test_modeling_tf_common.py 101 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
19
import json
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import os
thomwolf's avatar
thomwolf committed
21
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import tempfile
23
import unittest
24
import unittest.mock as mock
25
from importlib import import_module
Matt's avatar
Matt committed
26
from math import isnan
27
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
28

29
30
from datasets import Dataset

31
from huggingface_hub import HfFolder, Repository, delete_repo, set_access_token
Sylvain Gugger's avatar
Sylvain Gugger committed
32
from requests.exceptions import HTTPError
33
from transformers import is_tf_available, is_torch_available
34
from transformers.configuration_utils import PretrainedConfig
35
from transformers.models.auto import get_values
36
from transformers.testing_utils import (  # noqa: F401
37
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
38
    USER,
39
    CaptureLogger,
40
    CaptureStdout,
Lysandre Debut's avatar
Lysandre Debut committed
41
42
    _tf_gpu_memory_limit,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
43
    is_staging_test,
Lysandre Debut's avatar
Lysandre Debut committed
44
    require_tf,
45
    require_tf2onnx,
Lysandre Debut's avatar
Lysandre Debut committed
46
    slow,
47
    tooslow,
48
    torch_device,
Lysandre Debut's avatar
Lysandre Debut committed
49
)
50
from transformers.utils import logging
51
from transformers.utils.generic import ModelOutput
52

Aymeric Augustin's avatar
Aymeric Augustin committed
53

54
55
56
logger = logging.get_logger(__name__)


57
if is_tf_available():
Arthur's avatar
Arthur committed
58
    import h5py
thomwolf's avatar
thomwolf committed
59
    import numpy as np
60
    import tensorflow as tf
61

62
    from transformers import (
63
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
Yih-Dar's avatar
Yih-Dar committed
64
        TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
65
        TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
66
        TF_MODEL_FOR_MASKED_LM_MAPPING,
67
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
68
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
69
        TF_MODEL_FOR_PRETRAINING_MAPPING,
70
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
71
        TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
72
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
73
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Joao Gante's avatar
Joao Gante committed
74
        TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
75
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
Sylvain Gugger's avatar
Sylvain Gugger committed
76
        BertConfig,
77
        TFAutoModel,
78
        TFAutoModelForSequenceClassification,
Sylvain Gugger's avatar
Sylvain Gugger committed
79
        TFBertModel,
80
        TFSharedEmbeddings,
81
    )
82
83
84
85
86
87
88
89
90
91
    from transformers.generation_tf_utils import (
        TFBeamSampleDecoderOnlyOutput,
        TFBeamSampleEncoderDecoderOutput,
        TFBeamSearchDecoderOnlyOutput,
        TFBeamSearchEncoderDecoderOutput,
        TFGreedySearchDecoderOnlyOutput,
        TFGreedySearchEncoderDecoderOutput,
        TFSampleDecoderOnlyOutput,
        TFSampleEncoderDecoderOutput,
    )
Arthur's avatar
Arthur committed
92
93
94
95
96
97
    from transformers.modeling_tf_utils import (
        TF2_WEIGHTS_INDEX_NAME,
        TF2_WEIGHTS_NAME,
        tf_shard_checkpoint,
        unpack_inputs,
    )
Joao Gante's avatar
Joao Gante committed
98
    from transformers.tf_utils import stable_softmax
99

Julien Chaumond's avatar
Julien Chaumond committed
100
101
102
103
104
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
Julien Plu's avatar
Julien Plu committed
105
106
                tf.config.set_logical_device_configuration(
                    gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
Julien Chaumond's avatar
Julien Chaumond committed
107
                )
Julien Plu's avatar
Julien Plu committed
108
                logical_gpus = tf.config.list_logical_devices("GPU")
Julien Chaumond's avatar
Julien Chaumond committed
109
110
111
112
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
113

114
115
116
if is_torch_available():
    import torch

117

thomwolf's avatar
thomwolf committed
118
119
120
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
121
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
122
123
124
125
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


126
127
@require_tf
class TFModelTesterMixin:
128

129
130
    model_tester = None
    all_model_classes = ()
131
    all_generative_model_classes = ()
132
    test_mismatched_shapes = True
133
    test_resize_embeddings = True
134
    test_head_masking = True
135
    is_encoder_decoder = False
136
    has_attentions = True
137

Lysandre Debut's avatar
Lysandre Debut committed
138
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
139
140
        inputs_dict = copy.deepcopy(inputs_dict)

141
        if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
142
            inputs_dict = {
143
144
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
145
146
147
                else v
                for k, v in inputs_dict.items()
            }
148
149

        if return_labels:
150
            if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
151
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
152
            elif model_class in get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING):
153
154
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
Yih-Dar's avatar
Yih-Dar committed
155
156
157
158
            elif model_class in [
                *get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
159
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
160
            elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING):
161
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
162
            elif model_class in [
163
164
165
166
167
                *get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(TF_MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(TF_MODEL_FOR_PRETRAINING_MAPPING),
                *get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
Joao Gante's avatar
Joao Gante committed
168
                *get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING),
169
170
171
172
            ]:
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
173
174
175
176
177
178
179
180
181
            elif model_class in get_values(TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING):
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = tf.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=tf.int32
                )
            elif model_class in get_values(TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING):
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = tf.zeros((self.model_tester.batch_size, height, width), dtype=tf.int32)

182
183
        return inputs_dict

184
185
    def test_initialization(self):
        pass
186

187
188
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
189

190
191
        for model_class in self.all_model_classes:
            model = model_class(config)
192
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
193

194
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
195
                model.save_pretrained(tmpdirname, saved_model=False)
196
                model = model_class.from_pretrained(tmpdirname)
197
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
198

199
                self.assert_outputs_same(after_outputs, outputs)
200

201
202
203
204
205
206
    def test_save_load_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
207
208
209
            model_config = model.get_config()
            # make sure that returned config is jsonifiable, which is required by keras
            json.dumps(model_config)
210
            new_model = model_class.from_config(model.get_config())
211
212
            # make sure it also accepts a normal config
            _ = model_class.from_config(model.config)
213
214
215
216
217
218
            _ = new_model(self._prepare_for_class(inputs_dict, model_class))  # Build model
            new_model.set_weights(model.get_weights())
            after_outputs = new_model(self._prepare_for_class(inputs_dict, model_class))

            self.assert_outputs_same(after_outputs, outputs)

