run_clm.py 27.6 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=text-generation
Sylvain Gugger's avatar
Sylvain Gugger committed
21
"""
22
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
25
26
27
28

import logging
import math
import os
import sys
from dataclasses import dataclass, field
29
from itertools import chain
Sylvain Gugger's avatar
Sylvain Gugger committed
30
31
from typing import Optional

32
import datasets
33
import evaluate
34
import torch
35
from datasets import load_dataset
Sylvain Gugger's avatar
Sylvain Gugger committed
36
37
38
39
40
41
42
43
44
45
46
47

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
48
    is_torch_xla_available,
Sylvain Gugger's avatar
Sylvain Gugger committed
49
50
    set_seed,
)
51
from transformers.testing_utils import CaptureLogger
52
from transformers.trainer_utils import get_last_checkpoint
53
from transformers.utils import check_min_version, send_example_telemetry
54
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
55
56


57
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Arthur Zucker's avatar
Arthur Zucker committed
58
check_min_version("4.42.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
59

60
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
61

Sylvain Gugger's avatar
Sylvain Gugger committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
logger = logging.getLogger(__name__)


MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
78
            "help": (
79
                "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
Sylvain Gugger's avatar
Sylvain Gugger committed
80
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
81
82
83
84
85
86
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
87
88
89
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
90
91
92
93
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
94
95
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
96
97
98
99
100
101
102
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
103
104
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
Sylvain Gugger's avatar
Sylvain Gugger committed
105
106
107
108
109
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
110
111
112
113
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
114
115
    token: str = field(
        default=None,
116
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
117
            "help": (
118
119
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
120
            )
121
122
        },
    )
123
124
125
126
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
127
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
128
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
129
130
131
132
                "execute code present on the Hub on your local machine."
            )
        },
    )
133
134
135
136
137
138
139
140
141
142
    torch_dtype: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
                "dtype will be automatically derived from the model's weights."
            ),
            "choices": ["auto", "bfloat16", "float16", "float32"],
        },
    )
143
144
145
146
    low_cpu_mem_usage: bool = field(
        default=False,
        metadata={
            "help": (
147
                "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
148
149
150
151
                "set True will benefit LLM loading time and RAM consumption."
            )
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
152

153
154
155
156
157
158
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
177
178
179
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
180
181
182
183
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
184
185
        },
    )
186
    max_eval_samples: Optional[int] = field(
187
188
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
189
190
191
192
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
193
194
        },
    )
195
    streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
196
197
    block_size: Optional[int] = field(
        default=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
198
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
199
200
201
202
203
            "help": (
                "Optional input sequence length after tokenization. "
                "The training dataset will be truncated in block of this size for training. "
                "Default to the model max input length for single sentence inputs (take into account special tokens)."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
204
205
206
207
208
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
209
210
211
212
213
214
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
215
216
217
218
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
219
    keep_linebreaks: bool = field(
220
        default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
221
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
222
223

    def __post_init__(self):
224
225
226
        if self.streaming:
            require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")

Sylvain Gugger's avatar
Sylvain Gugger committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

251
252
253
254
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_clm", model_args, data_args)

Sylvain Gugger's avatar
Sylvain Gugger committed
255
256
    # Setup logging
    logging.basicConfig(
257
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Sylvain Gugger's avatar
Sylvain Gugger committed
258
        datefmt="%m/%d/%Y %H:%M:%S",
259
        handlers=[logging.StreamHandler(sys.stdout)],
Sylvain Gugger's avatar
Sylvain Gugger committed
260
    )
261

262
263
264
265
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

266
267
268
269
270
271
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
272
273
274

    # Log on each process the small summary:
    logger.warning(
275
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
276
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
Sylvain Gugger's avatar
Sylvain Gugger committed
277
    )
278
    logger.info(f"Training/evaluation parameters {training_args}")
Sylvain Gugger's avatar
Sylvain Gugger committed
279

