test_modeling_tf_common.py 90.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

Matt's avatar
Matt committed
17
18
from __future__ import annotations

thomwolf's avatar
thomwolf committed
19
import copy
20
import inspect
21
import json
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import os
thomwolf's avatar
thomwolf committed
23
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
24
import tempfile
25
import unittest
26
from importlib import import_module
Matt's avatar
Matt committed
27
from math import isnan
Matt's avatar
Matt committed
28
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
29

30
from datasets import Dataset
31

32
from transformers import is_tf_available, is_torch_available
33
from transformers.models.auto import get_values
34
from transformers.testing_utils import (  # noqa: F401
35
    CaptureLogger,
Lysandre Debut's avatar
Lysandre Debut committed
36
37
38
    _tf_gpu_memory_limit,
    is_pt_tf_cross_test,
    require_tf,
39
    require_tf2onnx,
Lysandre Debut's avatar
Lysandre Debut committed
40
    slow,
41
    torch_device,
Lysandre Debut's avatar
Lysandre Debut committed
42
)
43
from transformers.utils import CONFIG_NAME, GENERATION_CONFIG_NAME, logging
44
from transformers.utils.generic import ModelOutput
45

Aymeric Augustin's avatar
Aymeric Augustin committed
46

47
48
49
logger = logging.get_logger(__name__)


50
if is_tf_available():
thomwolf's avatar
thomwolf committed
51
    import numpy as np
52
    import tensorflow as tf
53

54
    from transformers import (
55
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
56
        TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
Yih-Dar's avatar
Yih-Dar committed
57
        TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
58
        TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
59
        TF_MODEL_FOR_MASKED_LM_MAPPING,
60
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
61
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
62
        TF_MODEL_FOR_PRETRAINING_MAPPING,
63
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
64
        TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
65
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
66
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Joao Gante's avatar
Joao Gante committed
67
        TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
68
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
69
        TFAutoModel,
70
        TFAutoModelForSequenceClassification,
71
        TFSharedEmbeddings,
72
    )
73
    from transformers.generation import (
74
75
76
77
78
79
80
81
82
        TFBeamSampleDecoderOnlyOutput,
        TFBeamSampleEncoderDecoderOutput,
        TFBeamSearchDecoderOnlyOutput,
        TFBeamSearchEncoderDecoderOutput,
        TFGreedySearchDecoderOnlyOutput,
        TFGreedySearchEncoderDecoderOutput,
        TFSampleDecoderOnlyOutput,
        TFSampleEncoderDecoderOutput,
    )
83

84
85
    tf.config.experimental.enable_tensor_float_32_execution(False)

Julien Chaumond's avatar
Julien Chaumond committed
86
87
88
89
90
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
Julien Plu's avatar
Julien Plu committed
91
92
                tf.config.set_logical_device_configuration(
                    gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
Julien Chaumond's avatar
Julien Chaumond committed
93
                )
Julien Plu's avatar
Julien Plu committed
94
                logical_gpus = tf.config.list_logical_devices("GPU")
Julien Chaumond's avatar
Julien Chaumond committed
95
96
97
98
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
99

100
101
102
if is_torch_available():
    import torch

103

thomwolf's avatar
thomwolf committed
104
105
106
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
107
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
108
109
110
111
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


112
113
114
115
@require_tf
class TFModelTesterMixin:
    model_tester = None
    all_model_classes = ()
116
    all_generative_model_classes = ()
117
    test_mismatched_shapes = True
118
    test_resize_embeddings = True
119
    test_head_masking = True
120
    is_encoder_decoder = False
121
    has_attentions = True
122

Lysandre Debut's avatar
Lysandre Debut committed
123
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
124
125
        inputs_dict = copy.deepcopy(inputs_dict)

126
        if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
127
            inputs_dict = {
128
129
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
130
131
132
                else v
                for k, v in inputs_dict.items()
            }
133
134

        if return_labels:
135
            if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
136
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
137
138
139
140
            elif model_class in [
                *get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING),
                *get_values(TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING),
            ]:
141
142
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
Yih-Dar's avatar
Yih-Dar committed
143
144
145
146
            elif model_class in [
                *get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
147
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
148
            elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING):
149
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
150
            elif model_class in [
151
152
153
154
155
                *get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(TF_MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(TF_MODEL_FOR_PRETRAINING_MAPPING),
                *get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
Joao Gante's avatar
Joao Gante committed
156
                *get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING),
157
            ] and "labels" in dict(inspect.signature(model_class.call).parameters):
158
159
160
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
161
162
163
164
165
166
167
168
            elif model_class in get_values(TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING):
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = tf.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=tf.int32
                )
            elif model_class in get_values(TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING):
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = tf.zeros((self.model_tester.batch_size, height, width), dtype=tf.int32)
169
170
171
172
173
            elif model_class.__name__.endswith("ForCTC"):
                # When we have enough CTC models for an AutoClass, we should use their mapping instead of name checks
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
174

175
176
        return inputs_dict

177
178
    def test_initialization(self):
        pass
179

180
181
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
182

183
184
        for model_class in self.all_model_classes:
            model = model_class(config)
185
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
186

187
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
188
                model.save_pretrained(tmpdirname, saved_model=False)
189
190
191
192
193
194
195

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

196
                model = model_class.from_pretrained(tmpdirname)
197
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
198

199
                self.assert_outputs_same(after_outputs, outputs)
200

201
202
203
204
205
206
    def test_save_load_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
207
208
209
            model_config = model.get_config()
            # make sure that returned config is jsonifiable, which is required by keras
            json.dumps(model_config)
210
            new_model = model_class.from_config(model.get_config())
211
212
            # make sure it also accepts a normal config
            _ = model_class.from_config(model.config)
213
214
215
216
217
218
            _ = new_model(self._prepare_for_class(inputs_dict, model_class))  # Build model
            new_model.set_weights(model.get_weights())
            after_outputs = new_model(self._prepare_for_class(inputs_dict, model_class))

            self.assert_outputs_same(after_outputs, outputs)

