test_seq2seq_examples.py 20.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import argparse
import logging
import os
import sys
import tempfile
import unittest
from pathlib import Path
from unittest.mock import patch

import pytest
11
import pytorch_lightning as pl
12
13
14
import torch
from torch.utils.data import DataLoader

15
import lightning_base
16
17
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.hf_api import HfApi
18
from transformers.modeling_bart import shift_tokens_right
19
from transformers.testing_utils import CaptureStderr, CaptureStdout, require_multigpu, require_torch_and_cuda, slow
20

21
from .convert_pl_checkpoint_to_hf import convert_pl_to_hf
22
from .distillation import distill_main, evaluate_checkpoint
23
from .finetune import SummarizationModule, main
24
from .pack_dataset import pack_data_dir
25
from .run_eval import generate_summaries_or_translations, run_generate
26
from .utils import LegacySeq2SeqDataset, Seq2SeqDataset, label_smoothed_nll_loss, lmap, load_json
27
28
29
30
31
32
33


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
34
35
    "supervise_forward": True,
    "normalize_hidden": True,
36
    "label_smoothing": 0.2,
37
    "eval_beams": 1,
38
    "val_metric": "loss",
39
    "save_top_k": 1,
Sam Shleifer's avatar
Sam Shleifer committed
40
    "adafactor": True,
41
    "early_stopping_patience": 2,
42
    "logger_name": "default",
43
44
45
46
47
48
49
50
51
52
53
54
55
    "length_penalty": 0.5,
    "cache_dir": "",
    "task": "summarization",
    "num_workers": 2,
    "alpha_hid": 0,
    "freeze_embeds": True,
    "enc_only": False,
    "tgt_suffix": "",
    "resume_from_checkpoint": None,
    "sortish_sampler": True,
    "student_decoder_layers": 1,
    "val_check_interval": 1.0,
    "output_dir": "",
Sam Shleifer's avatar
Sam Shleifer committed
56
    "fp16": False,  # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
57
58
59
60
61
62
63
    "no_teacher": False,
    "fp16_opt_level": "O1",
    "gpus": 1 if CUDA_AVAILABLE else 0,
    "n_tpu_cores": 0,
    "max_grad_norm": 1.0,
    "do_train": True,
    "do_predict": True,
64
    "accumulate_grad_batches": 1,
65
66
67
68
69
70
71
72
    "server_ip": "",
    "server_port": "",
    "seed": 42,
    "model_name_or_path": "sshleifer/bart-tiny-random",
    "config_name": "",
    "tokenizer_name": "facebook/bart-large",
    "do_lower_case": False,
    "learning_rate": 0.3,
73
    "lr_scheduler": "linear",
74
75
76
    "weight_decay": 0.0,
    "adam_epsilon": 1e-08,
    "warmup_steps": 0,
77
    "max_epochs": 1,
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    "train_batch_size": 2,
    "eval_batch_size": 2,
    "max_source_length": 12,
    "max_target_length": 12,
    "val_max_target_length": 12,
    "test_max_target_length": 12,
    "fast_dev_run": False,
    "no_cache": False,
    "n_train": -1,
    "n_val": -1,
    "n_test": -1,
    "student_encoder_layers": 1,
    "alpha_loss_encoder": 0.0,
    "freeze_encoder": False,
    "auto_scale_batch_size": False,
}


def _dump_articles(path: Path, articles: list):
97
98
    content = "\n".join(articles)
    Path(path).open("w").writelines(content)
99
100


101
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks


def make_test_data_dir(**kwargs):
    tmp_dir = Path(tempfile.mkdtemp(**kwargs))
    for split in ["train", "val", "test"]:
        _dump_articles((tmp_dir / f"{split}.source"), ARTICLES)
        _dump_articles((tmp_dir / f"{split}.target"), SUMMARIES)
    return tmp_dir


class TestSummarizationDistiller(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    @slow
    @require_torch_and_cuda
    def test_hub_configs(self):
        """I put require_torch_and_cuda cause I only want this to run with self-scheduled."""

        model_list = HfApi().model_list()
        org = "sshleifer"
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
        allowed_to_be_broken = ["sshleifer/blenderbot-3B", "sshleifer/blenderbot-90M"]
        failures = []
        for m in model_ids:
            if m in allowed_to_be_broken:
                continue
            try:
                AutoConfig.from_pretrained(m)
            except Exception:
                failures.append(m)
        assert not failures, f"The following models could not be loaded through AutoConfig: {failures}"

