test_seq2seq_examples.py 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import argparse
import logging
import os
import sys
import tempfile
import unittest
from pathlib import Path
from unittest.mock import patch

import pytest
11
import pytorch_lightning as pl
12
13
14
import torch
from torch.utils.data import DataLoader

15
import lightning_base
16
17
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.hf_api import HfApi
18
from transformers.modeling_bart import shift_tokens_right
19
from transformers.testing_utils import CaptureStderr, CaptureStdout, require_multigpu, require_torch_and_cuda, slow
20

21
from .convert_pl_checkpoint_to_hf import convert_pl_to_hf
22
from .distillation import distill_main, evaluate_checkpoint
23
from .finetune import SummarizationModule, main
24
from .pack_dataset import pack_data_dir
25
from .run_eval import generate_summaries_or_translations, run_generate
26
from .utils import LegacySeq2SeqDataset, Seq2SeqDataset, label_smoothed_nll_loss, lmap, load_json
27
28
29
30
31
32
33


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
34
    "label_smoothing": 0.2,
35
    "eval_beams": 1,
36
    "val_metric": "loss",
37
    "save_top_k": 1,
Sam Shleifer's avatar
Sam Shleifer committed
38
    "adafactor": True,
39
    "early_stopping_patience": 2,
40
    "logger_name": "default",
41
42
43
44
45
46
47
48
49
50
51
52
53
    "length_penalty": 0.5,
    "cache_dir": "",
    "task": "summarization",
    "num_workers": 2,
    "alpha_hid": 0,
    "freeze_embeds": True,
    "enc_only": False,
    "tgt_suffix": "",
    "resume_from_checkpoint": None,
    "sortish_sampler": True,
    "student_decoder_layers": 1,
    "val_check_interval": 1.0,
    "output_dir": "",
Sam Shleifer's avatar
Sam Shleifer committed
54
    "fp16": False,  # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
55
56
57
58
59
60
61
    "no_teacher": False,
    "fp16_opt_level": "O1",
    "gpus": 1 if CUDA_AVAILABLE else 0,
    "n_tpu_cores": 0,
    "max_grad_norm": 1.0,
    "do_train": True,
    "do_predict": True,
62
    "accumulate_grad_batches": 1,
63
64
65
66
67
68
69
70
    "server_ip": "",
    "server_port": "",
    "seed": 42,
    "model_name_or_path": "sshleifer/bart-tiny-random",
    "config_name": "",
    "tokenizer_name": "facebook/bart-large",
    "do_lower_case": False,
    "learning_rate": 0.3,
71
    "lr_scheduler": "linear",
72
73
74
    "weight_decay": 0.0,
    "adam_epsilon": 1e-08,
    "warmup_steps": 0,
75
    "max_epochs": 1,
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    "train_batch_size": 2,
    "eval_batch_size": 2,
    "max_source_length": 12,
    "max_target_length": 12,
    "val_max_target_length": 12,
    "test_max_target_length": 12,
    "fast_dev_run": False,
    "no_cache": False,
    "n_train": -1,
    "n_val": -1,
    "n_test": -1,
    "student_encoder_layers": 1,
    "alpha_loss_encoder": 0.0,
    "freeze_encoder": False,
    "auto_scale_batch_size": False,
}


def _dump_articles(path: Path, articles: list):
95
96
    content = "\n".join(articles)
    Path(path).open("w").writelines(content)
97
98


99
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks


def make_test_data_dir(**kwargs):
    tmp_dir = Path(tempfile.mkdtemp(**kwargs))
    for split in ["train", "val", "test"]:
        _dump_articles((tmp_dir / f"{split}.source"), ARTICLES)
        _dump_articles((tmp_dir / f"{split}.target"), SUMMARIES)
    return tmp_dir


class TestSummarizationDistiller(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    @slow
    @require_torch_and_cuda
    def test_hub_configs(self):
        """I put require_torch_and_cuda cause I only want this to run with self-scheduled."""

        model_list = HfApi().model_list()
        org = "sshleifer"
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
        allowed_to_be_broken = ["sshleifer/blenderbot-3B", "sshleifer/blenderbot-90M"]
        failures = []
        for m in model_ids:
            if m in allowed_to_be_broken:
                continue
            try:
                AutoConfig.from_pretrained(m)
            except Exception:
                failures.append(m)
        assert not failures, f"The following models could not be loaded through AutoConfig: {failures}"