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    @slow
    def test_saved_model_creation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = False
        config.output_attentions = False

        if hasattr(config, "use_cache"):
            config.use_cache = False

        model_class = self.all_model_classes[0]

        class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
        model = model_class(config)

        model(class_inputs_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, saved_model=True)
            saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
            self.assertTrue(os.path.exists(saved_model_dir))

    def test_prepare_serving_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = self.has_attentions

        for model_class in self.all_model_classes:
            model = model_class(config)
            inputs = self._prepare_for_class(inputs_dict, model_class)
            outputs = model(inputs)
            serving_outputs = model.serving_output(outputs)

            for k, v in serving_outputs.items():
                # Check that we have one of three possible outputs: None, tuple of tensors or a tensor
                if isinstance(v, tuple):
                    self.assertTrue(all(isinstance(elem, tf.Tensor) for elem in v))
                elif v is not None:
                    self.assertIsInstance(v, tf.Tensor)
                else:
                    self.assertIsNone(v)

260
261
262
263
264
265
266
267
268
269
270
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
Julien Plu's avatar
Julien Plu committed
271
                    "input_ids",
272
273
274
275
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
276
                expected_arg_names.extend(["decoder_position_ids"] if "decoder_position_ids" in arg_names else [])
277
                expected_arg_names.extend(
278
279
280
281
282
                    ["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else []
                )
                expected_arg_names.extend(
                    ["cross_attn_head_mask", "encoder_outputs"]
                    if "cross_attn_head_mask" in arg_names
283
284
285
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
286
287

            else:
Julien Plu's avatar
Julien Plu committed
288
                expected_arg_names = ["input_ids"]
289
290
                self.assertListEqual(arg_names[:1], expected_arg_names)

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    def test_onnx_compliancy(self):
        if not self.test_onnx:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INTERNAL_OPS = [
            "Assert",
            "AssignVariableOp",
            "EmptyTensorList",
            "ReadVariableOp",
            "ResourceGather",
            "TruncatedNormal",
            "VarHandleOp",
            "VarIsInitializedOp",
        ]
        onnx_ops = []

        with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f:
            onnx_opsets = json.load(f)["opsets"]

        for i in range(1, self.onnx_min_opset + 1):
            onnx_ops.extend(onnx_opsets[str(i)])

        for model_class in self.all_model_classes:
            model_op_names = set()

            with tf.Graph().as_default() as g:
                model = model_class(config)
319
                model.build()
320
321
322
323
324
325
326
327
328
329
330
331
332

                for op in g.get_operations():
                    model_op_names.add(op.node_def.op)

            model_op_names = sorted(model_op_names)
            incompatible_ops = []

            for op in model_op_names:
                if op not in onnx_ops and op not in INTERNAL_OPS:
                    incompatible_ops.append(op)

            self.assertEqual(len(incompatible_ops), 0, incompatible_ops)

333
    @require_tf2onnx
334
335
336
337
338
339
    @slow
    def test_onnx_runtime_optimize(self):
        if not self.test_onnx:
            return

        import onnxruntime
340
        import tf2onnx
341
342
343
344
345

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
346
            model.build()
347

348
            onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset)
349

350
            onnxruntime.InferenceSession(onnx_model_proto.SerializeToString())
351

352
353
354
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

355
        tf_main_layer_classes = {
356
357
358
359
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
360
            if module_member_name.endswith("MainLayer")
Yih-Dar's avatar
Yih-Dar committed
361
362
            # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
            and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")]
363
            for module_member in (getattr(module, module_member_name),)
364
365
366
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
367
        }
368
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
369
370
371
372
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
Julien Plu's avatar
Julien Plu committed
373
                config.use_cache = inputs_dict.pop("use_cache", None)
Julien Plu's avatar
Julien Plu committed
374
375
376
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
Julien Plu's avatar
Julien Plu committed
377

378
379
380
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
381

382
383
384
385
386
387
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
388
389
390
391
392
393
394
395
396
397
398
399
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
400
401
402
403
404
405
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
406
407
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
408
        elif isinstance(after_outputs, dict):
409
            out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
Julien Plu's avatar
Julien Plu committed
410
411
        else:
            out_1 = after_outputs[0].numpy()
412
        out_2 = outputs[0].numpy()
413
        self.assertEqual(out_1.shape, out_2.shape)
414
415
416
417
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
418

419
420
421
422
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
423

424
425
426
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
thomwolf's avatar
thomwolf committed
427

428
429
430
431
432
433
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = tf.concat(
                    [tf.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], axis=-1
                )
434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = tf.concat(
                #     [
                #         tf.zeros_like(attention_mask[:1], dtype=tf.int32),
                #         tf.cast(attention_mask[1:], dtype=tf.int32)
                #     ],
                #     axis=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

455
456
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "TFFlaubertWithLMHeadModel",
            "TFFunnelForPreTraining",
            "TFElectraForPreTraining",
            "TFXLMWithLMHeadModel",
            "TFTransfoXLLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("TFGPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
483
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
504

505
506
507
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
508

509
510
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
511

512
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
513

514
515
516
517
518
519
            # convert to the case of `tuple`
            # appending each key to the current (string) `names`
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
520

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
                    f"{name}: The tuple `names` should have the same length as `tf_outputs`",
                )
            else:
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `names`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
536

537
538
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
539

540
541
542
543
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
544

545
546
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
547

548
549
550
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
551

552
553
554
555
556
557
558
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])