145
    @require_multigpu
146
    def test_multigpu(self):
Lysandre's avatar
Lysandre committed
147
148
149
150
151
152
        updates = dict(
            no_teacher=True,
            freeze_encoder=True,
            gpus=2,
            sortish_sampler=False,
        )
153
154
155
156
157
158
159
160
161
162
        self._test_distiller_cli(updates)

    def test_distill_no_teacher(self):
        updates = dict(student_encoder_layers=2, student_decoder_layers=1, no_teacher=True)
        self._test_distiller_cli(updates)

    def test_distill_checkpointing_with_teacher(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
163
            max_epochs=4,
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
            val_check_interval=0.25,
            alpha_hid=2.0,
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
        )
        model = self._test_distiller_cli(updates, check_contents=False)

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        self.assertEqual(len(transformer_ckpts), 2)
        examples = lmap(str.strip, model.hparams.data_dir.joinpath("test.source").open().readlines())
        out_path = tempfile.mktemp()
        generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr"))
        self.assertTrue(Path(out_path).exists())

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))
180
181
182
        out_path_new = tempfile.mkdtemp()
        convert_pl_to_hf(ckpts[0], transformer_ckpts[0].parent, out_path_new)
        assert os.path.exists(os.path.join(out_path_new, "pytorch_model.bin"))
183

184
    def test_loss_fn(self):
185
        model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY, return_dict=True)
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"]
        target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device)
        decoder_input_ids = target_ids[:, :-1].contiguous()  # Why this line?
        lm_labels = target_ids[:, 1:].clone()  # why clone?
        model_computed_loss = model(
            input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False
        ).loss

        logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits

        lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
        smoothed_loss, nll_loss = label_smoothed_nll_loss(
            lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id
        )
        with self.assertRaises(AssertionError):
            # TODO: understand why this breaks
            self.assertEqual(nll_loss, model_computed_loss)

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    def test_distill_mbart(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
            num_train_epochs=4,
            val_check_interval=0.25,
            alpha_hid=2.0,
            task="translation",
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
            tokenizer_name=MBART_TINY,
            teacher=MBART_TINY,
            src_lang="en_XX",
            tgt_lang="ro_RO",
        )
        model = self._test_distiller_cli(updates, check_contents=False)
219
        assert model.model.config.model_type == "mbart"
220
221
222
223
224
225
226
227
228
229

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        all_files = list(Path(model.output_dir).glob("best_tfmr/*"))
        assert len(all_files) > 2
        self.assertEqual(len(transformer_ckpts), 2)

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))

230
231
232
233
234
235
236
237
238
239
240
241
242
243
    @unittest.skip("T5 distillation is broken at the moment")
    def test_distill_t5(self):
        updates = dict(
            student_encoder_layers=1,
            student_decoder_layers=1,
            alpha_hid=2.0,
            teacher=T5_TINY,
            model_name_or_path=T5_TINY,
            tokenizer_name=T5_TINY,
        )
        self._test_distiller_cli(updates)

    def _test_distiller_cli(self, updates, check_contents=True):
        default_updates = dict(
244
            label_smoothing=0.0,
245
            early_stopping_patience=-1,
246
247
            train_batch_size=1,
            eval_batch_size=2,
248
            max_epochs=2,
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
            alpha_mlm=0.2,
            alpha_ce=0.8,
            do_predict=True,
            model_name_or_path="sshleifer/tinier_bart",
            teacher=CHEAP_ARGS["model_name_or_path"],
            val_check_interval=0.5,
            alpha_encoder_loss=0.4,
        )
        default_updates.update(updates)
        args_d: dict = CHEAP_ARGS.copy()
        tmp_dir = make_test_data_dir()
        output_dir = tempfile.mkdtemp(prefix="output_")

        args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
        model = distill_main(argparse.Namespace(**args_d))
        if not check_contents:
            return model
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
268
269
        ckpt_files = [p for p in contents if p.endswith("ckpt")]
        assert len(ckpt_files) > 0
270
271
272
273
274
275
276
277
278

        self.assertIn("test_generations.txt", contents)
        self.assertIn("test_results.txt", contents)

        metrics = load_json(model.metrics_save_path)
        last_step_stats = metrics["val"][-1]
        self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
        self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"])
        self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
279
        desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1)
280
281
282
283
284
285
        self.assertEqual(len(metrics["val"]), desired_n_evals)
        self.assertEqual(len(metrics["test"]), 1)
        return model