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    @slow
    def test_saved_model_creation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = False
        config.output_attentions = False

        if hasattr(config, "use_cache"):
            config.use_cache = False

        model_class = self.all_model_classes[0]

        class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
        model = model_class(config)

        model(class_inputs_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, saved_model=True)
            saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
            self.assertTrue(os.path.exists(saved_model_dir))

    def test_prepare_serving_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = self.has_attentions

        for model_class in self.all_model_classes:
            model = model_class(config)
            inputs = self._prepare_for_class(inputs_dict, model_class)
            outputs = model(inputs)
            serving_outputs = model.serving_output(outputs)

            for k, v in serving_outputs.items():
                # Check that we have one of three possible outputs: None, tuple of tensors or a tensor
                if isinstance(v, tuple):
                    self.assertTrue(all(isinstance(elem, tf.Tensor) for elem in v))
                elif v is not None:
                    self.assertIsInstance(v, tf.Tensor)
                else:
                    self.assertIsNone(v)

260
261
262
263
264
265
266
267
268
269
270
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
Julien Plu's avatar
Julien Plu committed
271
                    "input_ids",
272
273
274
275
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
276
                expected_arg_names.extend(["decoder_position_ids"] if "decoder_position_ids" in arg_names else [])
277
                expected_arg_names.extend(
278
279
280
281
282
                    ["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else []
                )
                expected_arg_names.extend(
                    ["cross_attn_head_mask", "encoder_outputs"]
                    if "cross_attn_head_mask" in arg_names
283
284
285
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
286
287

            else:
Julien Plu's avatar
Julien Plu committed
288
                expected_arg_names = ["input_ids"]
289
290
                self.assertListEqual(arg_names[:1], expected_arg_names)

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def test_onnx_compliancy(self):
        if not self.test_onnx:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INTERNAL_OPS = [
            "Assert",
            "AssignVariableOp",
            "EmptyTensorList",
            "ReadVariableOp",
            "ResourceGather",
            "TruncatedNormal",
            "VarHandleOp",
            "VarIsInitializedOp",
        ]
        onnx_ops = []

        with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f:
            onnx_opsets = json.load(f)["opsets"]

        for i in range(1, self.onnx_min_opset + 1):
            onnx_ops.extend(onnx_opsets[str(i)])

        for model_class in self.all_model_classes:
            model_op_names = set()

            with tf.Graph().as_default() as g:
                model = model_class(config)
                model(model.dummy_inputs)

                for op in g.get_operations():
                    model_op_names.add(op.node_def.op)

            model_op_names = sorted(model_op_names)
            incompatible_ops = []

            for op in model_op_names:
                if op not in onnx_ops and op not in INTERNAL_OPS:
                    incompatible_ops.append(op)

            self.assertEqual(len(incompatible_ops), 0, incompatible_ops)

333
    @require_tf2onnx
334
335
336
337
338
339
    @slow
    def test_onnx_runtime_optimize(self):
        if not self.test_onnx:
            return

        import onnxruntime
340
        import tf2onnx
341
342
343
344
345
346
347

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model(model.dummy_inputs)

348
            onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset)
349

350
            onnxruntime.InferenceSession(onnx_model_proto.SerializeToString())
351

352
353
354
355
356
357
358
359
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
360
            if module_member_name.endswith("MainLayer")
Yih-Dar's avatar
Yih-Dar committed
361
362
            # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
            and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")]
363
            for module_member in (getattr(module, module_member_name),)
364
365
366
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
367
368
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
369
370
371
372
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
Julien Plu's avatar
Julien Plu committed
373
                config.use_cache = inputs_dict.pop("use_cache", None)
Julien Plu's avatar
Julien Plu committed
374
375
376
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
Julien Plu's avatar
Julien Plu committed
377

378
379
380
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
381

382
383
384
385
386
387
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
388
389
390
391
392
393
394
395
396
397
398
399
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
400
401
402
403
404
405
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
406
407
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
408
        elif isinstance(after_outputs, dict):
409
            out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
Julien Plu's avatar
Julien Plu committed
410
411
        else:
            out_1 = after_outputs[0].numpy()
412
        out_2 = outputs[0].numpy()
413
        self.assertEqual(out_1.shape, out_2.shape)
414
415
416
417
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
418

419
420
421
422
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
423

424
425
426
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
thomwolf's avatar
thomwolf committed
427

428
429
430
431
432
433
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = tf.concat(
                    [tf.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], axis=-1
                )
434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = tf.concat(
                #     [
                #         tf.zeros_like(attention_mask[:1], dtype=tf.int32),
                #         tf.cast(attention_mask[1:], dtype=tf.int32)
                #     ],
                #     axis=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

        tf_keys = set([k for k, v in tf_outputs.items() if v is not None])
        pt_keys = set([k for k, v in pt_outputs.items() if v is not None])

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "TFFlaubertWithLMHeadModel",
            "TFFunnelForPreTraining",
            "TFElectraForPreTraining",
            "TFXLMWithLMHeadModel",
            "TFTransfoXLLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("TFGPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
483
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
504

505
506
507
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
508

509
510
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
511

512
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
513

514
515
516
517
518
519
            # convert to the case of `tuple`
            # appending each key to the current (string) `names`
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
520

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
                    f"{name}: The tuple `names` should have the same length as `tf_outputs`",
                )
            else:
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `names`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
536

537
538
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
539

540
541
542
543
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
544

545
546
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
547

548
549
550
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
551

552
553
554
555
556
557
558
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])

            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
559

560
561
562
563
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
564

565
566
567
568
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between torch and tf is {max_diff} (>= {tol}).")
        else:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
569
570
                "`tf_outputs` should be an instance of `tf.Tensor`, a `tuple`, or an instance of `tf.Tensor`. Got"
                f" {type(tf_outputs)} instead."
571
            )
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

    def prepare_pt_inputs_from_tf_inputs(self, tf_inputs_dict):

        pt_inputs_dict = {}
        for name, key in tf_inputs_dict.items():
            if type(key) == bool:
                pt_inputs_dict[name] = key
            elif name == "input_values":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            elif name == "pixel_values":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            elif name == "input_features":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            # other general float inputs
            elif tf_inputs_dict[name].dtype.is_floating:
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            else:
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)

        return pt_inputs_dict

    def check_pt_tf_models(self, tf_model, pt_model, tf_inputs_dict):

        pt_inputs_dict = self.prepare_pt_inputs_from_tf_inputs(tf_inputs_dict)

        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }

        # send pytorch model to the correct device
        pt_model.to(torch_device)

        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()

        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(tf_model))

    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import transformers
624
625
626
627

        for model_class in self.all_model_classes:

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
628

629
630
            # Output all for aggressive testing
            config.output_hidden_states = True
631
            config.output_attentions = self.has_attentions
632

633
634
635
636
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
637
638
639
640
641
642

            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
            pt_model_class = getattr(transformers, pt_model_class_name)

            tf_model = model_class(config)
            pt_model = pt_model_class(config)
Lysandre's avatar
Lysandre committed
643

644
            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
645
            tf_inputs_dict_with_labels = self._prepare_for_class(
646
647
648
649
650
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
            )
651

652
653
654
655
656
            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
            if set(tf_inputs_dict_with_labels.keys()).symmetric_difference(tf_inputs_dict.keys()):
                tf_inputs_dict_with_labels = None