            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
559

560
561
562
563
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
564

565
566
567
568
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between torch and tf is {max_diff} (>= {tol}).")
        else:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
569
570
                "`tf_outputs` should be an instance of `tf.Tensor`, a `tuple`, or an instance of `tf.Tensor`. Got"
                f" {type(tf_outputs)} instead."
571
            )
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

    def prepare_pt_inputs_from_tf_inputs(self, tf_inputs_dict):
        pt_inputs_dict = {}
        for name, key in tf_inputs_dict.items():
            if type(key) == bool:
                pt_inputs_dict[name] = key
            elif name == "input_values":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            elif name == "pixel_values":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            elif name == "input_features":
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            # other general float inputs
            elif tf_inputs_dict[name].dtype.is_floating:
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
            else:
                pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)

        return pt_inputs_dict

    def check_pt_tf_models(self, tf_model, pt_model, tf_inputs_dict):
        pt_inputs_dict = self.prepare_pt_inputs_from_tf_inputs(tf_inputs_dict)

        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }

        # send pytorch model to the correct device
        pt_model.to(torch_device)

        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()

        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(tf_model))

    @is_pt_tf_cross_test
Matt's avatar
Matt committed
620
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
621
        import transformers
622
623
624

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
625

626
627
            # Output all for aggressive testing
            config.output_hidden_states = True
628
            config.output_attentions = self.has_attentions
629

630
631
632
633
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
634
635
636
637
638
639

            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
            pt_model_class = getattr(transformers, pt_model_class_name)

            tf_model = model_class(config)
            pt_model = pt_model_class(config)
Lysandre's avatar
Lysandre committed
640

641
            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
642
            tf_inputs_dict_with_labels = self._prepare_for_class(
643
644
645
646
647
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
            )
648

649
650
            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
651
            if not set(tf_inputs_dict_with_labels.keys()).symmetric_difference(tf_inputs_dict.keys()):
652
653
                tf_inputs_dict_with_labels = None

654
            # Check we can load pt model in tf and vice-versa with model => model functions
Matt's avatar
Matt committed
655
656
657
658
659
660
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )
Lysandre's avatar
Lysandre committed
661

662
663
664
665
666
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
            # check with `labels`
            if tf_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels)
667
668

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
669
            with tempfile.TemporaryDirectory() as tmpdirname:
670
671
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
Matt's avatar
Matt committed
672
673
674
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
675
676
677

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
Matt's avatar
Matt committed
678
679
680
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
681

682
683
684
685
686
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
            # check with `labels`
            if tf_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels)
687

688
    @slow
689
    def test_compile_tf_model(self):
690
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
691
692
693
694

        for model_class in self.all_model_classes:
            # Prepare our model
            model = model_class(config)
695
696
697
698
699
700
701
702
            # These are maximally general inputs for the model, with multiple None dimensions
            # Hopefully this will catch any conditionals that fail for flexible shapes
            functional_inputs = {
                key: tf.keras.Input(shape=val.shape[1:], dtype=val.dtype, name=key)
                for key, val in model.input_signature.items()
                if key in model.dummy_inputs
            }
            outputs_dict = model(functional_inputs)
703
704
705
706

            hidden_states = outputs_dict[0]

            # Compile extended model
707
708
709
710
711
            functional_model = tf.keras.Model(inputs=functional_inputs, outputs=hidden_states)
            model_out = functional_model.predict(model.dummy_inputs)  # Check we can pass inputs with the Keras API
            self.assertTrue(model_out is not None)
            with tempfile.TemporaryDirectory() as tmpdirname:
                functional_model.save(tmpdirname)  # Ensure we can save/export the whole functional model
712
713
714
715
716
717

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
718
719
720
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)
721

722
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Joao Gante's avatar
Joao Gante committed
723
            outputs_keywords = model(**inputs_keywords)
724
725
726
727
728
729
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
730
731
732
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

733
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
734
        config.return_dict = True
735
736
737
738
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
739

Julien Plu's avatar
Julien Plu committed
740
741
        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
742
            self.assertEqual(min(out_len % 2, out_len % 5), 0)  # differentiation due to newly added cross_attentions
Julien Plu's avatar
Julien Plu committed
743
744
745
746
747
748
749
750
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
751
752
753
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
754
755
756
757
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
758
            )
Julien Plu's avatar
Julien Plu committed
759
760
761
762
763
764

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
765
            out_len = len(outputs)
Julien Plu's avatar
Julien Plu committed
766
767
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
768

769
            if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
770
771
772
773
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
774

775
776
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
777
            config.output_attentions = True
778
            model = model_class(config)
779
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
780
781
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
782
783
784

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
785
786
            config.output_hidden_states = True
            model = model_class(config)
787
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
788

789
790
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
Julien Plu's avatar
Julien Plu committed
791
            check_encoder_attentions_output(outputs)
792

793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
    def test_headmasking(self):
        if not self.test_head_masking:
            return

        random.Random().seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        random.Random().seed()

        inputs_dict["output_attentions"] = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)

            # Prepare head_mask
            def prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
                if i == 0:
                    return tf.concat(
                        (tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0
                    )
                elif i == num_hidden_layers - 1:
                    return tf.concat(
                        (tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0
                    )
                else:
                    return tf.ones(attention_heads, dtype=tf.float32)

            head_mask = tf.stack(
                [
                    prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ],
                0,
            )

            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            inputs["head_mask"] = head_mask
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.call)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
835
836
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860

            outputs = model(**inputs, return_dict=True)

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        (tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy()
                    )  # Check we don't have more than 25% nans (arbitrary)

                attentions = [
                    tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0)
                self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
861
862
                if "cross_attn_head_mask" in arg_names:
                    check_attentions_validity(outputs.cross_attentions)
863
864
865
            else:
                check_attentions_validity(outputs.attentions)

866
867
868
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
869
        def check_hidden_states_output(config, inputs_dict, model_class):
870
            model = model_class(config)
871
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
872
873
874
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
Julien Plu's avatar
Julien Plu committed
875

Julien Plu's avatar
Julien Plu committed
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
            if model.config.is_encoder_decoder:
                encoder_hidden_states = outputs.encoder_hidden_states
                decoder_hidden_states = outputs.decoder_hidden_states

                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(encoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(encoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
                self.assertEqual(len(decoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(decoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
            else:
                hidden_states = outputs.hidden_states
                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
899

Joseph Liu's avatar
Joseph Liu committed
900
901
902
903
904
905
906
907
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