@pytest.mark.parametrize(["model"], [pytest.param(T5_TINY), pytest.param(BART_TINY), pytest.param(MBART_TINY)])
286
def test_run_eval(model):
287
288
    input_file_name = Path(tempfile.mkdtemp()) / "utest_input.source"
    output_file_name = input_file_name.parent / "utest_output.txt"
289
290
    assert not output_file_name.exists()
    articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
291
    _dump_articles(input_file_name, articles)
292
293
294
295
296
297
298
299
300
301
302
    score_path = str(Path(tempfile.mkdtemp()) / "scores.json")
    task = "translation_en_to_de" if model == T5_TINY else "summarization"
    testargs = [
        "run_eval.py",
        model,
        str(input_file_name),
        str(output_file_name),
        "--score_path",
        score_path,
        "--task",
        task,
303
304
305
306
        "--num_beams",
        "2",
        "--length_penalty",
        "2.0",
307
    ]
308
309
310
311
312
313
314
    with patch.object(sys, "argv", testargs):
        run_generate()
        assert Path(output_file_name).exists()
        os.remove(Path(output_file_name))


@pytest.mark.parametrize(
Lysandre's avatar
Lysandre committed
315
316
    ["model"],
    [pytest.param(T5_TINY), pytest.param(BART_TINY), pytest.param(MBART_TINY), pytest.param(MARIAN_TINY)],
317
318
319
320
)
def test_finetune(model):
    args_d: dict = CHEAP_ARGS.copy()
    task = "translation" if model in [MBART_TINY, MARIAN_TINY] else "summarization"
321
322
    args_d["label_smoothing"] = 0.1 if task == "translation" else 0

323
324
325
326
327
328
329
330
331
332
333
    tmp_dir = make_test_data_dir()
    output_dir = tempfile.mkdtemp(prefix="output_")
    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        output_dir=output_dir,
        do_predict=True,
        task=task,
334
335
336
337
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
338
339
340
    )
    assert "n_train" in args_d
    args = argparse.Namespace(**args_d)
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    module = main(args)

    input_embeds = module.model.get_input_embeddings()
    assert not input_embeds.weight.requires_grad
    if model == T5_TINY:
        lm_head = module.model.lm_head
        assert not lm_head.weight.requires_grad
        assert (lm_head.weight == input_embeds.weight).all().item()

    else:
        bart = module.model.model
        embed_pos = bart.decoder.embed_positions
        assert not embed_pos.weight.requires_grad
        assert not bart.shared.weight.requires_grad
        # check that embeds are the same
        assert bart.decoder.embed_tokens == bart.encoder.embed_tokens
        assert bart.decoder.embed_tokens == bart.shared
358
359


360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
def test_finetune_extra_model_args():
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    args_d.update(
        data_dir=tmp_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # test models whose config includes the extra_model_args
    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")
    args_d1 = args_d.copy()
    args_d1.update(
Lysandre's avatar
Lysandre committed
384
385
        model_name_or_path=model,
        output_dir=output_dir,
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    )
    extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
    for p in extra_model_params:
        args_d1[p] = 0.5
    args = argparse.Namespace(**args_d1)
    model = main(args)
    for p in extra_model_params:
        assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}"

    # test models whose config doesn't include the extra_model_args
    model = T5_TINY
    output_dir = tempfile.mkdtemp(prefix="output_2_")
    args_d2 = args_d.copy()
    args_d2.update(
Lysandre's avatar
Lysandre committed
400
401
        model_name_or_path=model,
        output_dir=output_dir,
402
403
404
405
406
407
408
409
410
    )
    unsupported_param = "encoder_layerdrop"
    args_d2[unsupported_param] = 0.5
    args = argparse.Namespace(**args_d2)
    with pytest.raises(Exception) as excinfo:
        model = main(args)
    assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute"


411
def test_finetune_lr_schedulers():
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")

    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        output_dir=output_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # emulate finetune.py
    parser = argparse.ArgumentParser()
    parser = pl.Trainer.add_argparse_args(parser)
    parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
    args = {"--help": True}

    # --help test
    with pytest.raises(SystemExit) as excinfo:
443
444
        with CaptureStdout() as cs:
            args = parser.parse_args(args)
445
446
447
        assert False, "--help is expected to sys.exit"
    assert excinfo.type == SystemExit
    expected = lightning_base.arg_to_scheduler_metavar
448
    assert expected in cs.out, "--help is expected to list the supported schedulers"
449
450
451
452
453