657
658
659
            # Check we can load pt model in tf and vice-versa with model => model functions
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
Lysandre's avatar
Lysandre committed
660

661
662
663
664
665
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
            # check with `labels`
            if tf_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels)
666
667

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
668
            with tempfile.TemporaryDirectory() as tmpdirname:
669
670
671
672
673
674
675
676
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

677
678
679
680
681
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
            # check with `labels`
            if tf_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels)
682
683
684

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
685
        max_input = getattr(self.model_tester, "max_position_embeddings", 512)
686
687
688
689
690
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
Joao Gante's avatar
Joao Gante committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
            if model_class.__name__ in ["TFSpeech2TextModel", "TFSpeech2TextForConditionalGeneration"]:
                inputs = {
                    "decoder_input_ids": tf.keras.Input(
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
                    ),
                    "input_features": tf.keras.Input(
                        batch_shape=(
                            2,
                            max_input,
                            self.model_tester.input_feat_per_channel * self.model_tester.input_channels,
                        ),
                        name="input_features",
                        dtype="float32",
                    ),
                }
            elif self.is_encoder_decoder:
Yih-Dar's avatar
Yih-Dar committed
709
                inputs = {
710
                    "decoder_input_ids": tf.keras.Input(
Julien Plu's avatar
Julien Plu committed
711
712
713
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
714
                    ),
Julien Plu's avatar
Julien Plu committed
715
                    "input_ids": tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32"),
716
                }
Sayak Paul's avatar
Sayak Paul committed
717
718
            # `pixel_values` implies that the input is an image
            elif model_class.main_input_name == "pixel_values":
Yih-Dar's avatar
Yih-Dar committed
719
720
721
722
723
724
725
726
727
728
                inputs = tf.keras.Input(
                    batch_shape=(
                        3,
                        self.model_tester.num_channels,
                        self.model_tester.image_size,
                        self.model_tester.image_size,
                    ),
                    name="pixel_values",
                    dtype="float32",
                )
Yih-Dar's avatar
Yih-Dar committed
729
730
731
732
733
734
735
736
737
738
739
740
741
742
            elif model_class.__name__ in ["TFCLIPModel"]:
                inputs = {
                    "input_ids": tf.keras.Input(batch_shape=(3, max_input), name="input_ids", dtype="int32"),
                    "pixel_values": tf.keras.Input(
                        batch_shape=(
                            3,
                            self.model_tester.vision_model_tester.num_channels,
                            self.model_tester.vision_model_tester.image_size,
                            self.model_tester.vision_model_tester.image_size,
                        ),
                        name="pixel_values",
                        dtype="float32",
                    ),
                }
743
            elif model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
Yih-Dar's avatar
Yih-Dar committed
744
                inputs = tf.keras.Input(batch_shape=(4, 2, max_input), name="input_ids", dtype="int32")
745
            else:
Yih-Dar's avatar
Yih-Dar committed
746
                inputs = tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32")
747

748
749
            # Prepare our model
            model = model_class(config)
750
            model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
751
            # Let's load it from the disk to be sure we can use pretrained weights
752
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
753
                model.save_pretrained(tmpdirname, saved_model=False)
754
755
                model = model_class.from_pretrained(tmpdirname)

Yih-Dar's avatar
Yih-Dar committed
756
            outputs_dict = model(inputs)
757
758
            hidden_states = outputs_dict[0]

759
            # Add a dense layer on top to test integration with other keras modules
760
761
762
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
Yih-Dar's avatar
Yih-Dar committed
763
            extended_model = tf.keras.Model(inputs=[inputs], outputs=[outputs])
764
765
766
767
768
769
770
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
771
772
773
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)
774

775
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Joao Gante's avatar
Joao Gante committed
776
            outputs_keywords = model(**inputs_keywords)
777
778
779
780
781
782
783
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
784
        config.return_dict = True
785
786
787
788
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
789

Julien Plu's avatar
Julien Plu committed
790
791
        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
792
            self.assertEqual(min(out_len % 2, out_len % 5), 0)  # differentiation due to newly added cross_attentions
Julien Plu's avatar
Julien Plu committed
793
794
795
796
797
798
799
800
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
801
802
803
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
804
805
806
807
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
808
            )
Julien Plu's avatar
Julien Plu committed
809
810
811
812
813
814

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
815
            out_len = len(outputs)
Julien Plu's avatar
Julien Plu committed
816
817
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
818

819
            if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
820
821
822
823
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
824

825
826
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
827
            config.output_attentions = True
828
            model = model_class(config)
829
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
830
831
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
832
833
834

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
835
836
            config.output_hidden_states = True
            model = model_class(config)
837
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
838

839
840
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
Julien Plu's avatar
Julien Plu committed
841
            check_encoder_attentions_output(outputs)
842

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
    def test_headmasking(self):
        if not self.test_head_masking:
            return

        random.Random().seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        random.Random().seed()

        inputs_dict["output_attentions"] = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)

            # Prepare head_mask
            def prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
                if i == 0:
                    return tf.concat(
                        (tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0
                    )
                elif i == num_hidden_layers - 1:
                    return tf.concat(
                        (tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0
                    )
                else:
                    return tf.ones(attention_heads, dtype=tf.float32)

            head_mask = tf.stack(
                [
                    prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ],
                0,
            )

            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            inputs["head_mask"] = head_mask
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.call)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
885
886
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910

            outputs = model(**inputs, return_dict=True)

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        (tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy()
                    )  # Check we don't have more than 25% nans (arbitrary)

                attentions = [
                    tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0)
                self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
911
912
                if "cross_attn_head_mask" in arg_names:
                    check_attentions_validity(outputs.cross_attentions)
913
914
915
            else:
                check_attentions_validity(outputs.attentions)

916
917
918
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
919
        def check_hidden_states_output(config, inputs_dict, model_class):
920
            model = model_class(config)
921
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
922
923
924
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
Julien Plu's avatar
Julien Plu committed
925

Julien Plu's avatar
Julien Plu committed
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
            if model.config.is_encoder_decoder:
                encoder_hidden_states = outputs.encoder_hidden_states
                decoder_hidden_states = outputs.decoder_hidden_states

                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(encoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(encoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
                self.assertEqual(len(decoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(decoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
            else:
                hidden_states = outputs.hidden_states
                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
949

Joseph Liu's avatar
Joseph Liu committed
950
951
952
953
954
955
956
957
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