908
    def test_model_common_attributes(self):
909
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
Joao Gante's avatar
Joao Gante committed
910
        text_in_text_out_models = (
911
912
913
            get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING)
            + get_values(TF_MODEL_FOR_MASKED_LM_MAPPING)
            + get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING)
914
        )
Joao Gante's avatar
Joao Gante committed
915
        speech_in_text_out_models = get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING)
916
917
918

        for model_class in self.all_model_classes:
            model = model_class(config)
919
920
921
922
923
924
925
926
927
928
929
            self.assertIsInstance(model.get_input_embeddings(), tf.keras.layers.Layer)

            legacy_text_in_text_out = model.get_lm_head() is not None
            if model_class in text_in_text_out_models or legacy_text_in_text_out:
                out_embeddings = model.get_output_embeddings()
                self.assertIsInstance(out_embeddings, tf.keras.layers.Layer)
                bias = model.get_bias()
                if bias is not None:
                    self.assertIsInstance(bias, dict)
                    for _, v in bias.items():
                        self.assertIsInstance(v, tf.Variable)
Joao Gante's avatar
Joao Gante committed
930
            elif model_class in speech_in_text_out_models:
931
932
933
934
                out_embeddings = model.get_output_embeddings()
                self.assertIsInstance(out_embeddings, tf.keras.layers.Layer)
                bias = model.get_bias()
                self.assertIsNone(bias)
935
            else:
936
937
938
939
                out_embeddings = model.get_output_embeddings()
                assert out_embeddings is None
                bias = model.get_bias()
                self.assertIsNone(bias)
940
941
942
943
944
945

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
946
            first, second = (
947
948
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
949
            )
950
951
952
953
954
955
956
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
Sylvain Gugger's avatar
Sylvain Gugger committed
973
974
975
976
                        msg=(
                            "Tuple and dict output are not equal. Difference:"
                            f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}"
                        ),
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

992
993
994
995
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
996

997
998
999
1000
1001
            # Not all models accept "labels" in the forward pass (yet :) )
            if "labels" in inspect.signature(model.call).parameters.keys():
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs)
1002

1003
1004
1005
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
1006

1007
1008
1009
1010
                if self.has_attentions:
                    tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1011

1012
1013
1014
1015
1016
                    tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    check_equivalence(
                        model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                    )
1017

1018
1019
1020
1021
1022
1023
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

1024
1025
            inputs = copy.deepcopy(inputs_dict)

1026
1027
1028
1029
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
1030
                encoder_input_ids = inputs["input_ids"]
1031
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
1032
                del inputs["input_ids"]
1033
1034
                inputs.pop("decoder_input_ids", None)

thomwolf's avatar
thomwolf committed
1035
            if not self.is_encoder_decoder:
1036
                inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
thomwolf's avatar
thomwolf committed
1037
            else:
1038
1039
                inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)
1040

1041
1042
            inputs = self._prepare_for_class(inputs, model_class)

1043
            model(inputs)
1044

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
    def test_numpy_arrays_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def prepare_numpy_arrays(inputs_dict):
            inputs_np_dict = {}
            for k, v in inputs_dict.items():
                if tf.is_tensor(v):
                    inputs_np_dict[k] = v.numpy()
                else:
                    inputs_np_dict[k] = np.array(k)

            return inputs_np_dict

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs_np = prepare_numpy_arrays(inputs)

1064
1065
1066
            output_for_dict_input = model(inputs_np)
            output_for_kw_input = model(**inputs_np)
            self.assert_outputs_same(output_for_dict_input, output_for_kw_input)
1067

1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
    def test_valid_input_signature_and_dummies(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            call_args = inspect.signature(model.call).parameters
            for key in model.input_signature:
                self.assertIn(key, call_args)
            for key in model.dummy_inputs:
                self.assertIn(key, call_args)

1078
    def test_resize_token_embeddings(self):
1079
1080
1081
        # TODO (joao): after the embeddings refactor is complete, rework this test so as to rely exclusively on
        # tf.keras.layers.Embedding

1082
1083
1084
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
1085
1086

        def _get_word_embedding_weight(model, embedding_layer):
1087
1088
            if isinstance(embedding_layer, tf.keras.layers.Embedding):
                # builds the embeddings layer
1089
                model.build()
1090
1091
1092
                return embedding_layer.embeddings
            else:
                return model._get_word_embedding_weight(embedding_layer)
1093

1094
1095
1096
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
1097
                model = model_class(config=copy.deepcopy(config))  # `resize_token_embeddings` mutates `config`
1098
1099
1100
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_bias = model.get_bias()
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
1101
                # reshape the embeddings
1102
1103
1104
1105
1106
1107
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_bias = model.get_bias()
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # check that the resized embeddings size matches the desired size.
1108
                assert_size = size if size is not None else config.vocab_size
1109
1110
                self.assertEqual(new_input_embeddings.shape[0], assert_size)

1111
1112
                # check that weights remain the same after resizing
                models_equal = True
1113
1114
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
1115
1116
1117
                        models_equal = False
                self.assertTrue(models_equal)

1118
1119
                if old_bias is not None and new_bias is not None:
                    for old_weight, new_weight in zip(old_bias.values(), new_bias.values()):
1120
                        self.assertEqual(new_weight.shape[-1], assert_size)
1121
1122

                        models_equal = True
1123
                        for p1, p2 in zip(tf.squeeze(old_weight), tf.squeeze(new_weight)):
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                        self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)
                    self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1])

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
    # TODO (Joao): this test is not slow, but it's tagged as such to keep track of failures on the scheduled CI runs,
    # while passing push CI. Fix the underlying issues and remove the tag.
    @slow
    def test_save_load_after_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            # create a model with resized (expended) embeddings
            new_tokens_size = 10
            old_total_size = config.vocab_size
            new_total_size = old_total_size + new_tokens_size
            model = model_class(config=copy.deepcopy(config))  # `resize_token_embeddings` mutates `config`
1152
            model.build()
1153
1154
1155
1156
            model.resize_token_embeddings(new_total_size)