143
    @require_multigpu
144
    def test_multigpu(self):
Lysandre's avatar
Lysandre committed
145
146
147
148
149
150
        updates = dict(
            no_teacher=True,
            freeze_encoder=True,
            gpus=2,
            sortish_sampler=False,
        )
151
152
153
154
155
156
157
158
159
160
        self._test_distiller_cli(updates)

    def test_distill_no_teacher(self):
        updates = dict(student_encoder_layers=2, student_decoder_layers=1, no_teacher=True)
        self._test_distiller_cli(updates)

    def test_distill_checkpointing_with_teacher(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
161
            max_epochs=4,
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
            val_check_interval=0.25,
            alpha_hid=2.0,
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
        )
        model = self._test_distiller_cli(updates, check_contents=False)

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        self.assertEqual(len(transformer_ckpts), 2)
        examples = lmap(str.strip, model.hparams.data_dir.joinpath("test.source").open().readlines())
        out_path = tempfile.mktemp()
        generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr"))
        self.assertTrue(Path(out_path).exists())

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))
178
179
180
        out_path_new = tempfile.mkdtemp()
        convert_pl_to_hf(ckpts[0], transformer_ckpts[0].parent, out_path_new)
        assert os.path.exists(os.path.join(out_path_new, "pytorch_model.bin"))
181

182
    def test_loss_fn(self):
183
        model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY, return_dict=True)
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"]
        target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device)
        decoder_input_ids = target_ids[:, :-1].contiguous()  # Why this line?
        lm_labels = target_ids[:, 1:].clone()  # why clone?
        model_computed_loss = model(
            input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False
        ).loss

        logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits

        lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
        smoothed_loss, nll_loss = label_smoothed_nll_loss(
            lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id
        )
        with self.assertRaises(AssertionError):
            # TODO: understand why this breaks
            self.assertEqual(nll_loss, model_computed_loss)

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    def test_distill_mbart(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
            num_train_epochs=4,
            val_check_interval=0.25,
            alpha_hid=2.0,
            task="translation",
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
            tokenizer_name=MBART_TINY,
            teacher=MBART_TINY,
            src_lang="en_XX",
            tgt_lang="ro_RO",
        )
        model = self._test_distiller_cli(updates, check_contents=False)
217
        assert model.model.config.model_type == "mbart"
218
219
220
221
222
223
224
225
226
227

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        all_files = list(Path(model.output_dir).glob("best_tfmr/*"))
        assert len(all_files) > 2
        self.assertEqual(len(transformer_ckpts), 2)

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))

228
229
230
231
232
233
234
235
236
237
238
239
240
241
    @unittest.skip("T5 distillation is broken at the moment")
    def test_distill_t5(self):
        updates = dict(
            student_encoder_layers=1,
            student_decoder_layers=1,
            alpha_hid=2.0,
            teacher=T5_TINY,
            model_name_or_path=T5_TINY,
            tokenizer_name=T5_TINY,
        )
        self._test_distiller_cli(updates)

    def _test_distiller_cli(self, updates, check_contents=True):
        default_updates = dict(
242
            label_smoothing=0.0,
243
            early_stopping_patience=-1,
244
245
            train_batch_size=1,
            eval_batch_size=2,
246
            max_epochs=2,
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
            alpha_mlm=0.2,
            alpha_ce=0.8,
            do_predict=True,
            model_name_or_path="sshleifer/tinier_bart",
            teacher=CHEAP_ARGS["model_name_or_path"],
            val_check_interval=0.5,
            alpha_encoder_loss=0.4,
        )
        default_updates.update(updates)
        args_d: dict = CHEAP_ARGS.copy()
        tmp_dir = make_test_data_dir()
        output_dir = tempfile.mkdtemp(prefix="output_")

        args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
        model = distill_main(argparse.Namespace(**args_d))
        if not check_contents:
            return model
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
266
267
        ckpt_files = [p for p in contents if p.endswith("ckpt")]
        assert len(ckpt_files) > 0
268
269
270
271
272
273
274
275
276

        self.assertIn("test_generations.txt", contents)
        self.assertIn("test_results.txt", contents)

        metrics = load_json(model.metrics_save_path)
        last_step_stats = metrics["val"][-1]
        self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
        self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"])
        self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
277
        desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1)
278
279
280
281
282
283
        self.assertEqual(len(metrics["val"]), desired_n_evals)
        self.assertEqual(len(metrics["test"]), 1)
        return model


