm_labels = target_ids[:, 1:].clone()  # why clone?
        model_computed_loss = model(
            input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False
        ).loss

        logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits

        lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
        smoothed_loss, nll_loss = label_smoothed_nll_loss(
            lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id
        )
        with self.assertRaises(AssertionError):
            # TODO: understand why this breaks
            self.assertEqual(nll_loss, model_computed_loss)

166
167
168
169
170
171
172
173
174
175
176
177
178
179
    @unittest.skip("T5 distillation is broken at the moment")
    def test_distill_t5(self):
        updates = dict(
            student_encoder_layers=1,
            student_decoder_layers=1,
            alpha_hid=2.0,
            teacher=T5_TINY,
            model_name_or_path=T5_TINY,
            tokenizer_name=T5_TINY,
        )
        self._test_distiller_cli(updates)

    def _test_distiller_cli(self, updates, check_contents=True):
        default_updates = dict(
180
181
            label_smoothing_eps=0.0,
            early_stopping_patience=-1,
182
183
            train_batch_size=1,
            eval_batch_size=2,
184
            max_epochs=2,
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
            alpha_mlm=0.2,
            alpha_ce=0.8,
            do_predict=True,
            model_name_or_path="sshleifer/tinier_bart",
            teacher=CHEAP_ARGS["model_name_or_path"],
            val_check_interval=0.5,
            alpha_encoder_loss=0.4,
        )
        default_updates.update(updates)
        args_d: dict = CHEAP_ARGS.copy()
        tmp_dir = make_test_data_dir()
        output_dir = tempfile.mkdtemp(prefix="output_")

        args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
        model = distill_main(argparse.Namespace(**args_d))
        if not check_contents:
            return model
        contents = os.listdir(output_dir)
        ckpt_name = "val_avg_rouge2=0.0000-step_count=2.ckpt"  # "val_avg_rouge2=0.0000-epoch=1.ckpt"  # "epoch=1-val_avg_rouge2=0.0000.ckpt"
        contents = {os.path.basename(p) for p in contents}
        self.assertIn(ckpt_name, contents)

        self.assertIn("test_generations.txt", contents)
        self.assertIn("test_results.txt", contents)

        metrics = load_json(model.metrics_save_path)
        last_step_stats = metrics["val"][-1]
        self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
        self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"])
        self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
215
        desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1)
216
217
218
219
220
221
222
        self.assertEqual(len(metrics["val"]), desired_n_evals)
        self.assertEqual(len(metrics["test"]), 1)
        return model


@pytest.mark.parametrize(["model"], [pytest.param(T5_TINY), pytest.param(BART_TINY), pytest.param(MBART_TINY)])
def test_run_eval_bart(model):
223
224
    input_file_name = Path(tempfile.mkdtemp()) / "utest_input.source"
    output_file_name = input_file_name.parent / "utest_output.txt"
225
226
    assert not output_file_name.exists()
    articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
227
    _dump_articles(input_file_name, articles)
228
    testargs = ["run_eval.py", model, str(input_file_name), str(output_file_name)]  # TODO: test score_path
229
230
231
232
233
234
235
    with patch.object(sys, "argv", testargs):
        run_generate()
        assert Path(output_file_name).exists()
        os.remove(Path(output_file_name))


@pytest.mark.parametrize(
236
    ["model"], [pytest.param(T5_TINY), pytest.param(BART_TINY), pytest.param(MBART_TINY), pytest.param(MARIAN_TINY)],
237
238
239
240
)
def test_finetune(model):
    args_d: dict = CHEAP_ARGS.copy()
    task = "translation" if model in [MBART_TINY, MARIAN_TINY] else "summarization"
241
242
    args_d["label_smoothing"] = 0.1 if task == "translation" else 0

243
244
245
246
247
248
249
250
251
252
253
    tmp_dir = make_test_data_dir()
    output_dir = tempfile.mkdtemp(prefix="output_")
    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        output_dir=output_dir,
        do_predict=True,
        task=task,
254
255
256
257
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
258
259
260
    )
    assert "n_train" in args_d
    args = argparse.Namespace(**args_d)
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    module = main(args)

    input_embeds = module.model.get_input_embeddings()
    assert not input_embeds.weight.requires_grad
    if model == T5_TINY:
        lm_head = module.model.lm_head
        assert not lm_head.weight.requires_grad
        assert (lm_head.weight == input_embeds.weight).all().item()

    else:
        bart = module.model.model
        embed_pos = bart.decoder.embed_positions
        assert not embed_pos.weight.requires_grad
        assert not bart.shared.weight.requires_grad
        # check that embeds are the same
        assert bart.decoder.embed_tokens == bart.encoder.embed_tokens
        assert bart.decoder.embed_tokens == bart.shared
278
279


280
281
def test_pack_dataset():
    tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
282

283
    tmp_dir = Path(make_test_data_dir())
284
    orig_examples = tmp_dir.joinpath("train.source").open().readlines()
285
286
287
288
    save_dir = Path(tempfile.mkdtemp(prefix="packed_"))
    pack_data_dir(tokenizer, tmp_dir, 128, save_dir)
    orig_paths = {x.name for x in tmp_dir.iterdir()}
    new_paths = {x.name for x in save_dir.iterdir()}
289
290
291
292
293
294
    packed_examples = save_dir.joinpath("train.source").open().readlines()
    # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
    # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
    assert len(packed_examples) < len(orig_examples)
    assert len(packed_examples) == 1
    assert len(packed_examples[0]) == sum(len(x) for x in orig_examples)
295
296
297
    assert orig_paths == new_paths


298
299
def test_mbart_dataset_truncation():
    tokenizer = MBartTokenizer.from_pretrained(MBART_TINY)
300
301
302
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
303
304
305
306
    max_src_len = 4
    max_tgt_len = 8
    assert max_len_target > max_src_len  # Truncated
    assert max_len_source > max_src_len
307
308
    src_lang, tgt_lang = "ro_RO", "de_DE"  # NOT WHAT IT WAS TRAINED ON
    train_dataset = MBartDataset(
309
310
311
        tokenizer,
        data_dir=tmp_dir,
        type_path="train",
312
313
        max_source_length=max_src_len,
        max_target_length=max_tgt_len,  # ignored
314
315
316
317
318
319
320
321
        src_lang=src_lang,
        tgt_lang=tgt_lang,
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert isinstance(batch, dict)
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
322
        assert batch["input_ids"].shape[1] == max_src_len
323
        # show that targets are the same len
324
        assert batch["decoder_input_ids"].shape[1] == max_tgt_len
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        # check language codes in correct place
        assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
        assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]

        break  # No need to test every batch


@pytest.mark.parametrize(["tok"], [pytest.param(T5_TINY), pytest.param(BART_TINY), param(MARIAN_TINY)])
def test_summarization_dataset_truncation(tok):
    tokenizer = AutoTokenizer.from_pretrained(tok)
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
    trunc_target = 4
    train_dataset = Seq2SeqDataset(
        tokenizer, data_dir=tmp_dir, type_path="train", max_source_length=20, max_target_length=trunc_target,
343
344
345
346
347
348
349
350
351
352
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
        assert batch["input_ids"].shape[1] == max_len_source
        assert 20 >= batch["input_ids"].shape[1]  # trimmed significantly
        # show that targets were truncated
        assert batch["decoder_input_ids"].shape[1] == trunc_target  # Truncated
        assert max_len_target > trunc_target  # Truncated
353
        break  # No need to test every batch