            # fetch the output for an input exclusively made of new members of the vocabulary
            inputs_dict = copy.deepcopy(original_inputs_dict)
amyeroberts's avatar
amyeroberts committed
1157
1158
1159
1160
1161
1162
1163
1164
1165
            ids_feat_name = None
            if "input_ids" in inputs_dict:
                ids_feat_name = "input_ids"
            elif "decoder_input_ids" in inputs_dict:
                ids_feat_name = "decoder_input_ids"
            else:
                assert False, "No input ids feature found in the inputs dict"

            new_vocab_input_ids = ids_tensor(inputs_dict[ids_feat_name].shape, new_tokens_size)
1166
            new_vocab_input_ids += old_total_size
amyeroberts's avatar
amyeroberts committed
1167
            inputs_dict[ids_feat_name] = new_vocab_input_ids
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
            if "input_ids" in inputs_dict:
                inputs_dict["input_ids"] = new_vocab_input_ids
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"] = new_vocab_input_ids
            prepared_inputs = self._prepare_for_class(inputs_dict, model_class)
            outputs = model(**prepared_inputs)

            # save and load the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, saved_model=False)
                model = model_class.from_pretrained(tmpdirname)
                restored_model_outputs = model(**prepared_inputs)

                # check that the output for the restored model is the same
                self.assert_outputs_same(restored_model_outputs, outputs)

    @unittest.skipIf(
        not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
        reason="This test always passes on CPU.",
    )
    def test_embeddings_out_of_bounds_raise_exception(self):
        # TF embeddings layers don't raise an exception when an index is out of bounds on GPU, so we manually raise it.
        # This test should only fail on GPU for models where we haven't added the safety check.
        if not self.test_resize_embeddings:
            return
        config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            inputs_dict = copy.deepcopy(original_inputs_dict)
            if "input_ids" in inputs_dict:
                inputs_dict["input_ids"] = inputs_dict["input_ids"] * int(1e9)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"] = inputs_dict["decoder_input_ids"] * int(1e9)
            prepared_inputs = self._prepare_for_class(inputs_dict, model_class)
            with self.assertRaises(tf.errors.InvalidArgumentError):
                model(**prepared_inputs)

1206
    def test_lm_head_model_random_no_beam_search_generate(self):
1207
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1208
        input_ids = inputs_dict.get("input_ids", None)
1209

1210
        # iterate over all generative models
1211
1212
1213
1214
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
Joao Gante's avatar
Joao Gante committed
1215
                # if bos token id is not defined model needs input_ids
1216
                with self.assertRaises(ValueError):
1217
                    model.generate(do_sample=True, max_length=5)
1218
                # num_return_sequences = 1
1219
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
Joao Gante's avatar
Joao Gante committed
1220
1221
            elif model_class.__name__ not in ["TFSpeech2TextForConditionalGeneration"]:
                # Models with non-text inputs won't work here; num_return_sequences = 1
1222
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
1223

1224
            with self.assertRaises(ValueError):
1225
                # generating multiple sequences when no beam search generation
1226
1227
1228
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

1229
1230
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
1231
1232

            # check bad words tokens language generation
1233
1234
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1235
            output_tokens = model.generate(
1236
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
1237
            )
1238
            # only count generated tokens
1239
1240
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
1241

1242
1243
1244
    def test_lm_head_model_no_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)
Joao Gante's avatar
Joao Gante committed
1245
1246
        if input_ids is None:
            input_ids = inputs_dict.get("input_features", None)
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_greedy = model.generate(
                input_ids,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_sample = model.generate(
                input_ids,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_greedy, TFGreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_sample, TFSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, TFGreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_sample, TFSampleDecoderOnlyOutput)

1275
1276
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1277
        input_ids = inputs_dict.get("input_ids", None)
1278
1279
1280
1281
1282

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
Joao Gante's avatar
Joao Gante committed
1283
                # if bos token id is not defined model needs input_ids, num_return_sequences = 1
1284
1285
1286
1287
1288
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

1289
            with self.assertRaises(ValueError):
1290
1291
1292
1293
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
1294
1295
1296
1297
1298
1299
1300
1301
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
1302
1303
1304
1305
1306
1307
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1308
            output_tokens = model.generate(
1309
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
1310
            )
1311
            # only count generated tokens
1312
1313
1314
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

1315
1316
1317
    def test_lm_head_model_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)
Joao Gante's avatar
Joao Gante committed
1318
1319
        if input_ids is None:
            input_ids = inputs_dict.get("input_features", None)
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_beam_search = model.generate(
                input_ids,
                num_beams=2,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_beam_sample = model.generate(
                input_ids,
                num_beams=2,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_beam_search, TFBeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_beam_search, TFBeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleDecoderOnlyOutput)

1350
1351
1352
1353
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
1354
1355
            # The number of elements in the loss should be the same as the number of elements in the label
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
1356
            added_label_names = sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
            if not added_label_names:
                continue  # This test is only for models with easily-separable labels
            added_label = prepared_for_class[added_label_names[0]]
            expected_loss_size = added_label.shape.as_list()[:1]

            # Test that model correctly compute the loss with kwargs
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
            possible_input_names = {"input_ids", "pixel_values", "input_features", "input_values"}
            input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
            model_input = prepared_for_class.pop(input_name)

Matt's avatar
Matt committed
1368
1369
1370
1371
1372
            outputs = model(model_input, **prepared_for_class)
            if not isinstance(outputs, ModelOutput) or not hasattr(outputs, "loss"):
                continue

            loss = outputs.loss
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
            self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])

            # Test that model correctly compute the loss when we mask some positions
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
            possible_input_names = {"input_ids", "pixel_values", "input_features", "input_values"}
            input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
            model_input = prepared_for_class.pop(input_name)
            if "labels" in prepared_for_class:
                labels = prepared_for_class["labels"].numpy()
                if len(labels.shape) > 1 and labels.shape[1] != 1:
                    labels[0] = -100
                    prepared_for_class["labels"] = tf.convert_to_tensor(labels)
                    loss = model(model_input, **prepared_for_class)[0]
                    self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
                    self.assertTrue(not np.any(np.isnan(loss.numpy())))

