test_seq2seq_examples.py 18.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import argparse
import logging
import os
import sys
import tempfile
import unittest
from pathlib import Path
from unittest.mock import patch

import pytest
11
import pytorch_lightning as pl
12
13
import torch

14
import lightning_base
15
from transformers import AutoConfig, AutoModelForSeq2SeqLM
16
17
from transformers.hf_api import HfApi
from transformers.testing_utils import CaptureStderr, CaptureStdout, require_multigpu, require_torch_and_cuda, slow
18

19
from .convert_pl_checkpoint_to_hf import convert_pl_to_hf
20
from .distillation import distill_main, evaluate_checkpoint
21
from .finetune import SummarizationModule, main
22
from .run_eval import generate_summaries_or_translations, run_generate
23
from .run_eval_search import run_search
24
from .utils import label_smoothed_nll_loss, lmap, load_json
25
26
27
28
29
30
31


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
32
    "max_tokens_per_batch": None,
33
34
    "supervise_forward": True,
    "normalize_hidden": True,
35
    "label_smoothing": 0.2,
36
    "eval_max_gen_length": None,
37
    "eval_beams": 1,
38
    "val_metric": "loss",
39
    "save_top_k": 1,
Sam Shleifer's avatar
Sam Shleifer committed
40
    "adafactor": True,
41
    "early_stopping_patience": 2,
42
    "logger_name": "default",
43
44
45
46
47
48
49
50
51
52
53
54
55
    "length_penalty": 0.5,
    "cache_dir": "",
    "task": "summarization",
    "num_workers": 2,
    "alpha_hid": 0,
    "freeze_embeds": True,
    "enc_only": False,
    "tgt_suffix": "",
    "resume_from_checkpoint": None,
    "sortish_sampler": True,
    "student_decoder_layers": 1,
    "val_check_interval": 1.0,
    "output_dir": "",
Sam Shleifer's avatar
Sam Shleifer committed
56
    "fp16": False,  # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
57
58
59
60
61
62
63
    "no_teacher": False,
    "fp16_opt_level": "O1",
    "gpus": 1 if CUDA_AVAILABLE else 0,
    "n_tpu_cores": 0,
    "max_grad_norm": 1.0,
    "do_train": True,
    "do_predict": True,
64
    "accumulate_grad_batches": 1,
65
66
67
68
69
70
71
72
    "server_ip": "",
    "server_port": "",
    "seed": 42,
    "model_name_or_path": "sshleifer/bart-tiny-random",
    "config_name": "",
    "tokenizer_name": "facebook/bart-large",
    "do_lower_case": False,
    "learning_rate": 0.3,
73
    "lr_scheduler": "linear",
74
75
76
    "weight_decay": 0.0,
    "adam_epsilon": 1e-08,
    "warmup_steps": 0,
77
    "max_epochs": 1,
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    "train_batch_size": 2,
    "eval_batch_size": 2,
    "max_source_length": 12,
    "max_target_length": 12,
    "val_max_target_length": 12,
    "test_max_target_length": 12,
    "fast_dev_run": False,
    "no_cache": False,
    "n_train": -1,
    "n_val": -1,
    "n_test": -1,
    "student_encoder_layers": 1,
    "alpha_loss_encoder": 0.0,
    "freeze_encoder": False,
    "auto_scale_batch_size": False,
}


def _dump_articles(path: Path, articles: list):
97
98
    content = "\n".join(articles)
    Path(path).open("w").writelines(content)
99
100


101
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
102
103
104
105
106
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
107

108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks


def make_test_data_dir(**kwargs):
    tmp_dir = Path(tempfile.mkdtemp(**kwargs))
    for split in ["train", "val", "test"]:
        _dump_articles((tmp_dir / f"{split}.source"), ARTICLES)
        _dump_articles((tmp_dir / f"{split}.target"), SUMMARIES)
    return tmp_dir


class TestSummarizationDistiller(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    @slow
    @require_torch_and_cuda
    def test_hub_configs(self):
        """I put require_torch_and_cuda cause I only want this to run with self-scheduled."""