958
959
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Joao Gante's avatar
Joao Gante committed
960
        text_in_text_out_models = (
961
962
963
            get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING)
            + get_values(TF_MODEL_FOR_MASKED_LM_MAPPING)
            + get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING)
964
        )
Joao Gante's avatar
Joao Gante committed
965
        speech_in_text_out_models = get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING)
966
967
968

        for model_class in self.all_model_classes:
            model = model_class(config)
969
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
Joao Gante's avatar
Joao Gante committed
970
            if model_class in text_in_text_out_models:
971
                x = model.get_output_embeddings()
972
                assert isinstance(x, tf.keras.layers.Layer)
973
974
975
976
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
Joao Gante's avatar
Joao Gante committed
977
978
979
980
981
            elif model_class in speech_in_text_out_models:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
982
            else:
983
                x = model.get_output_embeddings()
984
                assert x is None
985
986
                name = model.get_bias()
                assert name is None
987
988
989
990
991
992

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
993
            first, second = (
994
995
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
996
            )
997
998
999
1000
1001
1002
1003
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
Sylvain Gugger's avatar
Sylvain Gugger committed
1021
1022
1023
1024
                        msg=(
                            "Tuple and dict output are not equal. Difference:"
                            f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}"
                        ),
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1040
1041
1042
1043
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1044

1045
1046
1047
1048
1049
            # Not all models accept "labels" in the forward pass (yet :) )
            if "labels" in inspect.signature(model.call).parameters.keys():
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs)
1050

1051
1052
1053
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
1054

1055
1056
1057
1058
                if self.has_attentions:
                    tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1059

1060
1061
1062
1063
1064
                    tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    check_equivalence(
                        model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                    )
1065

1066
1067
1068
1069
1070
1071
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

1072
1073
            inputs = copy.deepcopy(inputs_dict)

1074
1075
1076
1077
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
1078
                encoder_input_ids = inputs["input_ids"]
1079
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
1080
                del inputs["input_ids"]
1081
1082
                inputs.pop("decoder_input_ids", None)

thomwolf's avatar
thomwolf committed
1083
            if not self.is_encoder_decoder:
1084
                inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
thomwolf's avatar
thomwolf committed
1085
            else:
1086
1087
                inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)
1088

1089
1090
            inputs = self._prepare_for_class(inputs, model_class)

1091
            model(inputs)
1092

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
    def test_numpy_arrays_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def prepare_numpy_arrays(inputs_dict):
            inputs_np_dict = {}
            for k, v in inputs_dict.items():
                if tf.is_tensor(v):
                    inputs_np_dict[k] = v.numpy()
                else:
                    inputs_np_dict[k] = np.array(k)

            return inputs_np_dict

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs_np = prepare_numpy_arrays(inputs)

1112
1113
1114
            output_for_dict_input = model(inputs_np)
            output_for_kw_input = model(**inputs_np)
            self.assert_outputs_same(output_for_dict_input, output_for_kw_input)
1115

1116
1117
1118
1119
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
1120
1121

        def _get_word_embedding_weight(model, embedding_layer):
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            model(model.dummy_inputs)

            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            return None
1141

1142
1143
1144
1145
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
1146
1147
1148
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_bias = model.get_bias()
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
1149
                # reshape the embeddings
1150
1151
1152
1153
1154
1155
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_bias = model.get_bias()
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # check that the resized embeddings size matches the desired size.
1156
                assert_size = size if size is not None else config.vocab_size
1157
1158
                self.assertEqual(new_input_embeddings.shape[0], assert_size)

1159
1160
                # check that weights remain the same after resizing
                models_equal = True
1161
1162
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
1163
1164
1165
                        models_equal = False
                self.assertTrue(models_equal)

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
                if old_bias is not None and new_bias is not None:
                    for old_weight, new_weight in zip(old_bias.values(), new_bias.values()):
                        self.assertEqual(new_weight.shape[0], assert_size)

                        models_equal = True
                        for p1, p2 in zip(old_weight.value(), new_weight.value()):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                        self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)
                    self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1])

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

1186
    def test_lm_head_model_random_no_beam_search_generate(self):
1187
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1188
        input_ids = inputs_dict.get("input_ids", None)
1189

1190
        # iterate over all generative models
1191
1192
1193
1194
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
Joao Gante's avatar
Joao Gante committed
1195
                # if bos token id is not defined model needs input_ids
1196
                with self.assertRaises(ValueError):
1197
                    model.generate(do_sample=True, max_length=5)
1198
                # num_return_sequences = 1
1199
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
Joao Gante's avatar
Joao Gante committed
1200
1201
            elif model_class.__name__ not in ["TFSpeech2TextForConditionalGeneration"]:
                # Models with non-text inputs won't work here; num_return_sequences = 1
1202
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
1203

1204
            with self.assertRaises(ValueError):
1205
                # generating multiple sequences when no beam search generation
1206
1207
1208
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

1209
1210
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
1211
1212

            # check bad words tokens language generation
1213
1214
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1215
            output_tokens = model.generate(
1216
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
1217
            )
1218
            # only count generated tokens
1219
1220
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
1221

1222
1223
1224
    def test_lm_head_model_no_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)
Joao Gante's avatar
Joao Gante committed
1225
1226
        if input_ids is None:
            input_ids = inputs_dict.get("input_features", None)
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_greedy = model.generate(
                input_ids,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_sample = model.generate(
                input_ids,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_greedy, TFGreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_sample, TFSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, TFGreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_sample, TFSampleDecoderOnlyOutput)

1255
1256
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1257
        input_ids = inputs_dict.get("input_ids", None)
1258
1259
1260
1261
1262

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
Joao Gante's avatar
Joao Gante committed
1263
                # if bos token id is not defined model needs input_ids, num_return_sequences = 1
1264
1265
1266
1267
1268
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

1269
            with self.assertRaises(ValueError):
1270
1271
1272
1273
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
1274
1275
1276
1277
1278
1279
1280
1281
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
1282
1283
1284
1285
1286
1287
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1288
            output_tokens = model.generate(
1289
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
1290
            )
1291
            # only count generated tokens
1292
1293
1294
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

1295
1296
1297
    def test_lm_head_model_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)
Joao Gante's avatar
Joao Gante committed
1298
1299
        if input_ids is None:
            input_ids = inputs_dict.get("input_features", None)
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_beam_search = model.generate(
                input_ids,
                num_beams=2,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_beam_sample = model.generate(
                input_ids,
                num_beams=2,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_beam_search, TFBeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_beam_search, TFBeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleDecoderOnlyOutput)

1330
1331
1332
1333
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
1334
            if getattr(model, "hf_compute_loss", None):
1335
1336
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
1337
1338
1339
                added_label = prepared_for_class[
                    sorted(list(prepared_for_class.keys() - inputs_dict.keys()), reverse=True)[0]
                ]
Matt's avatar
Matt committed
1340
                expected_loss_size = added_label.shape.as_list()[:1]
1341

1342
1343
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
Joao Gante's avatar
Joao Gante committed
1344
1345
1346
                possible_input_names = {"input_ids", "pixel_values", "input_features"}
                input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
                model_input = prepared_for_class.pop(input_name)
1347

Joao Gante's avatar
Joao Gante committed
1348
                loss = model(model_input, **prepared_for_class)[0]
1349
                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
Matt's avatar
Matt committed
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361