            # Test that model correctly compute the loss with a dict
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
            loss = model(prepared_for_class)[0]
            self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])

            # Test that model correctly compute the loss with a tuple
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

            # Get keys that were added with the _prepare_for_class function
            label_keys = prepared_for_class.keys() - inputs_dict.keys()
            signature = inspect.signature(model.call).parameters
            signature_names = list(signature.keys())

            # Create a dictionary holding the location of the tensors in the tuple
            tuple_index_mapping = {0: input_name}
            for label_key in label_keys:
                label_key_index = signature_names.index(label_key)
                tuple_index_mapping[label_key_index] = label_key
            sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
            # Initialize a list with their default values, update the values and convert to a tuple
            list_input = []

            for name in signature_names:
                if name != "kwargs":
                    list_input.append(signature[name].default)

            for index, value in sorted_tuple_index_mapping:
                list_input[index] = prepared_for_class[value]

            tuple_input = tuple(list_input)

            # Send to model
            loss = model(tuple_input[:-1])[0]

            self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
1424

1425
1426
1427
    def check_keras_fit_results(self, val_loss1, val_loss2, atol=1e-2, rtol=1e-3):
        self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol))

Matt's avatar
Matt committed
1428
    @slow
1429
1430
1431
1432
    def test_keras_fit(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
1433
1434
1435
1436
1437
1438
            # Test that model correctly compute the loss with kwargs
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
            # We also remove "return_loss" as this is covered by the train_step when using fit()
            prepared_for_class = {
                key: val
                for key, val in prepared_for_class.items()
Matt's avatar
Matt committed
1439
                if key not in ("head_mask", "decoder_head_mask", "cross_attn_head_mask", "return_loss")
1440
            }
Matt's avatar
Matt committed
1441
1442
            if "labels" in prepared_for_class and "decoder_input_ids" in prepared_for_class:
                del prepared_for_class["decoder_input_ids"]
1443

1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
            accuracy_classes = [
                "ForPreTraining",
                "ForCausalLM",
                "ForMaskedLM",
                "ForQuestionAnswering",
                "ForMultipleChoice",
                "ForSequenceClassification",
                "ForTokenClassification",
                "ForNextSentencePrediction",
                "LMHeadModel",
            ]
            for accuracy_class in accuracy_classes:
                if model.__class__.__name__.endswith(accuracy_class):
                    metrics = [tf.keras.metrics.SparseCategoricalAccuracy()]
                    break
            else:
                metrics = []

1462
1463
1464
1465
            if hasattr(self.model_tester, "batch_size"):
                sample_weight = tf.convert_to_tensor([0.5] * self.model_tester.batch_size, dtype=tf.float32)
            else:
                sample_weight = None
Matt's avatar
Matt committed
1466
1467
1468
1469
            # Build the model so we can get some constant weights and check outputs
            outputs = model(prepared_for_class)
            if getattr(outputs, "loss", None) is None:
                continue
1470
1471
1472
1473
1474
1475
1476
1477
            model_weights = model.get_weights()

            # Run eagerly to save some expensive compilation times
            model.compile(optimizer=tf.keras.optimizers.SGD(0.0), run_eagerly=True, metrics=metrics)
            # Make sure the model fits without crashing regardless of where we pass the labels
            history1 = model.fit(
                prepared_for_class,
                validation_data=prepared_for_class,
1478
                sample_weight=sample_weight,
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
                steps_per_epoch=1,
                validation_steps=1,
                shuffle=False,
            )
            val_loss1 = history1.history["val_loss"][0]
            self.assertTrue(not isnan(val_loss1))
            accuracy1 = {key: val[0] for key, val in history1.history.items() if key.endswith("accuracy")}

            possible_label_cols = {
                "labels",
                "label",
                "label_ids",
                "start_positions",
                "start_position",
                "end_positions",
                "end_position",
                "next_sentence_label",
            }
            label_names = possible_label_cols.intersection(set(prepared_for_class))
            if len(label_names) == 0:
                # The next tests only make sense for models with separate inputs and labels, and do not make
                # sense for models that don't clearly distinguish between the two (e.g. CLIP)
                return
            labels = {key: val for key, val in prepared_for_class.items() if key in label_names}
            inputs_minus_labels = {key: val for key, val in prepared_for_class.items() if key not in label_names}
            self.assertGreater(len(inputs_minus_labels), 0)

            # We reinitialize the model here even though our learning rate was zero
            # because BatchNorm updates weights by means other than gradient descent.
            model.set_weights(model_weights)

            history2 = model.fit(
                inputs_minus_labels,
                labels,
                validation_data=(inputs_minus_labels, labels),
1514
                sample_weight=sample_weight,
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
                steps_per_epoch=1,
                validation_steps=1,
                shuffle=False,
            )
            val_loss2 = history2.history["val_loss"][0]
            self.assertTrue(not isnan(val_loss2))
            accuracy2 = {key: val[0] for key, val in history2.history.items() if key.endswith("accuracy")}
            self.check_keras_fit_results(val_loss1, val_loss2)
            self.assertEqual(history1.history.keys(), history2.history.keys())
            for key in history1.history.keys():
                if not key.startswith("val_"):
                    self.assertTrue("val_" + key in history1.history.keys(), "Outputs differ in train/test step!")
            if metrics:
                self.assertTrue(len(accuracy1) == len(accuracy2) > 0, "Missing metrics!")