        model_list = HfApi().model_list()
        org = "sshleifer"
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
        allowed_to_be_broken = ["sshleifer/blenderbot-3B", "sshleifer/blenderbot-90M"]
        failures = []
        for m in model_ids:
            if m in allowed_to_be_broken:
                continue
            try:
                AutoConfig.from_pretrained(m)
            except Exception:
                failures.append(m)
        assert not failures, f"The following models could not be loaded through AutoConfig: {failures}"

147
    @require_multigpu
148
    def test_multigpu(self):
Lysandre's avatar
Lysandre committed
149
150
151
152
        updates = dict(
            no_teacher=True,
            freeze_encoder=True,
            gpus=2,
153
            sortish_sampler=True,
Lysandre's avatar
Lysandre committed
154
        )
155
        self._test_distiller_cli(updates, check_contents=False)
156
157
158
159
160
161
162
163
164

    def test_distill_no_teacher(self):
        updates = dict(student_encoder_layers=2, student_decoder_layers=1, no_teacher=True)
        self._test_distiller_cli(updates)

    def test_distill_checkpointing_with_teacher(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
165
            max_epochs=4,
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
            val_check_interval=0.25,
            alpha_hid=2.0,
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
        )
        model = self._test_distiller_cli(updates, check_contents=False)

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        self.assertEqual(len(transformer_ckpts), 2)
        examples = lmap(str.strip, model.hparams.data_dir.joinpath("test.source").open().readlines())
        out_path = tempfile.mktemp()
        generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr"))
        self.assertTrue(Path(out_path).exists())

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))
182
183
184
        out_path_new = tempfile.mkdtemp()
        convert_pl_to_hf(ckpts[0], transformer_ckpts[0].parent, out_path_new)
        assert os.path.exists(os.path.join(out_path_new, "pytorch_model.bin"))
185

186
    def test_loss_fn(self):
187
        model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY, return_dict=True)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"]
        target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device)
        decoder_input_ids = target_ids[:, :-1].contiguous()  # Why this line?
        lm_labels = target_ids[:, 1:].clone()  # why clone?
        model_computed_loss = model(
            input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False
        ).loss

        logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits

        lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
        smoothed_loss, nll_loss = label_smoothed_nll_loss(
            lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id
        )
        with self.assertRaises(AssertionError):
            # TODO: understand why this breaks
            self.assertEqual(nll_loss, model_computed_loss)

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    def test_distill_mbart(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
            num_train_epochs=4,
            val_check_interval=0.25,
            alpha_hid=2.0,
            task="translation",
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
            tokenizer_name=MBART_TINY,
            teacher=MBART_TINY,
            src_lang="en_XX",
            tgt_lang="ro_RO",
        )
        model = self._test_distiller_cli(updates, check_contents=False)
221
        assert model.model.config.model_type == "mbart"
222
223
224
225
226
227
228
229
230
231

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        all_files = list(Path(model.output_dir).glob("best_tfmr/*"))
        assert len(all_files) > 2
        self.assertEqual(len(transformer_ckpts), 2)

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))

232
233
234
235
236
237
238
239
240
241
242
243
244
245
    @unittest.skip("T5 distillation is broken at the moment")
    def test_distill_t5(self):
        updates = dict(
            student_encoder_layers=1,
            student_decoder_layers=1,
            alpha_hid=2.0,
            teacher=T5_TINY,
            model_name_or_path=T5_TINY,
            tokenizer_name=T5_TINY,
        )
        self._test_distiller_cli(updates)

    def _test_distiller_cli(self, updates, check_contents=True):
        default_updates = dict(
246
            label_smoothing=0.0,
247
            early_stopping_patience=-1,
248
249
            train_batch_size=1,
            eval_batch_size=2,
250
            max_epochs=2,
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
            alpha_mlm=0.2,
            alpha_ce=0.8,
            do_predict=True,
            model_name_or_path="sshleifer/tinier_bart",
            teacher=CHEAP_ARGS["model_name_or_path"],
            val_check_interval=0.5,
            alpha_encoder_loss=0.4,
        )
        default_updates.update(updates)
        args_d: dict = CHEAP_ARGS.copy()
        tmp_dir = make_test_data_dir()
        output_dir = tempfile.mkdtemp(prefix="output_")

