run_clm.py 28.1 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=text-generation
Sylvain Gugger's avatar
Sylvain Gugger committed
21
"""
22
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
25
26
27

import logging
import math
import os
import sys
28
import warnings
Sylvain Gugger's avatar
Sylvain Gugger committed
29
from dataclasses import dataclass, field
30
from itertools import chain
Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
from typing import Optional

33
import datasets
34
import evaluate
35
import torch
36
from datasets import load_dataset
Sylvain Gugger's avatar
Sylvain Gugger committed
37
38
39
40
41
42
43
44
45
46
47
48

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
49
    is_torch_tpu_available,
Sylvain Gugger's avatar
Sylvain Gugger committed
50
51
    set_seed,
)
52
from transformers.testing_utils import CaptureLogger
53
from transformers.trainer_utils import get_last_checkpoint
54
from transformers.utils import check_min_version, send_example_telemetry
55
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
56
57


58
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
59
check_min_version("4.36.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
60

61
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
62

Sylvain Gugger's avatar
Sylvain Gugger committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
logger = logging.getLogger(__name__)


MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
79
            "help": (
80
                "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
Sylvain Gugger's avatar
Sylvain Gugger committed
81
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
82
83
84
85
86
87
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
88
89
90
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
91
92
93
94
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
95
96
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
97
98
99
100
101
102
103
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
104
105
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
108
109
110
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
111
112
113
114
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
115
116
    token: str = field(
        default=None,
117
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
118
            "help": (
119
120
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
121
            )
122
123
        },
    )
124
125
126
    use_auth_token: bool = field(
        default=None,
        metadata={
127
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
128
129
        },
    )
130
131
132
133
134
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
135
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
136
137
138
139
                "execute code present on the Hub on your local machine."
            )
        },
    )
140
141
142
143
144
145
146
147
148
149
    torch_dtype: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
                "dtype will be automatically derived from the model's weights."
            ),
            "choices": ["auto", "bfloat16", "float16", "float32"],
        },
    )
150
151
152
153
    low_cpu_mem_usage: bool = field(
        default=False,
        metadata={
            "help": (
154
                "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
155
156
157
158
                "set True will benefit LLM loading time and RAM consumption."
            )
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
159

160
161
162
163
164
165
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
184
185
186
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
187
188
189
190
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
191
192
        },
    )
193
    max_eval_samples: Optional[int] = field(
194
195
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
196
197
198
199
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
200
201
        },
    )
202
    streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
203
204
    block_size: Optional[int] = field(
        default=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
205
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
206
207
208
209
210
            "help": (
                "Optional input sequence length after tokenization. "
                "The training dataset will be truncated in block of this size for training. "
                "Default to the model max input length for single sentence inputs (take into account special tokens)."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
211
212
213
214
215
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
216
217
218
219
220
221
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
222
223
224
225
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
226
    keep_linebreaks: bool = field(
227
        default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
228
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
229
230

    def __post_init__(self):
231
232
233
        if self.streaming:
            require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")

Sylvain Gugger's avatar
Sylvain Gugger committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

258
    if model_args.use_auth_token is not None:
259
260
261
262
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
            FutureWarning,
        )
263
264
265
266
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

267
268
269
270
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_clm", model_args, data_args)

Sylvain Gugger's avatar
Sylvain Gugger committed
271
272
    # Setup logging
    logging.basicConfig(
273
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Sylvain Gugger's avatar
Sylvain Gugger committed
274
        datefmt="%m/%d/%Y %H:%M:%S",
275
        handlers=[logging.StreamHandler(sys.stdout)],
Sylvain Gugger's avatar
Sylvain Gugger committed
276
    )
277

278
279
280
281
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

282
283
284
285
286
287
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
288
289
290

    # Log on each process the small summary:
    logger.warning(
291
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
292
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
Sylvain Gugger's avatar
Sylvain Gugger committed
293
    )
294
    logger.info(f"Training/evaluation parameters {training_args}")
Sylvain Gugger's avatar
Sylvain Gugger committed
295