                # Test that model correctly compute the loss when we mask some positions
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                possible_input_names = {"input_ids", "pixel_values", "input_features"}
                input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
                model_input = prepared_for_class.pop(input_name)
                if "labels" in prepared_for_class:
                    labels = prepared_for_class["labels"].numpy()
                    if len(labels.shape) > 1 and labels.shape[1] != 1:
                        labels[0] = -100
                        prepared_for_class["labels"] = tf.convert_to_tensor(labels)
                        loss = model(model_input, **prepared_for_class)[0]
1362
                        self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
Matt's avatar
Matt committed
1363
                        self.assertTrue(not np.any(np.isnan(loss.numpy())))
1364
1365
1366
1367

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
1368
                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
1369
1370
1371
1372
1373
1374

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
1375
1376
                signature = inspect.signature(model.call).parameters
                signature_names = list(signature.keys())
1377
1378

                # Create a dictionary holding the location of the tensors in the tuple
Yih-Dar's avatar
Yih-Dar committed
1379
                tuple_index_mapping = {0: input_name}
1380
                for label_key in label_keys:
1381
                    label_key_index = signature_names.index(label_key)
1382
1383
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
1384
1385
1386
1387
1388
1389
                # Initialize a list with their default values, update the values and convert to a tuple
                list_input = []

                for name in signature_names:
                    if name != "kwargs":
                        list_input.append(signature[name].default)
1390
1391

                for index, value in sorted_tuple_index_mapping:
1392
1393
                    list_input[index] = prepared_for_class[value]

1394
1395
1396
                tuple_input = tuple(list_input)

                # Send to model
1397
1398
                loss = model(tuple_input[:-1])[0]

1399
                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
1400

1401
1402
1403
    def check_keras_fit_results(self, val_loss1, val_loss2, atol=1e-2, rtol=1e-3):
        self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol))

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
    def test_keras_fit(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "hf_compute_loss", None):
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                # Is there a better way to remove these decoder inputs?
                prepared_for_class = {
                    key: val
                    for key, val in prepared_for_class.items()
                    if key not in ("head_mask", "decoder_head_mask", "cross_attn_head_mask", "decoder_input_ids")
                }

                possible_label_cols = {
                    "labels",
                    "label",
                    "label_ids",
                    "start_positions",
                    "start_position",
                    "end_positions",
                    "end_position",
                    "next_sentence_label",
                }
                label_names = possible_label_cols.intersection(set(prepared_for_class))
                self.assertGreater(len(label_names), 0, msg="No matching label names found!")
                labels = {key: val for key, val in prepared_for_class.items() if key in label_names}
                inputs_minus_labels = {key: val for key, val in prepared_for_class.items() if key not in label_names}
                self.assertGreater(len(inputs_minus_labels), 0)
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
                accuracy_classes = [
                    "ForPreTraining",
                    "ForCausalLM",
                    "ForMaskedLM",
                    "ForQuestionAnswering",
                    "ForMultipleChoice",
                    "ForSequenceClassification",
                    "ForTokenClassification",
                    "ForNextSentencePrediction",
                    "LMHeadModel",
                ]
                for accuracy_class in accuracy_classes:
                    if model.__class__.__name__.endswith(accuracy_class):
                        metrics = [tf.keras.metrics.SparseCategoricalAccuracy()]
                        break
                else:
                    metrics = []

1451
1452
1453
1454
                model(model.dummy_inputs)  # Build the model so we can get some constant weights
                model_weights = model.get_weights()

                # Run eagerly to save some expensive compilation times
1455
                model.compile(optimizer=tf.keras.optimizers.SGD(0.0), run_eagerly=True, metrics=metrics)
1456
1457
1458
1459
1460
1461
1462
1463
1464
                # Make sure the model fits without crashing regardless of where we pass the labels
                history1 = model.fit(
                    prepared_for_class,
                    validation_data=prepared_for_class,
                    steps_per_epoch=1,
                    validation_steps=1,
                    shuffle=False,
                )
                val_loss1 = history1.history["val_loss"][0]
Matt's avatar
Matt committed
1465
                self.assertTrue(not isnan(val_loss1))
1466
                accuracy1 = {key: val[0] for key, val in history1.history.items() if key.endswith("accuracy")}
1467
1468
1469
1470
1471

                # We reinitialize the model here even though our learning rate was zero
                # because BatchNorm updates weights by means other than gradient descent.
                model.set_weights(model_weights)

1472
1473
1474
1475
1476
1477
1478
1479
1480
                history2 = model.fit(
                    inputs_minus_labels,
                    labels,
                    validation_data=(inputs_minus_labels, labels),
                    steps_per_epoch=1,
                    validation_steps=1,
                    shuffle=False,
                )
                val_loss2 = history2.history["val_loss"][0]
Matt's avatar
Matt committed
1481
                self.assertTrue(not isnan(val_loss2))
1482
                accuracy2 = {key: val[0] for key, val in history2.history.items() if key.endswith("accuracy")}
1483
                self.check_keras_fit_results(val_loss1, val_loss2)
1484
1485
1486
1487
1488
1489
                self.assertEqual(history1.history.keys(), history2.history.keys())
                for key in history1.history.keys():
                    if not key.startswith("val_"):
                        self.assertTrue("val_" + key in history1.history.keys(), "Outputs differ in train/test step!")
                if metrics:
                    self.assertTrue(len(accuracy1) == len(accuracy2) > 0, "Missing metrics!")
1490

1491
1492
1493
1494
                # Make sure fit works with tf.data.Dataset and results are consistent
                dataset = tf.data.Dataset.from_tensor_slices(prepared_for_class)
                # Pass in all samples as a batch to match other `fit` calls
                dataset = dataset.batch(len(dataset))
1495
1496
1497
1498

                # Reinitialize to fix batchnorm again
                model.set_weights(model_weights)

1499
1500
1501
1502
1503
1504
1505
1506
                history3 = model.fit(
                    dataset,
                    validation_data=dataset,
                    steps_per_epoch=1,
                    validation_steps=1,
                    shuffle=False,
                )
                val_loss3 = history3.history["val_loss"][0]
Matt's avatar
Matt committed
1507
                self.assertTrue(not isnan(val_loss3))
1508
                accuracy3 = {key: val[0] for key, val in history3.history.items() if key.endswith("accuracy")}
1509
                self.check_keras_fit_results(val_loss1, val_loss3)
1510
1511
1512
1513
                self.assertEqual(history1.history.keys(), history3.history.keys())
                if metrics:
                    self.assertTrue(len(accuracy1) == len(accuracy3) > 0, "Missing metrics!")