        args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
        model = distill_main(argparse.Namespace(**args_d))
        if not check_contents:
            return model
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
270
271
        ckpt_files = [p for p in contents if p.endswith("ckpt")]
        assert len(ckpt_files) > 0
272
273
274
275
276
277
278
279
280

        self.assertIn("test_generations.txt", contents)
        self.assertIn("test_results.txt", contents)

        metrics = load_json(model.metrics_save_path)
        last_step_stats = metrics["val"][-1]
        self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
        self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"])
        self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
281
        desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1)
282
283
284
285
286
        self.assertEqual(len(metrics["val"]), desired_n_evals)
        self.assertEqual(len(metrics["test"]), 1)
        return model


287
def run_eval_tester(model):
288
289
    input_file_name = Path(tempfile.mkdtemp()) / "utest_input.source"
    output_file_name = input_file_name.parent / "utest_output.txt"
290
291
    assert not output_file_name.exists()
    articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
292
    _dump_articles(input_file_name, articles)
293
294
    score_path = str(Path(tempfile.mkdtemp()) / "scores.json")
    task = "translation_en_to_de" if model == T5_TINY else "summarization"
295
296
297
298
299
300
301
302
303
304
305
    testargs = f"""
        run_eval_search.py
        {model}
        {input_file_name}
        {output_file_name}
        --score_path {score_path}
        --task {task}
        --num_beams 2
        --length_penalty 2.0
        """.split()

306
307
308
309
310
    with patch.object(sys, "argv", testargs):
        run_generate()
        assert Path(output_file_name).exists()
        os.remove(Path(output_file_name))

sgugger's avatar
sgugger committed
311

312
313
314
315
316
317
318
# test one model to quickly (no-@slow) catch simple problems and do an
# extensive testing of functionality with multiple models as @slow separately
def test_run_eval():
    run_eval_tester(T5_TINY)


# any extra models should go into the list here - can be slow
319
@slow
320
321
322
323
324
325
326
327
@pytest.mark.parametrize("model", [BART_TINY, MBART_TINY])
def test_run_eval_slow(model):
    run_eval_tester(model)


# testing with 2 models to validate: 1. translation (t5) 2. summarization (mbart)
@slow
@pytest.mark.parametrize("model", [T5_TINY, MBART_TINY])
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
def test_run_eval_search(model):
    input_file_name = Path(tempfile.mkdtemp()) / "utest_input.source"
    output_file_name = input_file_name.parent / "utest_output.txt"
    assert not output_file_name.exists()

    text = {
        "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
        "de": [
            "Maschinelles Lernen ist gro脽artig, oder?",
            "Ich esse gerne Bananen",
            "Morgen ist wieder ein toller Tag!",
        ],
    }

    tmp_dir = Path(tempfile.mkdtemp())
    score_path = str(tmp_dir / "scores.json")
    reference_path = str(tmp_dir / "val.target")
    _dump_articles(input_file_name, text["en"])
    _dump_articles(reference_path, text["de"])
    task = "translation_en_to_de" if model == T5_TINY else "summarization"
348
349
350
351
352
353
354
355
356
357
358
    testargs = f"""
        run_eval_search.py
        --model_name {model}
        --data_dir {str(input_file_name)}
        --save_dir {str(output_file_name)}
        --score_path {score_path}
        --reference_path {reference_path},
        --task {task}
        --search num_beams=1:2 length_penalty=0.9:1.0
        """.split()

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    with patch.object(sys, "argv", testargs):
        with CaptureStdout() as cs:
            run_search()
        expected_strings = [" num_beams | length_penalty", model, "Best score args"]
        un_expected_strings = ["Info"]
        if "translation" in task:
            expected_strings.append("bleu")
        else:
            expected_strings.extend(["rouge1", "rouge2", "rougeL"])
        for w in expected_strings:
            assert w in cs.out
        for w in un_expected_strings:
            assert w not in cs.out
        assert Path(output_file_name).exists()
        os.remove(Path(output_file_name))