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
295
296
297
298
299
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
Sylvain Gugger's avatar
Sylvain Gugger committed
300
    # (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
301
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
302
303
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
Sylvain Gugger's avatar
Sylvain Gugger committed
304
305
306
307
308
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
309
        raw_datasets = load_dataset(
310
311
312
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
313
            token=model_args.token,
314
            streaming=data_args.streaming,
315
316
317
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
318
319
320
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
321
                cache_dir=model_args.cache_dir,
322
                token=model_args.token,
323
                streaming=data_args.streaming,
324
            )
325
            raw_datasets["train"] = load_dataset(
326
327
328
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
329
                cache_dir=model_args.cache_dir,
330
                token=model_args.token,
331
                streaming=data_args.streaming,
332
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
333
334
    else:
        data_files = {}
335
        dataset_args = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
336
337
338
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
339
            data_files["validation"] = data_args.validation_file
340
341
342
343
344
        extension = (
            data_args.train_file.split(".")[-1]
            if data_args.train_file is not None
            else data_args.validation_file.split(".")[-1]
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
345
346
        if extension == "txt":
            extension = "text"
347
            dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
348
349
350
351
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
352
            token=model_args.token,
353
354
            **dataset_args,
        )
355
356
357
358
359
360
361
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
362
                token=model_args.token,
363
                **dataset_args,
364
365
366
367
368
369
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
370
                token=model_args.token,
371
                **dataset_args,
372
373
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
374
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
375
    # https://huggingface.co/docs/datasets/loading_datasets.
Sylvain Gugger's avatar
Sylvain Gugger committed
376
377
378
379
380
381
382

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

383
384
385
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
386
        "token": model_args.token,
387
        "trust_remote_code": model_args.trust_remote_code,
388
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
389
    if model_args.config_name:
390
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
391
    elif model_args.model_name_or_path:
392
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
393
394
395
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
396
397
398
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
399
            logger.info(f"New config: {config}")
Sylvain Gugger's avatar
Sylvain Gugger committed
400

401
402
403
404
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
405
        "token": model_args.token,
406
        "trust_remote_code": model_args.trust_remote_code,
407
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
408
    if model_args.tokenizer_name:
409
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
410
    elif model_args.model_name_or_path:
411
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
412
413
    else:
        raise ValueError(
414
            "You are instantiating a new tokenizer from scratch. This is not supported by this script. "
Sylvain Gugger's avatar
Sylvain Gugger committed
415
416
417
418
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
419
420
421
422
423
        torch_dtype = (
            model_args.torch_dtype
            if model_args.torch_dtype in ["auto", None]
            else getattr(torch, model_args.torch_dtype)
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
424
425
426
427
428
        model = AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
429
            revision=model_args.model_revision,
430
            token=model_args.token,
431
            trust_remote_code=model_args.trust_remote_code,
432
            torch_dtype=torch_dtype,
433
            low_cpu_mem_usage=model_args.low_cpu_mem_usage,
Sylvain Gugger's avatar
Sylvain Gugger committed
434
435
        )
    else:
436
        model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
437
        n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
438
        logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
Sylvain Gugger's avatar
Sylvain Gugger committed
439

440
441
442
443
444
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
Sylvain Gugger's avatar
Sylvain Gugger committed
445
446
447
448

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
449
        column_names = list(raw_datasets["train"].features)
Sylvain Gugger's avatar
Sylvain Gugger committed
450
    else:
451
        column_names = list(raw_datasets["validation"].features)
Sylvain Gugger's avatar
Sylvain Gugger committed
452
453
    text_column_name = "text" if "text" in column_names else column_names[0]

454
455
456
    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

Sylvain Gugger's avatar
Sylvain Gugger committed
457
    def tokenize_function(examples):
458
459
460
461
462
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
463
464
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                " before being passed to the model."
465
466
            )
        return output
Sylvain Gugger's avatar
Sylvain Gugger committed
467