            # Make sure fit works with tf.data.Dataset and results are consistent
            dataset = tf.data.Dataset.from_tensor_slices(prepared_for_class)
1532
1533
1534
1535
1536
1537

            if sample_weight is not None:
                # Add in the sample weight
                weighted_dataset = dataset.map(lambda x: (x, None, tf.convert_to_tensor(0.5, dtype=tf.float32)))
            else:
                weighted_dataset = dataset
1538
            # Pass in all samples as a batch to match other `fit` calls
1539
            weighted_dataset = weighted_dataset.batch(len(dataset))
1540
1541
1542
1543
            dataset = dataset.batch(len(dataset))
            # Reinitialize to fix batchnorm again
            model.set_weights(model_weights)

1544
            # To match the other calls, don't pass sample weights in the validation data
1545
            history3 = model.fit(
1546
                weighted_dataset,
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
                validation_data=dataset,
                steps_per_epoch=1,
                validation_steps=1,
                shuffle=False,
            )
            val_loss3 = history3.history["val_loss"][0]
            self.assertTrue(not isnan(val_loss3))
            accuracy3 = {key: val[0] for key, val in history3.history.items() if key.endswith("accuracy")}
            self.check_keras_fit_results(val_loss1, val_loss3)
            self.assertEqual(history1.history.keys(), history3.history.keys())
            if metrics:
                self.assertTrue(len(accuracy1) == len(accuracy3) > 0, "Missing metrics!")
1559

Matt's avatar
Matt committed
1560
    def test_int_support(self):
1561
1562
1563
1564
1565
1566
1567
1568
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            prepared_for_class = self._prepare_for_class(
                inputs_dict.copy(),
                model_class,
                return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
            )
            if not any(
1569
                tensor.dtype.is_integer for tensor in prepared_for_class.values() if isinstance(tensor, tf.Tensor)
1570
1571
1572
1573
1574
1575
1576
1577
1578
            ):
                return  # No integer inputs means no need for this test

            prepared_for_class = {
                key: tf.cast(tensor, tf.int64) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor
                for key, tensor in prepared_for_class.items()
            }
            model = model_class(config)
            model(**prepared_for_class)  # No assertion, we're just checking this doesn't throw an error
Matt's avatar
Matt committed
1579
1580
1581
1582
1583
1584
1585
1586
            int32_prepared_for_class = {
                key: tf.cast(tensor, tf.int32) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor
                for key, tensor in prepared_for_class.items()
            }
            model(**int32_prepared_for_class)  # No assertion, we're just checking this doesn't throw an error

            # After testing that the model accepts all int inputs, confirm that its dummies are int32
            for key, tensor in model.dummy_inputs.items():
1587
1588
1589
1590
                self.assertTrue(
                    isinstance(tensor, tf.Tensor) or tf.keras.backend.is_keras_tensor(tensor),
                    "Dummy inputs should be tf.Tensor!",
                )
Matt's avatar
Matt committed
1591
1592
1593
                if tensor.dtype.is_integer:
                    self.assertTrue(tensor.dtype == tf.int32, "Integer dummy inputs should be tf.int32!")

1594
1595
1596
1597
            # Also confirm that the input_signature uses int32
            for key, tensor_spec in model.input_signature.items():
                if tensor_spec.dtype.is_integer:
                    self.assertTrue(tensor_spec.dtype == tf.int32, "Input signatures should use tf.int32 for ints!")
1598

1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
    def test_generate_with_headmasking(self):
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue

            head_masking = {
                "head_mask": tf.zeros((config.encoder_layers, config.encoder_attention_heads)),
                "decoder_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
                "cross_attn_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
            }

            signature = inspect.signature(model.call)
1617
            if set(head_masking.keys()) < {*signature.parameters.keys()}:
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    inputs_dict["input_ids"],
                    num_beams=1,
                    max_length=inputs_dict["input_ids"] + 5,
                    output_attentions=True,
                    return_dict_in_generate=True,
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([tf.reduce_sum(w).numpy() for w in attn_weights]), 0.0)

1633
    def test_load_with_mismatched_shapes(self):
1634
1635
        if not self.test_mismatched_shapes:
            return
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    _ = model(**inputs)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(ValueError):
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
1652
1653
                    with self.assertRaises(ValueError):
                        new_model_without_prefix = TFAutoModel.from_pretrained(tmp_dir, vocab_size=10)
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664

                    logger = logging.get_logger("transformers.modeling_tf_utils")
                    with CaptureLogger(logger) as cl:
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = TFAutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    # Although Tf models always have a prefix pointing to `MainLayer`,
                    # we still add this "without prefix" test to keep a consistency between tf and pt tests.
                    input_ids = ids_tensor((2, 8), 10)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

1679
1680
1681
1682
1683
1684
1685
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "call"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1686
1687
1688
1689
1690
    def test_dataset_conversion(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=False)
Matt's avatar
Matt committed
1691
1692
            if "labels" in tf_inputs_dict:
                return  # This is some kinda funky decoder model that needs labels in its forward pass
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
            tf_inputs_dict = {
                key: val
                for key, val in tf_inputs_dict.items()
                if "head_mask" not in key and isinstance(val, tf.Tensor)
            }
            tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0]  # Use a random other tensor
            input_dataset = Dataset.from_dict(tf_inputs_dict)
            tf_dataset = model.prepare_tf_dataset(
                input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False
            )
            test_batch = next(iter(tf_dataset))
            if isinstance(test_batch, tf.Tensor):
                self.assertEqual(len(test_batch), len(input_dataset))  # Assert we didn't lose any data
Matt's avatar
Matt committed
1706
            elif isinstance(test_batch, dict):
1707
1708
1709
1710
1711
1712
                # Assert we discarded the unwanted extra column but kept everything else
                self.assertEqual(len(test_batch), len(input_dataset.features) - 1)
                self.assertNotIn("extra_unwanted_column", test_batch)
                for tensor in test_batch.values():
                    self.assertTrue(isinstance(tensor, tf.Tensor))
                    self.assertEqual(len(tensor), len(input_dataset))  # Assert we didn't lose any data
1713
            model(test_batch, training=False)
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737

