test_seq2seq_examples.py 19.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
import argparse
import logging
import os
import sys
import tempfile
from pathlib import Path
from unittest.mock import patch

import pytest
10
import pytorch_lightning as pl
11
12
import torch

13
import lightning_base
14
from convert_pl_checkpoint_to_hf import convert_pl_to_hf
15
from distillation import distill_main
16
from finetune import SummarizationModule, main
17
from parameterized import parameterized
18
19
from run_eval import generate_summaries_or_translations, run_generate
from run_eval_search import run_search
20
from transformers import AutoConfig, AutoModelForSeq2SeqLM
21
from transformers.hf_api import HfApi
22
from transformers.testing_utils import CaptureStderr, CaptureStdout, TestCasePlus, require_torch_and_cuda, slow
23
from utils import ROUGE_KEYS, label_smoothed_nll_loss, lmap, load_json
24
25
26
27
28
29
30


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
31
    "max_tokens_per_batch": None,
32
33
    "supervise_forward": True,
    "normalize_hidden": True,
34
    "label_smoothing": 0.2,
35
    "eval_max_gen_length": None,
36
    "eval_beams": 1,
37
    "val_metric": "loss",
38
    "save_top_k": 1,
Sam Shleifer's avatar
Sam Shleifer committed
39
    "adafactor": True,
40
    "early_stopping_patience": 2,
41
    "logger_name": "default",
42
43
44
45
46
47
48
49
50
51
52
53
54
    "length_penalty": 0.5,
    "cache_dir": "",
    "task": "summarization",
    "num_workers": 2,
    "alpha_hid": 0,
    "freeze_embeds": True,
    "enc_only": False,
    "tgt_suffix": "",
    "resume_from_checkpoint": None,
    "sortish_sampler": True,
    "student_decoder_layers": 1,
    "val_check_interval": 1.0,
    "output_dir": "",
55
    "fp16": False,  # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
56
57
58
59
60
61
62
    "no_teacher": False,
    "fp16_opt_level": "O1",
    "gpus": 1 if CUDA_AVAILABLE else 0,
    "n_tpu_cores": 0,
    "max_grad_norm": 1.0,
    "do_train": True,
    "do_predict": True,
63
    "accumulate_grad_batches": 1,
64
65
66
67
68
69
70
71
    "server_ip": "",
    "server_port": "",
    "seed": 42,
    "model_name_or_path": "sshleifer/bart-tiny-random",
    "config_name": "",
    "tokenizer_name": "facebook/bart-large",
    "do_lower_case": False,
    "learning_rate": 0.3,
72
    "lr_scheduler": "linear",
73
74
75
    "weight_decay": 0.0,
    "adam_epsilon": 1e-08,
    "warmup_steps": 0,
76
    "max_epochs": 1,
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    "train_batch_size": 2,
    "eval_batch_size": 2,
    "max_source_length": 12,
    "max_target_length": 12,
    "val_max_target_length": 12,
    "test_max_target_length": 12,
    "fast_dev_run": False,
    "no_cache": False,
    "n_train": -1,
    "n_val": -1,
    "n_test": -1,
    "student_encoder_layers": 1,
    "freeze_encoder": False,
    "auto_scale_batch_size": False,
91
    "overwrite_output_dir": False,
92
93
94
95
}


def _dump_articles(path: Path, articles: list):
96
97
    content = "\n".join(articles)
    Path(path).open("w").writelines(content)
98
99


100
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
101
102
103
104
105
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
106
FSMT_TINY = "stas/tiny-wmt19-en-de"
107

108

109
110
111
112
113
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks


114
def make_test_data_dir(tmp_dir):
115
    for split in ["train", "val", "test"]:
116
117
        _dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES)
        _dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES)
118
119
120
    return tmp_dir


121
class TestSummarizationDistiller(TestCasePlus):
122
123
124
125
126
    @classmethod
    def setUpClass(cls):
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    @slow
    @require_torch_and_cuda
    def test_hub_configs(self):
        """I put require_torch_and_cuda cause I only want this to run with self-scheduled."""

        model_list = HfApi().model_list()
        org = "sshleifer"
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
        allowed_to_be_broken = ["sshleifer/blenderbot-3B", "sshleifer/blenderbot-90M"]
        failures = []
        for m in model_ids:
            if m in allowed_to_be_broken:
                continue
            try:
                AutoConfig.from_pretrained(m)
            except Exception:
                failures.append(m)
        assert not failures, f"The following models could not be loaded through AutoConfig: {failures}"

