run_clm.py 24.7 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=text-generation
Sylvain Gugger's avatar
Sylvain Gugger committed
21
"""
22
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
25
26
27
28

import logging
import math
import os
import sys
from dataclasses import dataclass, field
29
from itertools import chain
Sylvain Gugger's avatar
Sylvain Gugger committed
30
31
from typing import Optional

32
import datasets
33
from datasets import load_dataset
Sylvain Gugger's avatar
Sylvain Gugger committed
34

35
import evaluate
Sylvain Gugger's avatar
Sylvain Gugger committed
36
37
38
39
40
41
42
43
44
45
46
import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
47
    is_torch_tpu_available,
Sylvain Gugger's avatar
Sylvain Gugger committed
48
49
    set_seed,
)
50
from transformers.testing_utils import CaptureLogger
51
from transformers.trainer_utils import get_last_checkpoint
52
from transformers.utils import check_min_version, send_example_telemetry
53
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
54
55


56
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
57
check_min_version("4.26.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
58

59
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
60

Sylvain Gugger's avatar
Sylvain Gugger committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
logger = logging.getLogger(__name__)


MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
77
78
79
            "help": (
                "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
80
81
82
83
84
85
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
86
87
88
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
89
90
91
92
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
93
94
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
95
96
97
98
99
100
101
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
102
103
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
Sylvain Gugger's avatar
Sylvain Gugger committed
104
105
106
107
108
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
109
110
111
112
113
114
115
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
116
            "help": (
117
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
Sylvain Gugger's avatar
Sylvain Gugger committed
118
119
                "with private models)."
            )
120
121
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
122

123
124
125
126
127
128
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
147
148
149
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
150
151
152
153
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
154
155
        },
    )
156
    max_eval_samples: Optional[int] = field(
157
158
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
159
160
161
162
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
163
164
165
        },
    )

166
167
    block_size: Optional[int] = field(
        default=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
168
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
169
170
171
172
173
            "help": (
                "Optional input sequence length after tokenization. "
                "The training dataset will be truncated in block of this size for training. "
                "Default to the model max input length for single sentence inputs (take into account special tokens)."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
174
175
176
177
178
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
179
180
181
182
183
184
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
185
186
187
188
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
189
    keep_linebreaks: bool = field(
190
        default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
191
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

218
219
220
221
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_clm", model_args, data_args)

Sylvain Gugger's avatar
Sylvain Gugger committed
222
223
    # Setup logging
    logging.basicConfig(
224
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Sylvain Gugger's avatar
Sylvain Gugger committed
225
        datefmt="%m/%d/%Y %H:%M:%S",
226
        handlers=[logging.StreamHandler(sys.stdout)],
Sylvain Gugger's avatar
Sylvain Gugger committed
227
    )
228
229
230
231
232
233
234

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
235
236
237
238
239
240

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
241
    logger.info(f"Training/evaluation parameters {training_args}")
Sylvain Gugger's avatar
Sylvain Gugger committed
242

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
258
259
260
261
262
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
Sylvain Gugger's avatar
Sylvain Gugger committed
263
    # (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
264
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
265
266
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
Sylvain Gugger's avatar
Sylvain Gugger committed
267
268
269
270
271
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
272
        raw_datasets = load_dataset(
273
274
275
276
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
277
278
279
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
280
281
282
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
283
                cache_dir=model_args.cache_dir,
284
                use_auth_token=True if model_args.use_auth_token else None,
285
            )
286
            raw_datasets["train"] = load_dataset(
287
288
289
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
290
                cache_dir=model_args.cache_dir,
291
                use_auth_token=True if model_args.use_auth_token else None,
292
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
293
294
    else:
        data_files = {}
295
        dataset_args = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
296
297
298
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
299
            data_files["validation"] = data_args.validation_file
300
301
302
303
304
        extension = (
            data_args.train_file.split(".")[-1]
            if data_args.train_file is not None
            else data_args.validation_file.split(".")[-1]
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
305
306
        if extension == "txt":
            extension = "text"
307
            dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
308
309
310
311
312
313
314
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
            **dataset_args,
        )
315
316
317
318
319
320
321
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
322
                use_auth_token=True if model_args.use_auth_token else None,
323
                **dataset_args,
324
325
326
327
328
329
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
330
                use_auth_token=True if model_args.use_auth_token else None,
331
                **dataset_args,
332
333
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
334
335
336
337
338
339
340
341
342
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

