run_clm.py 20.9 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=causal-lm
"""
22
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

from datasets import load_dataset

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
)
46
from transformers.testing_utils import CaptureLogger
47
from transformers.trainer_utils import get_last_checkpoint
48
from transformers.utils import check_min_version
49
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
50
51


52
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
53
check_min_version("4.9.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
54

55
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
56

Sylvain Gugger's avatar
Sylvain Gugger committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
logger = logging.getLogger(__name__)


MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization."
            "Don't set if you want to train a model from scratch."
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
81
82
83
84
85
86
87
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
            "help": "Override some existing default config settings when a model is trained from scratch. Example: "
            "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
88
89
90
91
92
93
94
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
95
96
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
Sylvain Gugger's avatar
Sylvain Gugger committed
97
98
99
100
101
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
102
103
104
105
106
107
108
109
110
111
112
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
113

114
115
116
117
118
119
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
138
139
140
141
142
143
144
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
145
    max_eval_samples: Optional[int] = field(
146
147
        default=None,
        metadata={
148
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
149
150
151
152
            "value if set."
        },
    )

153
154
    block_size: Optional[int] = field(
        default=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
155
        metadata={
156
157
            "help": "Optional input sequence length after tokenization. "
            "The training dataset will be truncated in block of this size for training. "
Sylvain Gugger's avatar
Sylvain Gugger committed
158
159
160
161
162
163
            "Default to the model max input length for single sentence inputs (take into account special tokens)."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
164
165
166
167
168
169
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
204
        handlers=[logging.StreamHandler(sys.stdout)],
Sylvain Gugger's avatar
Sylvain Gugger committed
205
    )
206
    logger.setLevel(logging.INFO if training_args.should_log else logging.WARN)
Sylvain Gugger's avatar
Sylvain Gugger committed
207
208
209
210
211
212
213

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
214
    if training_args.should_log:
Sylvain Gugger's avatar
Sylvain Gugger committed
215
        transformers.utils.logging.set_verbosity_info()
216
217
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
218
    logger.info(f"Training/evaluation parameters {training_args}")
Sylvain Gugger's avatar
Sylvain Gugger committed
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
235
236
237
238
239
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
Sylvain Gugger's avatar
Sylvain Gugger committed
240
    # (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
241
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
242
243
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
Sylvain Gugger's avatar
Sylvain Gugger committed
244
245
246
247
248
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
249
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
250
251
252
253
254
        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
255
                cache_dir=model_args.cache_dir,
256
257
258
259
260
            )
            datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
261
                cache_dir=model_args.cache_dir,
262
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
263
264
265
266
267
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
268
            data_files["validation"] = data_args.validation_file
269
270
271
272
273
        extension = (
            data_args.train_file.split(".")[-1]
            if data_args.train_file is not None
            else data_args.validation_file.split(".")[-1]
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
274
275
        if extension == "txt":
            extension = "text"
276
        datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
277
278
279
280
281
282
283
284
285
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

286
287
288
289
290
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
291
    if model_args.config_name:
292
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
293
    elif model_args.model_name_or_path:
294
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
295
296
297
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
298
299
300
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
Sylvain Gugger's avatar
Sylvain Gugger committed
301

302
303
304
305
306
307
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
308
    if model_args.tokenizer_name:
309
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
310
    elif model_args.model_name_or_path:
311
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
312
313
314
315
316
317
318
319
320
321
322
323
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
324
325
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
326
327
328
        )
    else:
        model = AutoModelForCausalLM.from_config(config)
329
330
        n_params = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
        logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
Sylvain Gugger's avatar
Sylvain Gugger committed
331
332
333
334
335
336
337
338
339
340
341

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = datasets["train"].column_names
    else:
        column_names = datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

342
343
344
    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

Sylvain Gugger's avatar
Sylvain Gugger committed
345
    def tokenize_function(examples):
346
347
348
349
350
351
352
353
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits before being passed to the model."
            )
        return output
Sylvain Gugger's avatar
Sylvain Gugger committed
354
355
356
357
358

    tokenized_datasets = datasets.map(
        tokenize_function,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
359
        remove_columns=column_names,
Sylvain Gugger's avatar
Sylvain Gugger committed
360
        load_from_cache_file=not data_args.overwrite_cache,
361
        desc="Running tokenizer on dataset",
Sylvain Gugger's avatar
Sylvain Gugger committed
362
363
    )

364
    if data_args.block_size is None:
365
        block_size = tokenizer.model_max_length
366
        if block_size > 1024:
367
            logger.warning(
368
369
370
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --block_size xxx."
            )
371
            block_size = 1024
Sylvain Gugger's avatar
Sylvain Gugger committed
372
    else:
373
        if data_args.block_size > tokenizer.model_max_length:
374
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
375
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
376
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
Sylvain Gugger's avatar
Sylvain Gugger committed
377
            )
378
        block_size = min(data_args.block_size, tokenizer.model_max_length)
Sylvain Gugger's avatar
Sylvain Gugger committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
        total_length = (total_length // block_size) * block_size
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
402

Sylvain Gugger's avatar
Sylvain Gugger committed
403
404
405
406
407
    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
408
        desc=f"Grouping texts in chunks of {block_size}",
Sylvain Gugger's avatar
Sylvain Gugger committed
409
410
    )

411
412
413
414
415
416
417
418
419
420
421
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
422
423
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
424

Sylvain Gugger's avatar
Sylvain Gugger committed
425
426
427
428
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
429
430
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
431
432
433
434
435
436
437
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it.
        data_collator=default_data_collator,
    )

    # Training
    if training_args.do_train:
438
439
440
441
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
442
443
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
Sylvain Gugger's avatar
Sylvain Gugger committed
444
445
        trainer.save_model()  # Saves the tokenizer too for easy upload

446
        metrics = train_result.metrics
447

448
449
450
451
452
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

453
454
455
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
456

Sylvain Gugger's avatar
Sylvain Gugger committed
457
458
459
460
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

461
        metrics = trainer.evaluate()
Sylvain Gugger's avatar
Sylvain Gugger committed
462

463
464
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
465
466
467
468
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
469
        metrics["perplexity"] = perplexity
Sylvain Gugger's avatar
Sylvain Gugger committed
470

471
472
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Sylvain Gugger's avatar
Sylvain Gugger committed
473

Sylvain Gugger's avatar
Sylvain Gugger committed
474
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
475
        kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
Sylvain Gugger's avatar
Sylvain Gugger committed
476
477
478
479
480
481
482
483
484
        if data_args.dataset_name is not None:
            kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                kwargs["dataset_args"] = data_args.dataset_config_name
                kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                kwargs["dataset"] = data_args.dataset_name

        trainer.push_to_hub(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
485

Sylvain Gugger's avatar
Sylvain Gugger committed
486
487
488
489
490
491
492
493

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()