146
147
148
149
150
151
152
153
    def test_distill_no_teacher(self):
        updates = dict(student_encoder_layers=2, student_decoder_layers=1, no_teacher=True)
        self._test_distiller_cli(updates)

    def test_distill_checkpointing_with_teacher(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
154
            max_epochs=4,
155
156
157
158
159
160
161
162
163
164
            val_check_interval=0.25,
            alpha_hid=2.0,
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
        )
        model = self._test_distiller_cli(updates, check_contents=False)

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        self.assertEqual(len(transformer_ckpts), 2)
165
166
        examples = lmap(str.strip, Path(model.hparams.data_dir).joinpath("test.source").open().readlines())
        out_path = tempfile.mktemp()  # XXX: not being cleaned up
167
168
169
        generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr"))
        self.assertTrue(Path(out_path).exists())

170
        out_path_new = self.get_auto_remove_tmp_dir()
171
172
        convert_pl_to_hf(ckpts[0], transformer_ckpts[0].parent, out_path_new)
        assert os.path.exists(os.path.join(out_path_new, "pytorch_model.bin"))
173

174
    def test_loss_fn(self):
175
        model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY, return_dict=True)
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"]
        target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device)
        decoder_input_ids = target_ids[:, :-1].contiguous()  # Why this line?
        lm_labels = target_ids[:, 1:].clone()  # why clone?
        model_computed_loss = model(
            input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False
        ).loss

        logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits

        lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
        smoothed_loss, nll_loss = label_smoothed_nll_loss(
            lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id
        )
        with self.assertRaises(AssertionError):
            # TODO: understand why this breaks
            self.assertEqual(nll_loss, model_computed_loss)

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    def test_distill_mbart(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
            num_train_epochs=4,
            val_check_interval=0.25,
            alpha_hid=2.0,
            task="translation",
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
            tokenizer_name=MBART_TINY,
            teacher=MBART_TINY,
            src_lang="en_XX",
            tgt_lang="ro_RO",
        )
        model = self._test_distiller_cli(updates, check_contents=False)
209
        assert model.model.config.model_type == "mbart"
210
211
212
213
214
215
216
217

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        all_files = list(Path(model.output_dir).glob("best_tfmr/*"))
        assert len(all_files) > 2
        self.assertEqual(len(transformer_ckpts), 2)

218
219
220
221
222
223
224
225
226
227
228
229
230
    def test_distill_t5(self):
        updates = dict(
            student_encoder_layers=1,
            student_decoder_layers=1,
            alpha_hid=2.0,
            teacher=T5_TINY,
            model_name_or_path=T5_TINY,
            tokenizer_name=T5_TINY,
        )
        self._test_distiller_cli(updates)

    def _test_distiller_cli(self, updates, check_contents=True):
        default_updates = dict(
231
            label_smoothing=0.0,
232
            early_stopping_patience=-1,
233
234
            train_batch_size=1,
            eval_batch_size=2,
235
            max_epochs=2,
236
237
238
239
240
241
242
243
244
            alpha_mlm=0.2,
            alpha_ce=0.8,
            do_predict=True,
            model_name_or_path="sshleifer/tinier_bart",
            teacher=CHEAP_ARGS["model_name_or_path"],
            val_check_interval=0.5,
        )
        default_updates.update(updates)
        args_d: dict = CHEAP_ARGS.copy()
245
246
        tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
        output_dir = self.get_auto_remove_tmp_dir()
247
248
249
250
251
252
253

        args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
        model = distill_main(argparse.Namespace(**args_d))
        if not check_contents:
            return model
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
254
255
        ckpt_files = [p for p in contents if p.endswith("ckpt")]
        assert len(ckpt_files) > 0
256
257
258
259
260
261
262
263
264

        self.assertIn("test_generations.txt", contents)
        self.assertIn("test_results.txt", contents)

        metrics = load_json(model.metrics_save_path)
        last_step_stats = metrics["val"][-1]
        self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
        self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"])
        self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
265
        desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1)
266
267
268
269
270
        self.assertEqual(len(metrics["val"]), desired_n_evals)
        self.assertEqual(len(metrics["test"]), 1)
        return model