1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
    def test_int64_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            prepared_for_class = self._prepare_for_class(
                inputs_dict.copy(),
                model_class,
                return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
            )
            if not any(
                [tensor.dtype.is_integer for tensor in prepared_for_class.values() if isinstance(tensor, tf.Tensor)]
            ):
                return  # No integer inputs means no need for this test

            prepared_for_class = {
                key: tf.cast(tensor, tf.int64) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor
                for key, tensor in prepared_for_class.items()
            }
            model = model_class(config)
            model(**prepared_for_class)  # No assertion, we're just checking this doesn't throw an error

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
    def test_generate_with_headmasking(self):
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue

            head_masking = {
                "head_mask": tf.zeros((config.encoder_layers, config.encoder_attention_heads)),
                "decoder_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
                "cross_attn_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
            }

            signature = inspect.signature(model.call)
            if set(head_masking.keys()) < set([*signature.parameters.keys()]):
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    inputs_dict["input_ids"],
                    num_beams=1,
                    max_length=inputs_dict["input_ids"] + 5,
                    output_attentions=True,
                    return_dict_in_generate=True,
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([tf.reduce_sum(w).numpy() for w in attn_weights]), 0.0)

1568
    def test_load_with_mismatched_shapes(self):
1569
1570
        if not self.test_mismatched_shapes:
            return
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    _ = model(**inputs)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(ValueError):
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
1587
1588
                    with self.assertRaises(ValueError):
                        new_model_without_prefix = TFAutoModel.from_pretrained(tmp_dir, vocab_size=10)
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599

                    logger = logging.get_logger("transformers.modeling_tf_utils")
                    with CaptureLogger(logger) as cl:
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = TFAutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    # Although Tf models always have a prefix pointing to `MainLayer`,
                    # we still add this "without prefix" test to keep a consistency between tf and pt tests.
                    input_ids = ids_tensor((2, 8), 10)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

1614
1615
1616
1617
1618
1619
1620
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "call"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
    def test_dataset_conversion(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=False)
            tf_inputs_dict = {
                key: val
                for key, val in tf_inputs_dict.items()
                if "head_mask" not in key and isinstance(val, tf.Tensor)
            }
            tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0]  # Use a random other tensor
            input_dataset = Dataset.from_dict(tf_inputs_dict)
            tf_dataset = model.prepare_tf_dataset(
                input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False
            )
            test_batch = next(iter(tf_dataset))
            if isinstance(test_batch, tf.Tensor):
                self.assertEqual(len(test_batch), len(input_dataset))  # Assert we didn't lose any data
            else:
                # Assert we discarded the unwanted extra column but kept everything else
                self.assertEqual(len(test_batch), len(input_dataset.features) - 1)
                self.assertNotIn("extra_unwanted_column", test_batch)
                for tensor in test_batch.values():
                    self.assertTrue(isinstance(tensor, tf.Tensor))
                    self.assertEqual(len(tensor), len(input_dataset))  # Assert we didn't lose any data
                    model(test_batch, training=False)

            if "labels" in inspect.signature(model_class.call).parameters.keys():
                tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                if "labels" not in tf_inputs_dict:
                    return  # This model isn't giving us labels after all, don't try training with it
                tf_inputs_dict = {key: val for key, val in tf_inputs_dict.items() if "head_mask" not in key}
                tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0]  # Use a random other tensor
                input_dataset = Dataset.from_dict(tf_inputs_dict)
                tf_dataset = model.prepare_tf_dataset(
                    input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False
                )
                test_batch, test_batch_labels = next(iter(tf_dataset))
                self.assertGreater(len(test_batch_labels), 0)  # Assert the labels are present
                feature_columns = 1 if isinstance(test_batch, tf.Tensor) else len(test_batch)
                label_columns = 1 if isinstance(test_batch_labels, tf.Tensor) else len(test_batch_labels)
                # Assert we discarded the unwanted extra column but kept everything else
                self.assertEqual(feature_columns + label_columns, len(input_dataset.features) - 1)
                if isinstance(test_batch, dict):
                    self.assertNotIn("extra_unwanted_column", test_batch)
                if isinstance(test_batch_labels, dict):
                    self.assertNotIn("extra_unwanted_column", test_batch_labels)
                model.compile(optimizer="sgd", run_eagerly=True)
                model.train_on_batch(test_batch, test_batch_labels)

1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
    def _test_xla_generate(self, num_beams, num_return_sequences, max_length):
        def _generate_and_check_results(model, config, inputs_dict):
            if "input_ids" in inputs_dict:
                inputs = inputs_dict["input_ids"]
                # make sure there are no pad tokens in prompt, which may trigger unwanted behavior
                if config.pad_token_id is not None:
                    if config.pad_token_id == 0:
                        new_pad_token = config.pad_token_id + 1
                    else:
                        new_pad_token = config.pad_token_id - 1
                else:
                    new_pad_token = None
                inputs = tf.where(inputs != config.pad_token_id, inputs, new_pad_token)
            elif "input_features" in inputs_dict:
                inputs = inputs_dict["input_features"]
            else:
                raise ValueError("No valid generate input found in inputs_dict")

            generated = model.generate(inputs).numpy()
            generate_xla = tf.function(model.generate, jit_compile=True)
            generated_xla = generate_xla(inputs).numpy()
            self.assertListEqual(generated.tolist(), generated_xla.tolist())

        for model_class in self.all_generative_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.eos_token_id = None  # Generate until max length
            config.max_length = max_length
            config.do_sample = False
            config.num_beams = num_beams
            config.num_return_sequences = num_return_sequences
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711

            # fix config for models with additional sequence-length limiting settings
            for var_name in ["max_position_embeddings", "max_target_positions"]:
                if hasattr(config, var_name):
                    try:
                        setattr(config, var_name, max_length)
                    except NotImplementedError:
                        # xlnet will raise an exception when trying to set
                        # max_position_embeddings.
                        pass

1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
            model = model_class(config)

            if model.supports_xla_generation:
                _generate_and_check_results(model, config, inputs_dict)
            else:
                with self.assertRaises(ValueError):
                    _generate_and_check_results(model, config, inputs_dict)

    def test_xla_generate_fast(self):
        """
        Basic quick test for generate-compatible classes that confirms that XLA-generated tokens are the same as their
        non XLA counterparts.

        Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception
        """
        num_beams = 1
        num_return_sequences = 1
        max_length = 10
        self._test_xla_generate(num_beams, num_return_sequences, max_length)

    @slow
    def test_xla_generate_slow(self):
        """
        Slow and challenging version of `test_xla_generate_fast` -- this test asks for several long sequences using
        beam search, with and without XLA. The two outputs should match, and a failure in this test indicates that the
        model may need further analysis if it is to be used for XLA generation.

        Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception
        """
        num_beams = 8
        num_return_sequences = 2
        max_length = 128
        self._test_xla_generate(num_beams, num_return_sequences, max_length)

1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

1764
    def _check_generated_ids(self, output_ids):
1765
1766
1767
1768
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
1781

thomwolf's avatar
thomwolf committed
1782
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

1795
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
1796
1797

    return output
1798
1799


Yih-Dar's avatar
Yih-Dar committed
1800
1801
1802
def random_attention_mask(shape, rng=None, name=None, dtype=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None, dtype=dtype)
    # make sure that at least one token is attended to for each batch
1803
    attn_mask = tf.concat([attn_mask[:, :-1], tf.ones_like(attn_mask[:, -1:], dtype=dtype)], axis=-1)
Yih-Dar's avatar
Yih-Dar committed
1804
1805
1806
    return attn_mask


1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
def floats_tensor(shape, scale=1.0, rng=None, name=None, dtype=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return tf.reshape(tf.constant(values, dtype=dtype if dtype is not None else tf.float32), shape=shape)


1823
1824
@require_tf
class UtilsFunctionsTest(unittest.TestCase):
1825
1826
1827
1828
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
1829
        response_mock.headers = {}
1830
        response_mock.raise_for_status.side_effect = HTTPError
1831
        response_mock.json.return_value = {}
1832
1833
1834
1835
1836

        # Download this model to make sure it's in the cache.
        _ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
1837
        with mock.patch("requests.request", return_value=response_mock) as mock_head:
1838
1839
1840
1841
            _ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

1842
1843
1844
1845
1846
1847
    # tests whether the unpack_inputs function behaves as expected
    def test_unpack_inputs(self):
        class DummyModel:
            def __init__(self):
                config_kwargs = {"output_attentions": False, "output_hidden_states": False, "return_dict": False}
                self.config = PretrainedConfig(**config_kwargs)
1848
                self.main_input_name = "input_ids"
1849
1850
1851
1852
1853
1854
1855

            @unpack_inputs
            def call(
                self, input_ids=None, past=None, output_attentions=None, output_hidden_states=None, return_dict=None
            ):
                return input_ids, past, output_attentions, output_hidden_states, return_dict

1856
1857
1858
1859
            @unpack_inputs
            def foo(self, pixel_values, output_attentions=None, output_hidden_states=None, return_dict=None):
                return pixel_values, output_attentions, output_hidden_states, return_dict

1860
1861
1862
        dummy_model = DummyModel()
        input_ids = tf.constant([0, 1, 2, 3])
        past = tf.constant([4, 5, 6, 7])
1863
        pixel_values = tf.constant([8, 9, 10, 11])
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909

        # test case 1: Pass inputs as keyword arguments; Booleans are inherited from the config.
        output = dummy_model.call(input_ids=input_ids, past=past)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 2: Same as above, but with positional arguments.
        output = dummy_model.call(input_ids, past)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 3: We can also pack everything in the first input.
        output = dummy_model.call(input_ids={"input_ids": input_ids, "past": past})
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

        # test case 4: Explicit boolean arguments should override the config.
        output = dummy_model.call(input_ids=input_ids, past=past, output_attentions=False, return_dict=True)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertTrue(output[4])

        # test case 5: Unexpected arguments should raise an exception.
        with self.assertRaises(ValueError):
            output = dummy_model.call(input_ids=input_ids, past=past, foo="bar")

        # test case 6: Despite the above, `past_key_values` should be interchangeable with `past`
        # (the decorator moves it to `past`, or vice-versa, depending on the signature).
        output = dummy_model.call(input_ids=input_ids, past_key_values=past)
        tf.debugging.assert_equal(output[0], input_ids)
        tf.debugging.assert_equal(output[1], past)
        self.assertFalse(output[2])
        self.assertFalse(output[3])
        self.assertFalse(output[4])

1910
1911
1912
1913
1914
1915
1916
1917
        # test case 7: the decorator is independent from `main_input_name` -- it treats the first argument of the
        # decorated function as its main input.
        output = dummy_model.foo(pixel_values=pixel_values)
        tf.debugging.assert_equal(output[0], pixel_values)
        self.assertFalse(output[1])
        self.assertFalse(output[2])
        self.assertFalse(output[3])

Joao Gante's avatar
Joao Gante committed
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
    # Tests whether the stable softmax is stable on CPU, with and without XLA
    def test_xla_stable_softmax(self):
        large_penalty = -1e9
        n_tokens = 10
        batch_size = 8

        def masked_softmax(x, boolean_mask):
            numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty
            masked_x = x + numerical_mask
            return stable_softmax(masked_x)

        xla_masked_softmax = tf.function(masked_softmax, jit_compile=True)
        xla_stable_softmax = tf.function(stable_softmax, jit_compile=True)
        x = tf.random.normal((batch_size, n_tokens))

        # Same outcome regardless of the boolean mask here
        masked_tokens = random.randint(0, n_tokens)
        boolean_mask = tf.convert_to_tensor([[1] * (n_tokens - masked_tokens) + [0] * masked_tokens], dtype=tf.int32)

        # We can randomly mask a random numerical input OUTSIDE XLA
        numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty
        masked_x = x + numerical_mask
        xla_out = xla_stable_softmax(masked_x)
        out = stable_softmax(masked_x)
        assert tf.experimental.numpy.allclose(xla_out, out)

        # The stable softmax has the same output as the original softmax
        unstable_out = tf.nn.softmax(masked_x)
        assert tf.experimental.numpy.allclose(unstable_out, out)

        # We can randomly mask a random numerical input INSIDE XLA
        xla_out = xla_masked_softmax(x, boolean_mask)
        out = masked_softmax(x, boolean_mask)
        assert tf.experimental.numpy.allclose(xla_out, out)

Arthur's avatar
Arthur committed
1953
1954
1955
1956
1957
1958
1959
    def test_checkpoint_sharding_from_hub(self):
        model = TFBertModel.from_pretrained("ArthurZ/tiny-random-bert-sharded")
        # the model above is the same as the model below, just a sharded version.
        ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        for p1, p2 in zip(model.weights, ref_model.weights):
            assert np.allclose(p1.numpy(), p2.numpy())

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
    @is_pt_tf_cross_test
    def test_checkpoint_sharding_local_from_pt(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            _ = Repository(local_dir=tmp_dir, clone_from="hf-internal-testing/tiny-random-bert-sharded")
            model = TFBertModel.from_pretrained(tmp_dir, from_pt=True)
            # the model above is the same as the model below, just a sharded pytorch version.
            ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            for p1, p2 in zip(model.weights, ref_model.weights):
                assert np.allclose(p1.numpy(), p2.numpy())