    # --lr_scheduler=non_existing_scheduler test
    unsupported_param = "non_existing_scheduler"
    args = {f"--lr_scheduler={unsupported_param}"}
    with pytest.raises(SystemExit) as excinfo:
454
455
        with CaptureStderr() as cs:
            args = parser.parse_args(args)
456
457
458
        assert False, "invalid argument is expected to sys.exit"
    assert excinfo.type == SystemExit
    expected = f"invalid choice: '{unsupported_param}'"
459
    assert expected in cs.err, f"should have bailed on invalid choice of scheduler {unsupported_param}"
460
461
462
463
464
465
466
467
468
469

    # --lr_scheduler=existing_scheduler test
    supported_param = "cosine"
    args_d1 = args_d.copy()
    args_d1["lr_scheduler"] = supported_param
    args = argparse.Namespace(**args_d1)
    model = main(args)
    assert getattr(model.hparams, "lr_scheduler") == supported_param, f"lr_scheduler={supported_param} shouldn't fail"


470
471
def test_pack_dataset():
    tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
472

473
    tmp_dir = Path(make_test_data_dir())
474
    orig_examples = tmp_dir.joinpath("train.source").open().readlines()
475
476
477
478
    save_dir = Path(tempfile.mkdtemp(prefix="packed_"))
    pack_data_dir(tokenizer, tmp_dir, 128, save_dir)
    orig_paths = {x.name for x in tmp_dir.iterdir()}
    new_paths = {x.name for x in save_dir.iterdir()}
479
480
481
482
483
484
    packed_examples = save_dir.joinpath("train.source").open().readlines()
    # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
    # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
    assert len(packed_examples) < len(orig_examples)
    assert len(packed_examples) == 1
    assert len(packed_examples[0]) == sum(len(x) for x in orig_examples)
485
486
487
    assert orig_paths == new_paths


488
489
490
491
492
493
494
495
496
497
498
@pytest.mark.parametrize(
    ["tok_name"],
    [
        pytest.param(MBART_TINY),
        pytest.param(MARIAN_TINY),
        pytest.param(T5_TINY),
        pytest.param(BART_TINY),
        pytest.param("google/pegasus-xsum"),
    ],
)
def test_seq2seq_dataset_truncation(tok_name):
499
    tokenizer = AutoTokenizer.from_pretrained(tok_name)
500
501
502
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
503
504
    max_src_len = 4
    max_tgt_len = 8
505
506
507
508
    assert max_len_target > max_src_len  # Will be truncated
    assert max_len_source > max_src_len  # Will be truncated
    src_lang, tgt_lang = "ro_RO", "de_DE"  # ignored for all but mbart, but never causes error.
    train_dataset = Seq2SeqDataset(
509
510
511
        tokenizer,
        data_dir=tmp_dir,
        type_path="train",
512
513
        max_source_length=max_src_len,
        max_target_length=max_tgt_len,  # ignored
514
515
516
517
518
519
520
521
        src_lang=src_lang,
        tgt_lang=tgt_lang,
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert isinstance(batch, dict)
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
522
        assert batch["input_ids"].shape[1] == max_src_len
523
        # show that targets are the same len
524
525
        assert batch["labels"].shape[1] == max_tgt_len
        if tok_name != MBART_TINY:
526
            continue
527
        # check language codes in correct place
528
        batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], tokenizer.pad_token_id)
529
530
531
532
533
534
535
536
        assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
        assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]

        break  # No need to test every batch


537
538
@pytest.mark.parametrize(["tok"], [pytest.param(BART_TINY), pytest.param("bert-base-cased")])
def test_legacy_dataset_truncation(tok):
539
540
541
542
543
    tokenizer = AutoTokenizer.from_pretrained(tok)
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
    trunc_target = 4
544
    train_dataset = LegacySeq2SeqDataset(
Lysandre's avatar
Lysandre committed
545
546
547
548
549
        tokenizer,
        data_dir=tmp_dir,
        type_path="train",
        max_source_length=20,
        max_target_length=trunc_target,
550
551
552
553
554
555
556
557
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
        assert batch["input_ids"].shape[1] == max_len_source
        assert 20 >= batch["input_ids"].shape[1]  # trimmed significantly
        # show that targets were truncated
558
        assert batch["labels"].shape[1] == trunc_target  # Truncated
559
        assert max_len_target > trunc_target  # Truncated
560
        break  # No need to test every batch