271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
class TestTheRest(TestCasePlus):
    def run_eval_tester(self, model):
        input_file_name = Path(self.get_auto_remove_tmp_dir()) / "utest_input.source"
        output_file_name = input_file_name.parent / "utest_output.txt"
        assert not output_file_name.exists()
        articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
        _dump_articles(input_file_name, articles)

        score_path = str(Path(self.get_auto_remove_tmp_dir()) / "scores.json")
        task = "translation_en_to_de" if model == T5_TINY else "summarization"
        testargs = f"""
            run_eval_search.py
            {model}
            {input_file_name}
            {output_file_name}
            --score_path {score_path}
            --task {task}
            --num_beams 2
            --length_penalty 2.0
            """.split()

        with patch.object(sys, "argv", testargs):
            run_generate()
            assert Path(output_file_name).exists()
            # os.remove(Path(output_file_name))

    # test one model to quickly (no-@slow) catch simple problems and do an
    # extensive testing of functionality with multiple models as @slow separately
    def test_run_eval(self):
        self.run_eval_tester(T5_TINY)

    # any extra models should go into the list here - can be slow
    @parameterized.expand([BART_TINY, MBART_TINY])
    @slow
    def test_run_eval_slow(self, model):
        self.run_eval_tester(model)
307

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    # testing with 2 models to validate: 1. translation (t5) 2. summarization (mbart)
    @parameterized.expand([T5_TINY, MBART_TINY])
    @slow
    def test_run_eval_search(self, model):
        input_file_name = Path(self.get_auto_remove_tmp_dir()) / "utest_input.source"
        output_file_name = input_file_name.parent / "utest_output.txt"
        assert not output_file_name.exists()

        text = {
            "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
            "de": [
                "Maschinelles Lernen ist gro脽artig, oder?",
                "Ich esse gerne Bananen",
                "Morgen ist wieder ein toller Tag!",
            ],
        }

        tmp_dir = Path(self.get_auto_remove_tmp_dir())
        score_path = str(tmp_dir / "scores.json")
        reference_path = str(tmp_dir / "val.target")
        _dump_articles(input_file_name, text["en"])
        _dump_articles(reference_path, text["de"])
        task = "translation_en_to_de" if model == T5_TINY else "summarization"
        testargs = f"""
            run_eval_search.py
            {model}
            {str(input_file_name)}
            {str(output_file_name)}
            --score_path {score_path}
            --reference_path {reference_path}
            --task {task}
            """.split()
        testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"])

        with patch.object(sys, "argv", testargs):
            with CaptureStdout() as cs:
                run_search()
            expected_strings = [" num_beams | length_penalty", model, "Best score args"]
            un_expected_strings = ["Info"]
            if "translation" in task:
                expected_strings.append("bleu")
            else:
                expected_strings.extend(ROUGE_KEYS)
            for w in expected_strings:
                assert w in cs.out
            for w in un_expected_strings:
                assert w not in cs.out
            assert Path(output_file_name).exists()
            os.remove(Path(output_file_name))

    @parameterized.expand(
        [T5_TINY, BART_TINY, MBART_TINY, MARIAN_TINY, FSMT_TINY],
360
    )
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    def test_finetune(self, model):
        args_d: dict = CHEAP_ARGS.copy()
        task = "translation" if model in [MBART_TINY, MARIAN_TINY, FSMT_TINY] else "summarization"
        args_d["label_smoothing"] = 0.1 if task == "translation" else 0

        tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
        output_dir = self.get_auto_remove_tmp_dir()
        args_d.update(
            data_dir=tmp_dir,
            model_name_or_path=model,
            tokenizer_name=None,
            train_batch_size=2,
            eval_batch_size=2,
            output_dir=output_dir,
            do_predict=True,
            task=task,
            src_lang="en_XX",
            tgt_lang="ro_RO",
            freeze_encoder=True,
            freeze_embeds=True,
        )
        assert "n_train" in args_d
        args = argparse.Namespace(**args_d)
        module = main(args)