375
376

@pytest.mark.parametrize(
377
378
    "model",
    [T5_TINY, BART_TINY, MBART_TINY, MARIAN_TINY],
379
380
381
382
)
def test_finetune(model):
    args_d: dict = CHEAP_ARGS.copy()
    task = "translation" if model in [MBART_TINY, MARIAN_TINY] else "summarization"
383
384
    args_d["label_smoothing"] = 0.1 if task == "translation" else 0

385
386
387
388
389
390
391
392
393
394
395
    tmp_dir = make_test_data_dir()
    output_dir = tempfile.mkdtemp(prefix="output_")
    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        output_dir=output_dir,
        do_predict=True,
        task=task,
396
397
398
399
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
400
401
402
    )
    assert "n_train" in args_d
    args = argparse.Namespace(**args_d)
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    module = main(args)

    input_embeds = module.model.get_input_embeddings()
    assert not input_embeds.weight.requires_grad
    if model == T5_TINY:
        lm_head = module.model.lm_head
        assert not lm_head.weight.requires_grad
        assert (lm_head.weight == input_embeds.weight).all().item()

    else:
        bart = module.model.model
        embed_pos = bart.decoder.embed_positions
        assert not embed_pos.weight.requires_grad
        assert not bart.shared.weight.requires_grad
        # check that embeds are the same
        assert bart.decoder.embed_tokens == bart.encoder.embed_tokens
        assert bart.decoder.embed_tokens == bart.shared
420
421


422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
def test_finetune_extra_model_args():
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    args_d.update(
        data_dir=tmp_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # test models whose config includes the extra_model_args
    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")
    args_d1 = args_d.copy()
    args_d1.update(
Lysandre's avatar
Lysandre committed
446
447
        model_name_or_path=model,
        output_dir=output_dir,
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    )
    extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
    for p in extra_model_params:
        args_d1[p] = 0.5
    args = argparse.Namespace(**args_d1)
    model = main(args)
    for p in extra_model_params:
        assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}"

    # test models whose config doesn't include the extra_model_args
    model = T5_TINY
    output_dir = tempfile.mkdtemp(prefix="output_2_")
    args_d2 = args_d.copy()
    args_d2.update(
Lysandre's avatar
Lysandre committed
462
463
        model_name_or_path=model,
        output_dir=output_dir,
464
465
466
467
468
469
470
471
472
    )
    unsupported_param = "encoder_layerdrop"
    args_d2[unsupported_param] = 0.5
    args = argparse.Namespace(**args_d2)
    with pytest.raises(Exception) as excinfo:
        model = main(args)
    assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute"


473
def test_finetune_lr_schedulers():
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")

    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        output_dir=output_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # emulate finetune.py
    parser = argparse.ArgumentParser()
    parser = pl.Trainer.add_argparse_args(parser)
    parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
    args = {"--help": True}

    # --help test
    with pytest.raises(SystemExit) as excinfo:
505
506
        with CaptureStdout() as cs:
            args = parser.parse_args(args)
507
508
509
        assert False, "--help is expected to sys.exit"
    assert excinfo.type == SystemExit
    expected = lightning_base.arg_to_scheduler_metavar
510
    assert expected in cs.out, "--help is expected to list the supported schedulers"
511
512
513
514
515

    # --lr_scheduler=non_existing_scheduler test
    unsupported_param = "non_existing_scheduler"
    args = {f"--lr_scheduler={unsupported_param}"}
    with pytest.raises(SystemExit) as excinfo:
516
517
        with CaptureStderr() as cs:
            args = parser.parse_args(args)
518
519
520
        assert False, "invalid argument is expected to sys.exit"
    assert excinfo.type == SystemExit
    expected = f"invalid choice: '{unsupported_param}'"
521
    assert expected in cs.err, f"should have bailed on invalid choice of scheduler {unsupported_param}"
522
523
524
525
526
527
528
529

    # --lr_scheduler=existing_scheduler test
    supported_param = "cosine"
    args_d1 = args_d.copy()
    args_d1["lr_scheduler"] = supported_param
    args = argparse.Namespace(**args_d1)
    model = main(args)
    assert getattr(model.hparams, "lr_scheduler") == supported_param, f"lr_scheduler={supported_param} shouldn't fail"