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
311
312
313
314
315
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
Sylvain Gugger's avatar
Sylvain Gugger committed
316
    # (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
317
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
318
319
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
Sylvain Gugger's avatar
Sylvain Gugger committed
320
321
322
323
324
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
325
        raw_datasets = load_dataset(
326
327
328
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
329
            token=model_args.token,
330
            streaming=data_args.streaming,
331
332
333
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
334
335
336
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
337
                cache_dir=model_args.cache_dir,
338
                token=model_args.token,
339
                streaming=data_args.streaming,
340
            )
341
            raw_datasets["train"] = load_dataset(
342
343
344
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
345
                cache_dir=model_args.cache_dir,
346
                token=model_args.token,
347
                streaming=data_args.streaming,
348
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
349
350
    else:
        data_files = {}
351
        dataset_args = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
352
353
354
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
355
            data_files["validation"] = data_args.validation_file
356
357
358
359
360
        extension = (
            data_args.train_file.split(".")[-1]
            if data_args.train_file is not None
            else data_args.validation_file.split(".")[-1]
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
361
362
        if extension == "txt":
            extension = "text"
363
            dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
364
365
366
367
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
368
            token=model_args.token,
369
370
            **dataset_args,
        )
371
372
373
374
375
376
377
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
378
                token=model_args.token,
379
                **dataset_args,
380
381
382
383
384
385
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
386
                token=model_args.token,
387
                **dataset_args,
388
389
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
390
391
392
393
394
395
396
397
398
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

399
400
401
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
402
        "token": model_args.token,
403
        "trust_remote_code": model_args.trust_remote_code,
404
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
405
    if model_args.config_name:
406
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
407
    elif model_args.model_name_or_path:
408
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
409
410
411
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
412
413
414
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
415
            logger.info(f"New config: {config}")
Sylvain Gugger's avatar
Sylvain Gugger committed
416

417
418
419
420
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
421
        "token": model_args.token,
422
        "trust_remote_code": model_args.trust_remote_code,
423
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
424
    if model_args.tokenizer_name:
425
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
426
    elif model_args.model_name_or_path:
427
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
428
429
    else:
        raise ValueError(
430
            "You are instantiating a new tokenizer from scratch. This is not supported by this script. "
Sylvain Gugger's avatar
Sylvain Gugger committed
431
432
433
434
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
435
436
437
438
439
        torch_dtype = (
            model_args.torch_dtype
            if model_args.torch_dtype in ["auto", None]
            else getattr(torch, model_args.torch_dtype)
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
440
441
442
443
444
        model = AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
445
            revision=model_args.model_revision,
446
            token=model_args.token,
447
            trust_remote_code=model_args.trust_remote_code,
448
            torch_dtype=torch_dtype,
449
            low_cpu_mem_usage=model_args.low_cpu_mem_usage,
Sylvain Gugger's avatar
Sylvain Gugger committed
450
451
        )
    else:
452
        model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
453
        n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
454
        logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
Sylvain Gugger's avatar
Sylvain Gugger committed
455

456
457
458
459
460
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
Sylvain Gugger's avatar
Sylvain Gugger committed
461
462
463
464

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
465
        column_names = list(raw_datasets["train"].features)
Sylvain Gugger's avatar
Sylvain Gugger committed
466
    else:
467
        column_names = list(raw_datasets["validation"].features)
Sylvain Gugger's avatar
Sylvain Gugger committed
468
469
    text_column_name = "text" if "text" in column_names else column_names[0]

470
471
472
    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

Sylvain Gugger's avatar
Sylvain Gugger committed
473
    def tokenize_function(examples):
474
475
476
477
478
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
479
480
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                " before being passed to the model."
481
482
            )
        return output
Sylvain Gugger's avatar
Sylvain Gugger committed
483