        input_embeds = module.model.get_input_embeddings()
        assert not input_embeds.weight.requires_grad
        if model == T5_TINY:
            lm_head = module.model.lm_head
            assert not lm_head.weight.requires_grad
            assert (lm_head.weight == input_embeds.weight).all().item()
        elif model == FSMT_TINY:
            fsmt = module.model.model
            embed_pos = fsmt.decoder.embed_positions
            assert not embed_pos.weight.requires_grad
            assert not fsmt.decoder.embed_tokens.weight.requires_grad
            # check that embeds are not the same
            assert fsmt.decoder.embed_tokens != fsmt.encoder.embed_tokens
        else:
            bart = module.model.model
            embed_pos = bart.decoder.embed_positions
            assert not embed_pos.weight.requires_grad
            assert not bart.shared.weight.requires_grad
            # check that embeds are the same
            assert bart.decoder.embed_tokens == bart.encoder.embed_tokens
            assert bart.decoder.embed_tokens == bart.shared

        example_batch = load_json(module.output_dir / "text_batch.json")
        assert isinstance(example_batch, dict)
        assert len(example_batch) >= 4

    def test_finetune_extra_model_args(self):
        args_d: dict = CHEAP_ARGS.copy()

        task = "summarization"
        tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())

        args_d.update(
            data_dir=tmp_dir,
            tokenizer_name=None,
            train_batch_size=2,
            eval_batch_size=2,
            do_predict=False,
            task=task,
            src_lang="en_XX",
            tgt_lang="ro_RO",
            freeze_encoder=True,
            freeze_embeds=True,
        )

        # test models whose config includes the extra_model_args
        model = BART_TINY
        output_dir = self.get_auto_remove_tmp_dir()
        args_d1 = args_d.copy()
        args_d1.update(
            model_name_or_path=model,
            output_dir=output_dir,
        )
        extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
        for p in extra_model_params:
            args_d1[p] = 0.5
        args = argparse.Namespace(**args_d1)
443
        model = main(args)
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        for p in extra_model_params:
            assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}"

        # test models whose config doesn't include the extra_model_args
        model = T5_TINY
        output_dir = self.get_auto_remove_tmp_dir()
        args_d2 = args_d.copy()
        args_d2.update(
            model_name_or_path=model,
            output_dir=output_dir,
        )
        unsupported_param = "encoder_layerdrop"
        args_d2[unsupported_param] = 0.5
        args = argparse.Namespace(**args_d2)
        with pytest.raises(Exception) as excinfo:
            model = main(args)
        assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute"

    def test_finetune_lr_schedulers(self):
        args_d: dict = CHEAP_ARGS.copy()

        task = "summarization"
        tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())

        model = BART_TINY
        output_dir = self.get_auto_remove_tmp_dir()

        args_d.update(
            data_dir=tmp_dir,
            model_name_or_path=model,
            output_dir=output_dir,
            tokenizer_name=None,
            train_batch_size=2,
            eval_batch_size=2,
            do_predict=False,
            task=task,
            src_lang="en_XX",
            tgt_lang="ro_RO",
            freeze_encoder=True,
            freeze_embeds=True,
        )
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
        # emulate finetune.py
        parser = argparse.ArgumentParser()
        parser = pl.Trainer.add_argparse_args(parser)
        parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
        args = {"--help": True}

        # --help test
        with pytest.raises(SystemExit) as excinfo:
            with CaptureStdout() as cs:
                args = parser.parse_args(args)
            assert False, "--help is expected to sys.exit"
        assert excinfo.type == SystemExit
        expected = lightning_base.arg_to_scheduler_metavar
        assert expected in cs.out, "--help is expected to list the supported schedulers"

        # --lr_scheduler=non_existing_scheduler test
        unsupported_param = "non_existing_scheduler"
        args = {f"--lr_scheduler={unsupported_param}"}
        with pytest.raises(SystemExit) as excinfo:
            with CaptureStderr() as cs:
                args = parser.parse_args(args)
            assert False, "invalid argument is expected to sys.exit"
        assert excinfo.type == SystemExit
        expected = f"invalid choice: '{unsupported_param}'"
        assert expected in cs.err, f"should have bailed on invalid choice of scheduler {unsupported_param}"

        # --lr_scheduler=existing_scheduler test
        supported_param = "cosine"
        args_d1 = args_d.copy()
        args_d1["lr_scheduler"] = supported_param
        args = argparse.Namespace(**args_d1)
        model = main(args)
        assert (
            getattr(model.hparams, "lr_scheduler") == supported_param
        ), f"lr_scheduler={supported_param} shouldn't fail"