@pytest.mark.parametrize(["model"], [pytest.param(T5_TINY), pytest.param(BART_TINY), pytest.param(MBART_TINY)])
284
def test_run_eval(model):
285
286
    input_file_name = Path(tempfile.mkdtemp()) / "utest_input.source"
    output_file_name = input_file_name.parent / "utest_output.txt"
287
288
    assert not output_file_name.exists()
    articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
289
    _dump_articles(input_file_name, articles)
290
291
292
293
294
295
296
297
298
299
300
301
    score_path = str(Path(tempfile.mkdtemp()) / "scores.json")
    task = "translation_en_to_de" if model == T5_TINY else "summarization"
    testargs = [
        "run_eval.py",
        model,
        str(input_file_name),
        str(output_file_name),
        "--score_path",
        score_path,
        "--task",
        task,
    ]
302
303
304
305
306
307
308
    with patch.object(sys, "argv", testargs):
        run_generate()
        assert Path(output_file_name).exists()
        os.remove(Path(output_file_name))


@pytest.mark.parametrize(
Lysandre's avatar
Lysandre committed
309
310
    ["model"],
    [pytest.param(T5_TINY), pytest.param(BART_TINY), pytest.param(MBART_TINY), pytest.param(MARIAN_TINY)],
311
312
313
314
)
def test_finetune(model):
    args_d: dict = CHEAP_ARGS.copy()
    task = "translation" if model in [MBART_TINY, MARIAN_TINY] else "summarization"
315
316
    args_d["label_smoothing"] = 0.1 if task == "translation" else 0

317
318
319
320
321
322
323
324
325
326
327
    tmp_dir = make_test_data_dir()
    output_dir = tempfile.mkdtemp(prefix="output_")
    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        output_dir=output_dir,
        do_predict=True,
        task=task,
328
329
330
331
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
332
333
334
    )
    assert "n_train" in args_d
    args = argparse.Namespace(**args_d)
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    module = main(args)

    input_embeds = module.model.get_input_embeddings()
    assert not input_embeds.weight.requires_grad
    if model == T5_TINY:
        lm_head = module.model.lm_head
        assert not lm_head.weight.requires_grad
        assert (lm_head.weight == input_embeds.weight).all().item()

    else:
        bart = module.model.model
        embed_pos = bart.decoder.embed_positions
        assert not embed_pos.weight.requires_grad
        assert not bart.shared.weight.requires_grad
        # check that embeds are the same
        assert bart.decoder.embed_tokens == bart.encoder.embed_tokens
        assert bart.decoder.embed_tokens == bart.shared
352
353


354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
def test_finetune_extra_model_args():
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    args_d.update(
        data_dir=tmp_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # test models whose config includes the extra_model_args
    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")
    args_d1 = args_d.copy()
    args_d1.update(
Lysandre's avatar
Lysandre committed
378
379
        model_name_or_path=model,
        output_dir=output_dir,
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    )
    extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
    for p in extra_model_params:
        args_d1[p] = 0.5
    args = argparse.Namespace(**args_d1)
    model = main(args)
    for p in extra_model_params:
        assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}"

    # test models whose config doesn't include the extra_model_args
    model = T5_TINY
    output_dir = tempfile.mkdtemp(prefix="output_2_")
    args_d2 = args_d.copy()
    args_d2.update(
Lysandre's avatar
Lysandre committed
394
395
        model_name_or_path=model,
        output_dir=output_dir,
396
397
398
399
400
401
402
403
404
    )
    unsupported_param = "encoder_layerdrop"
    args_d2[unsupported_param] = 0.5
    args = argparse.Namespace(**args_d2)
    with pytest.raises(Exception) as excinfo:
        model = main(args)
    assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute"


405
def test_finetune_lr_schedulers():
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")

    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        output_dir=output_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # emulate finetune.py
    parser = argparse.ArgumentParser()
    parser = pl.Trainer.add_argparse_args(parser)
    parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
    args = {"--help": True}

    # --help test
    with pytest.raises(SystemExit) as excinfo:
437
438
        with CaptureStdout() as cs:
            args = parser.parse_args(args)
439
440
441
        assert False, "--help is expected to sys.exit"
    assert excinfo.type == SystemExit
    expected = lightning_base.arg_to_scheduler_metavar
442
    assert expected in cs.out, "--help is expected to list the supported schedulers"
443
444
445
446
447