343
344
345
346
347
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
348
    if model_args.config_name:
349
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
350
    elif model_args.model_name_or_path:
351
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
352
353
354
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
355
356
357
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
358
            logger.info(f"New config: {config}")
Sylvain Gugger's avatar
Sylvain Gugger committed
359

360
361
362
363
364
365
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
366
    if model_args.tokenizer_name:
367
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
368
    elif model_args.model_name_or_path:
369
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
370
371
372
373
374
375
376
377
378
379
380
381
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
382
383
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
384
385
386
        )
    else:
        model = AutoModelForCausalLM.from_config(config)
387
388
        n_params = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
        logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
Sylvain Gugger's avatar
Sylvain Gugger committed
389

390
391
392
393
394
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
Sylvain Gugger's avatar
Sylvain Gugger committed
395
396
397
398

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
399
        column_names = raw_datasets["train"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
400
    else:
401
        column_names = raw_datasets["validation"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
402
403
    text_column_name = "text" if "text" in column_names else column_names[0]

404
405
406
    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

Sylvain Gugger's avatar
Sylvain Gugger committed
407
    def tokenize_function(examples):
408
409
410
411
412
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
413
414
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                " before being passed to the model."
415
416
            )
        return output
Sylvain Gugger's avatar
Sylvain Gugger committed
417

418
419
420
421
422
423
424
425
426
    with training_args.main_process_first(desc="dataset map tokenization"):
        tokenized_datasets = raw_datasets.map(
            tokenize_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
427

428
    if data_args.block_size is None:
429
        block_size = tokenizer.model_max_length
430
        if block_size > 1024:
431
            logger.warning(
432
433
434
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --block_size xxx."
            )
435
            block_size = 1024
Sylvain Gugger's avatar
Sylvain Gugger committed
436
    else:
437
        if data_args.block_size > tokenizer.model_max_length:
438
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
439
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
440
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
Sylvain Gugger's avatar
Sylvain Gugger committed
441
            )
442
        block_size = min(data_args.block_size, tokenizer.model_max_length)
Sylvain Gugger's avatar
Sylvain Gugger committed
443
444
445
446

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
447
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
Sylvain Gugger's avatar
Sylvain Gugger committed
448
449
450
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
451
452
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
Sylvain Gugger's avatar
Sylvain Gugger committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
467

468
469
470
471
472
473
474
475
    with training_args.main_process_first(desc="grouping texts together"):
        lm_datasets = tokenized_datasets.map(
            group_texts,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
            desc=f"Grouping texts in chunks of {block_size}",
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
476

477
478
479
480
481
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
482
483
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
484
485
486
487
488

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
489
        if data_args.max_eval_samples is not None:
490
491
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
492

493
        def preprocess_logits_for_metrics(logits, labels):
davidleonfdez's avatar
davidleonfdez committed
494
495
496
497
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
498
499
            return logits.argmax(dim=-1)

500
        metric = evaluate.load("accuracy")
501
502
503
504
505
506
507
508
509

        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            # preds have the same shape as the labels, after the argmax(-1) has been calculated
            # by preprocess_logits_for_metrics but we need to shift the labels
            labels = labels[:, 1:].reshape(-1)
            preds = preds[:, :-1].reshape(-1)
            return metric.compute(predictions=preds, references=labels)

Sylvain Gugger's avatar
Sylvain Gugger committed
510
511
512
513
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
514
515
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
516
517
518
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it.
        data_collator=default_data_collator,
519
520
521
522
        compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if training_args.do_eval and not is_torch_tpu_available()
        else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
523
524
525
526
    )

    # Training
    if training_args.do_train:
527
528
529
530
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
531
532
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
Sylvain Gugger's avatar
Sylvain Gugger committed
533
534
        trainer.save_model()  # Saves the tokenizer too for easy upload

535
        metrics = train_result.metrics
536

537
538
539
540
541
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

542
543
544
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
545

Sylvain Gugger's avatar
Sylvain Gugger committed
546
547
548
549
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

550
        metrics = trainer.evaluate()
Sylvain Gugger's avatar
Sylvain Gugger committed
551

552
553
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
554
555
556
557
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
558
        metrics["perplexity"] = perplexity
Sylvain Gugger's avatar
Sylvain Gugger committed
559

560
561
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Sylvain Gugger's avatar
Sylvain Gugger committed
562

563
564
565
566
567
568
569
570
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
571

572
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
573
        trainer.push_to_hub(**kwargs)
574
575
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
576

Sylvain Gugger's avatar
Sylvain Gugger committed
577
578
579
580
581
582
583
584

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()