468
    with training_args.main_process_first(desc="dataset map tokenization"):
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        if not data_args.streaming:
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset",
            )
        else:
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                remove_columns=column_names,
            )
484
485
486
487
488
    if hasattr(config, "max_position_embeddings"):
        max_pos_embeddings = config.max_position_embeddings
    else:
        # Define a default value if the attribute is missing in the config.
        max_pos_embeddings = 1024
Sylvain Gugger's avatar
Sylvain Gugger committed
489

490
    if data_args.block_size is None:
491
        block_size = tokenizer.model_max_length
492
        if block_size > max_pos_embeddings:
493
            logger.warning(
494
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
495
                f"Using block_size={min(1024, max_pos_embeddings)} instead. You can change that default value by passing --block_size xxx."
496
            )
497
498
499
500
            if max_pos_embeddings > 0:
                block_size = min(1024, max_pos_embeddings)
            else:
                block_size = 1024
Sylvain Gugger's avatar
Sylvain Gugger committed
501
    else:
502
        if data_args.block_size > tokenizer.model_max_length:
503
            logger.warning(
504
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "
505
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
Sylvain Gugger's avatar
Sylvain Gugger committed
506
            )
507
        block_size = min(data_args.block_size, tokenizer.model_max_length)
Sylvain Gugger's avatar
Sylvain Gugger committed
508
509
510
511

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
512
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
Sylvain Gugger's avatar
Sylvain Gugger committed
513
        total_length = len(concatenated_examples[list(examples.keys())[0]])
514
515
516
        # We drop the small remainder, and if the total_length < block_size  we exclude this batch and return an empty dict.
        # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
        total_length = (total_length // block_size) * block_size
Sylvain Gugger's avatar
Sylvain Gugger committed
517
518
519
520
521
522
523
524
525
526
527
528
529
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
530
    # https://huggingface.co/docs/datasets/process#map
531

532
    with training_args.main_process_first(desc="grouping texts together"):
533
534
535
536
537
538
539
540
541
542
543
544
545
        if not data_args.streaming:
            lm_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc=f"Grouping texts in chunks of {block_size}",
            )
        else:
            lm_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
546

547
548
549
550
551
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
552
553
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
554
555
556
557
558

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
559
        if data_args.max_eval_samples is not None:
560
561
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
562

563
        def preprocess_logits_for_metrics(logits, labels):
davidleonfdez's avatar
davidleonfdez committed
564
565
566
567
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
568
569
            return logits.argmax(dim=-1)

570
        metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
571
572
573
574
575
576
577
578
579

        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            # preds have the same shape as the labels, after the argmax(-1) has been calculated
            # by preprocess_logits_for_metrics but we need to shift the labels
            labels = labels[:, 1:].reshape(-1)
            preds = preds[:, :-1].reshape(-1)
            return metric.compute(predictions=preds, references=labels)

Sylvain Gugger's avatar
Sylvain Gugger committed
580
581
582
583
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
584
585
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
586
587
588
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it.
        data_collator=default_data_collator,
589
        compute_metrics=compute_metrics if training_args.do_eval and not is_torch_xla_available() else None,
590
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
591
        if training_args.do_eval and not is_torch_xla_available()
592
        else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
593
594
595
596
    )

    # Training
    if training_args.do_train:
597
598
599
600
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
601
602
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
Sylvain Gugger's avatar
Sylvain Gugger committed
603
604
        trainer.save_model()  # Saves the tokenizer too for easy upload

605
        metrics = train_result.metrics
606

607
608
609
610
611
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

612
613
614
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
615

Sylvain Gugger's avatar
Sylvain Gugger committed
616
617
618
619
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

620
        metrics = trainer.evaluate()
Sylvain Gugger's avatar
Sylvain Gugger committed
621

622
623
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
624
625
626
627
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
628
        metrics["perplexity"] = perplexity
Sylvain Gugger's avatar
Sylvain Gugger committed
629

630
631
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Sylvain Gugger's avatar
Sylvain Gugger committed
632

633
634
635
636
637
638
639
640
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
641

642
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
643
        trainer.push_to_hub(**kwargs)
644
645
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
646

Sylvain Gugger's avatar
Sylvain Gugger committed
647
648
649
650
651
652
653
654

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()