    # --lr_scheduler=non_existing_scheduler test
    unsupported_param = "non_existing_scheduler"
    args = {f"--lr_scheduler={unsupported_param}"}
    with pytest.raises(SystemExit) as excinfo:
448
449
        with CaptureStderr() as cs:
            args = parser.parse_args(args)
450
451
452
        assert False, "invalid argument is expected to sys.exit"
    assert excinfo.type == SystemExit
    expected = f"invalid choice: '{unsupported_param}'"
453
    assert expected in cs.err, f"should have bailed on invalid choice of scheduler {unsupported_param}"
454
455
456
457
458
459
460
461
462
463

    # --lr_scheduler=existing_scheduler test
    supported_param = "cosine"
    args_d1 = args_d.copy()
    args_d1["lr_scheduler"] = supported_param
    args = argparse.Namespace(**args_d1)
    model = main(args)
    assert getattr(model.hparams, "lr_scheduler") == supported_param, f"lr_scheduler={supported_param} shouldn't fail"


464
465
def test_pack_dataset():
    tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
466

467
    tmp_dir = Path(make_test_data_dir())
468
    orig_examples = tmp_dir.joinpath("train.source").open().readlines()
469
470
471
472
    save_dir = Path(tempfile.mkdtemp(prefix="packed_"))
    pack_data_dir(tokenizer, tmp_dir, 128, save_dir)
    orig_paths = {x.name for x in tmp_dir.iterdir()}
    new_paths = {x.name for x in save_dir.iterdir()}
473
474
475
476
477
478
    packed_examples = save_dir.joinpath("train.source").open().readlines()
    # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
    # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
    assert len(packed_examples) < len(orig_examples)
    assert len(packed_examples) == 1
    assert len(packed_examples[0]) == sum(len(x) for x in orig_examples)
479
480
481
    assert orig_paths == new_paths


482
483
484
485
486
487
488
489
490
491
492
@pytest.mark.parametrize(
    ["tok_name"],
    [
        pytest.param(MBART_TINY),
        pytest.param(MARIAN_TINY),
        pytest.param(T5_TINY),
        pytest.param(BART_TINY),
        pytest.param("google/pegasus-xsum"),
    ],
)
def test_seq2seq_dataset_truncation(tok_name):
493
    tokenizer = AutoTokenizer.from_pretrained(tok_name)
494
495
496
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
497
498
    max_src_len = 4
    max_tgt_len = 8
499
500
501
502
    assert max_len_target > max_src_len  # Will be truncated
    assert max_len_source > max_src_len  # Will be truncated
    src_lang, tgt_lang = "ro_RO", "de_DE"  # ignored for all but mbart, but never causes error.
    train_dataset = Seq2SeqDataset(
503
504
505
        tokenizer,
        data_dir=tmp_dir,
        type_path="train",
506
507
        max_source_length=max_src_len,
        max_target_length=max_tgt_len,  # ignored
508
509
510
511
512
513
514
515
        src_lang=src_lang,
        tgt_lang=tgt_lang,
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert isinstance(batch, dict)
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
516
        assert batch["input_ids"].shape[1] == max_src_len
517
        # show that targets are the same len
518
519
        assert batch["labels"].shape[1] == max_tgt_len
        if tok_name != MBART_TINY:
520
            continue
521
        # check language codes in correct place
522
        batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], tokenizer.pad_token_id)
523
524
525
526
527
528
529
530
        assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
        assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]

        break  # No need to test every batch


531
532
@pytest.mark.parametrize(["tok"], [pytest.param(BART_TINY), pytest.param("bert-base-cased")])
def test_legacy_dataset_truncation(tok):
533
534
535
536
537
    tokenizer = AutoTokenizer.from_pretrained(tok)
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
    trunc_target = 4
538
    train_dataset = LegacySeq2SeqDataset(
Lysandre's avatar
Lysandre committed
539
540
541
542
543
        tokenizer,
        data_dir=tmp_dir,
        type_path="train",
        max_source_length=20,
        max_target_length=trunc_target,
544
545
546
547
548
549
550
551
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
        assert batch["input_ids"].shape[1] == max_len_source
        assert 20 >= batch["input_ids"].shape[1]  # trimmed significantly
        # show that targets were truncated
552
        assert batch["labels"].shape[1] == trunc_target  # Truncated
553
        assert max_len_target > trunc_target  # Truncated
554
        break  # No need to test every batch