484
    with training_args.main_process_first(desc="dataset map tokenization"):
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
        if not data_args.streaming:
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset",
            )
        else:
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                remove_columns=column_names,
            )
500
501
502
503
504
    if hasattr(config, "max_position_embeddings"):
        max_pos_embeddings = config.max_position_embeddings
    else:
        # Define a default value if the attribute is missing in the config.
        max_pos_embeddings = 1024
Sylvain Gugger's avatar
Sylvain Gugger committed
505

506
    if data_args.block_size is None:
507
        block_size = tokenizer.model_max_length
508
        if block_size > max_pos_embeddings:
509
            logger.warning(
510
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
511
                f"Using block_size={min(1024, max_pos_embeddings)} instead. You can change that default value by passing --block_size xxx."
512
            )
513
            block_size = min(1024, max_pos_embeddings)
Sylvain Gugger's avatar
Sylvain Gugger committed
514
    else:
515
        if data_args.block_size > tokenizer.model_max_length:
516
            logger.warning(
517
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "
518
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
Sylvain Gugger's avatar
Sylvain Gugger committed
519
            )
520
        block_size = min(data_args.block_size, tokenizer.model_max_length)
Sylvain Gugger's avatar
Sylvain Gugger committed
521
522
523
524

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
525
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
Sylvain Gugger's avatar
Sylvain Gugger committed
526
        total_length = len(concatenated_examples[list(examples.keys())[0]])
527
528
529
        # We drop the small remainder, and if the total_length < block_size  we exclude this batch and return an empty dict.
        # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
        total_length = (total_length // block_size) * block_size
Sylvain Gugger's avatar
Sylvain Gugger committed
530
531
532
533
534
535
536
537
538
539
540
541
542
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
543
    # https://huggingface.co/docs/datasets/process#map
544

545
    with training_args.main_process_first(desc="grouping texts together"):
546
547
548
549
550
551
552
553
554
555
556
557
558
        if not data_args.streaming:
            lm_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc=f"Grouping texts in chunks of {block_size}",
            )
        else:
            lm_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
559

560
561
562
563
564
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
565
566
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
567
568
569
570
571

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
572
        if data_args.max_eval_samples is not None:
573
574
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
575

576
        def preprocess_logits_for_metrics(logits, labels):
davidleonfdez's avatar
davidleonfdez committed
577
578
579
580
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
581
582
            return logits.argmax(dim=-1)

583
        metric = evaluate.load("accuracy")
584
585
586
587
588
589
590
591
592

        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            # preds have the same shape as the labels, after the argmax(-1) has been calculated
            # by preprocess_logits_for_metrics but we need to shift the labels
            labels = labels[:, 1:].reshape(-1)
            preds = preds[:, :-1].reshape(-1)
            return metric.compute(predictions=preds, references=labels)

Sylvain Gugger's avatar
Sylvain Gugger committed
593
594
595
596
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
597
598
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
599
600
601
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it.
        data_collator=default_data_collator,
602
603
604
605
        compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if training_args.do_eval and not is_torch_tpu_available()
        else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
606
607
608
609
    )

    # Training
    if training_args.do_train:
610
611
612
613
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
614
615
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
Sylvain Gugger's avatar
Sylvain Gugger committed
616
617
        trainer.save_model()  # Saves the tokenizer too for easy upload

618
        metrics = train_result.metrics
619

620
621
622
623
624
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

625
626
627
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
628

Sylvain Gugger's avatar
Sylvain Gugger committed
629
630
631
632
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

633
        metrics = trainer.evaluate()
Sylvain Gugger's avatar
Sylvain Gugger committed
634

635
636
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
637
638
639
640
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
641
        metrics["perplexity"] = perplexity
Sylvain Gugger's avatar
Sylvain Gugger committed
642

643
644
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Sylvain Gugger's avatar
Sylvain Gugger committed
645

646
647
648
649
650
651
652
653
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
654

655
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
656
        trainer.push_to_hub(**kwargs)
657
658
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
659

Sylvain Gugger's avatar
Sylvain Gugger committed
660
661
662
663
664
665
666
667

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()