Arthur's avatar
Arthur committed
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
    def test_shard_checkpoint(self):
        # This is the model we will use, total size 340,000 bytes.
        model = tf.keras.Sequential(
            [
                tf.keras.layers.Dense(200, use_bias=False),  # size 80,000
                tf.keras.layers.Dense(200, use_bias=False),  # size 160,000
                tf.keras.layers.Dense(100, use_bias=False),  # size 80,000
                tf.keras.layers.Dense(50, use_bias=False),  # size 20,000
            ]
        )
        inputs = tf.zeros((1, 100), dtype=tf.float32)
        model(inputs)
        weights = model.weights
        weights_dict = {w.name: w for w in weights}
        with self.subTest("No shard when max size is bigger than model size"):
            shards, index = tf_shard_checkpoint(weights)
            self.assertIsNone(index)
            self.assertDictEqual(shards, {TF2_WEIGHTS_NAME: weights})

        with self.subTest("Test sharding, no weights bigger than max size"):
            shards, index = tf_shard_checkpoint(weights, max_shard_size="300kB")
            # Split is first two layers then last two.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "dense/kernel:0": "tf_model-00001-of-00002.h5",
                        "dense_1/kernel:0": "tf_model-00001-of-00002.h5",
                        "dense_2/kernel:0": "tf_model-00002-of-00002.h5",
                        "dense_3/kernel:0": "tf_model-00002-of-00002.h5",
                    },
                },
            )

            shard1 = [weights_dict["dense/kernel:0"], weights_dict["dense_1/kernel:0"]]
            shard2 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]]
            self.assertDictEqual(shards, {"tf_model-00001-of-00002.h5": shard1, "tf_model-00002-of-00002.h5": shard2})

        with self.subTest("Test sharding with weights bigger than max size"):
            shards, index = tf_shard_checkpoint(weights, max_shard_size="100kB")
            # Split is first layer, second layer then last 2.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "dense/kernel:0": "tf_model-00001-of-00003.h5",
                        "dense_1/kernel:0": "tf_model-00002-of-00003.h5",
                        "dense_2/kernel:0": "tf_model-00003-of-00003.h5",
                        "dense_3/kernel:0": "tf_model-00003-of-00003.h5",
                    },
                },
            )

            shard1 = [weights_dict["dense/kernel:0"]]
            shard2 = [weights_dict["dense_1/kernel:0"]]
            shard3 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]]
            self.assertDictEqual(
                shards,
                {
                    "tf_model-00001-of-00003.h5": shard1,
                    "tf_model-00002-of-00003.h5": shard2,
                    "tf_model-00003-of-00003.h5": shard3,
                },
            )

    def test_checkpoint_sharding_local(self):
        model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            # We use the same folder for various sizes to make sure a new save erases the old checkpoint.
            for max_size in ["150kB", "150kiB", "200kB", "200kiB"]:
                model.save_pretrained(tmp_dir, max_shard_size=max_size)

                # Get each shard file and its size
                shard_to_size = {}
                for shard in os.listdir(tmp_dir):
                    if shard.endswith(".h5"):
                        shard_file = os.path.join(tmp_dir, shard)
                        shard_to_size[shard_file] = os.path.getsize(shard_file)

                index_file = os.path.join(tmp_dir, TF2_WEIGHTS_INDEX_NAME)
                # Check there is an index but no regular weight file
                self.assertTrue(os.path.isfile(index_file))
                self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME)))

                # Check a file is bigger than max_size only when it has a single weight
                for shard_file, size in shard_to_size.items():
                    if max_size.endswith("kiB"):
                        max_size_int = int(max_size[:-3]) * 2**10
                    else:
                        max_size_int = int(max_size[:-2]) * 10**3
                    # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
                    # the size asked for (since we count parameters)
                    if size >= max_size_int + 50000:
                        with h5py.File(shard_file, "r") as state_file:
                            self.assertEqual(len(state_file), 1)

                # Check the index and the shard files found match
                with open(index_file, "r", encoding="utf-8") as f:
                    index = json.loads(f.read())

                all_shards = set(index["weight_map"].values())
                shards_found = set(f for f in os.listdir(tmp_dir) if f.endswith(".h5"))
                self.assertSetEqual(all_shards, shards_found)

                # Finally, check the model can be reloaded
                new_model = TFBertModel.from_pretrained(tmp_dir)

                model(model.dummy_inputs)
                new_model(model.dummy_inputs)

                for p1, p2 in zip(model.weights, new_model.weights):
                    self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

Sylvain Gugger's avatar
Sylvain Gugger committed
2086
2087
2088
2089
2090
2091

@require_tf
@is_staging_test
class TFModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
2092
2093
2094
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
2095
2096
2097
2098

    @classmethod
    def tearDownClass(cls):
        try:
2099
            delete_repo(token=cls._token, repo_id="test-model-tf")
Sylvain Gugger's avatar
Sylvain Gugger committed
2100
2101
2102
2103
        except HTTPError:
            pass

        try:
2104
            delete_repo(token=cls._token, repo_id="valid_org/test-model-tf-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        # Make sure model is properly initialized
        _ = model(model.dummy_inputs)

2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
        logging.set_verbosity_info()
        logger = logging.get_logger("transformers.utils.hub")
        with CaptureLogger(logger) as cl:
            model.push_to_hub("test-model-tf", use_auth_token=self._token)
        logging.set_verbosity_warning()
        # Check the model card was created and uploaded.
        self.assertIn("Uploading README.md to __DUMMY_TRANSFORMERS_USER__/test-model-tf", cl.out)

        new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf")
        models_equal = True
        for p1, p2 in zip(model.weights, new_model.weights):
            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                models_equal = False
        self.assertTrue(models_equal)

        # Reset repo
        delete_repo(token=self._token, repo_id="test-model-tf")

        # Push to hub via save_pretrained
Matt's avatar
Matt committed
2135
        with tempfile.TemporaryDirectory() as tmp_dir:
2136
2137
2138
2139
2140
2141
2142
2143
            model.save_pretrained(tmp_dir, repo_id="test-model-tf", push_to_hub=True, use_auth_token=self._token)

        new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf")
        models_equal = True
        for p1, p2 in zip(model.weights, new_model.weights):
            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                models_equal = False
        self.assertTrue(models_equal)
Matt's avatar
Matt committed
2144

Sylvain Gugger's avatar
Sylvain Gugger committed
2145
2146
2147
2148
2149
    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
        # Make sure model is properly initialized
        _ = model(model.dummy_inputs)

        model.push_to_hub("valid_org/test-model-tf-org", use_auth_token=self._token)

        new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org")
        models_equal = True
        for p1, p2 in zip(model.weights, new_model.weights):
            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                models_equal = False
        self.assertTrue(models_equal)

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-model-tf-org")

        # Push to hub via save_pretrained
Sylvain Gugger's avatar
Sylvain Gugger committed
2166
2167
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
2168
                tmp_dir, push_to_hub=True, use_auth_token=self._token, repo_id="valid_org/test-model-tf-org"
Sylvain Gugger's avatar
Sylvain Gugger committed
2169
2170
            )

2171
2172
2173
2174
2175
2176
        new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org")
        models_equal = True
        for p1, p2 in zip(model.weights, new_model.weights):
            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                models_equal = False
        self.assertTrue(models_equal)