            if "labels" in inspect.signature(model_class.call).parameters.keys():
                tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                if "labels" not in tf_inputs_dict:
                    return  # This model isn't giving us labels after all, don't try training with it
                tf_inputs_dict = {key: val for key, val in tf_inputs_dict.items() if "head_mask" not in key}
                tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0]  # Use a random other tensor
                input_dataset = Dataset.from_dict(tf_inputs_dict)
                tf_dataset = model.prepare_tf_dataset(
                    input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False
                )
                test_batch, test_batch_labels = next(iter(tf_dataset))
                self.assertGreater(len(test_batch_labels), 0)  # Assert the labels are present
                feature_columns = 1 if isinstance(test_batch, tf.Tensor) else len(test_batch)
                label_columns = 1 if isinstance(test_batch_labels, tf.Tensor) else len(test_batch_labels)
                # Assert we discarded the unwanted extra column but kept everything else
                self.assertEqual(feature_columns + label_columns, len(input_dataset.features) - 1)
                if isinstance(test_batch, dict):
                    self.assertNotIn("extra_unwanted_column", test_batch)
                if isinstance(test_batch_labels, dict):
                    self.assertNotIn("extra_unwanted_column", test_batch_labels)
                model.compile(optimizer="sgd", run_eagerly=True)
                model.train_on_batch(test_batch, test_batch_labels)

1738
    def _test_xla_generate(self, **generate_kwargs):
1739
        def _generate_and_check_results(model, inputs_dict):
1740
1741
1742
            if "input_ids" in inputs_dict:
                inputs = inputs_dict["input_ids"]
                # make sure there are no pad tokens in prompt, which may trigger unwanted behavior
1743
                if model.generation_config.pad_token_id is not None:
1744
                    if config.pad_token_id == 0:
1745
                        new_pad_token = model.generation_config.pad_token_id + 1
1746
                    else:
1747
                        new_pad_token = model.generation_config.pad_token_id - 1
1748
1749
                else:
                    new_pad_token = None
1750
                inputs = tf.where(inputs != model.generation_config.pad_token_id, inputs, new_pad_token)
1751
1752
1753
1754
1755
            elif "input_features" in inputs_dict:
                inputs = inputs_dict["input_features"]
            else:
                raise ValueError("No valid generate input found in inputs_dict")

1756
            generated = model.generate(inputs, **generate_kwargs).numpy()
1757
            generate_xla = tf.function(model.generate, jit_compile=True)
1758
            generated_xla = generate_xla(inputs, **generate_kwargs).numpy()
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770

            # Due to numerical instability, let's fail the test only if there are more than 10% of input sequences give
            # different outputs between XLA and non-XLA versions. If there are less than 10 examples, let's be strict
            # and not allow any difference.
            diff = [[], []]
            for _generated, _generated_xla in zip(generated.tolist(), generated_xla.tolist()):
                if _generated != _generated_xla:
                    diff[0].append(_generated)
                    diff[1].append(_generated_xla)
            ratio = len(diff[0]) / len(generated)
            if ratio > 0.1 or (len(diff[0]) > 0 and len(generated) < 10):
                self.assertListEqual(diff[0], diff[1])
1771
1772
1773
1774
1775

        for model_class in self.all_generative_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.eos_token_id = None  # Generate until max length
            config.do_sample = False
1776

1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
            # fix config for models with additional sequence-length limiting settings
            for var_name in ["max_position_embeddings", "max_target_positions"]:
                attr = getattr(config, var_name, None)
                if attr is not None and attr < generate_kwargs["max_new_tokens"]:
                    try:
                        setattr(config, var_name, generate_kwargs["max_new_tokens"])
                    except NotImplementedError:
                        # xlnet will raise an exception when trying to set
                        # max_position_embeddings.
                        pass

1788
1789
1790
            model = model_class(config)

            if model.supports_xla_generation:
1791
                _generate_and_check_results(model, inputs_dict)
1792
1793
            else:
                with self.assertRaises(ValueError):
1794
                    _generate_and_check_results(model, inputs_dict)
1795
1796
1797
1798
1799
1800
1801
1802

    def test_xla_generate_fast(self):
        """
        Basic quick test for generate-compatible classes that confirms that XLA-generated tokens are the same as their
        non XLA counterparts.

        Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception
        """
1803
        self._test_xla_generate(num_beams=1, num_return_sequences=1, max_new_tokens=3)
1804

1805
    @slow
1806
1807
    def test_xla_generate_contrastive(self):
        """
1808
1809
1810
        Slow and challenging version of `test_xla_generate_fast` for contrastive search -- contrastive search directly
        manipulates the model cache and other outputs, and this test ensures that they are in a valid format that is
        also supported by XLA.
1811
1812
1813

        Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception
        """
1814
        self._test_xla_generate(num_beams=1, num_return_sequences=1, max_new_tokens=16, penalty_alpha=0.5, top_k=4)
1815

1816
1817
1818
1819
1820
1821
1822
1823
1824
    @slow
    def test_xla_generate_slow(self):
        """
        Slow and challenging version of `test_xla_generate_fast` -- this test asks for several long sequences using
        beam search, with and without XLA. The two outputs should match, and a failure in this test indicates that the
        model may need further analysis if it is to be used for XLA generation.

        Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception
        """
1825
        self._test_xla_generate(num_beams=8, num_return_sequences=2, max_new_tokens=128)
1826

1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

1845
    def _check_generated_ids(self, output_ids):
1846
1847
1848
1849
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
1862

thomwolf's avatar
thomwolf committed
1863
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

1876
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
1877
1878

    return output
1879
1880


Yih-Dar's avatar
Yih-Dar committed
1881
1882
1883
def random_attention_mask(shape, rng=None, name=None, dtype=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None, dtype=dtype)
    # make sure that at least one token is attended to for each batch
1884
    attn_mask = tf.concat([attn_mask[:, :-1], tf.ones_like(attn_mask[:, -1:], dtype=dtype)], axis=-1)
Yih-Dar's avatar
Yih-Dar committed
1885
1886
1887
    return attn_mask


1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
def floats_tensor(shape, scale=1.0, rng=None, name=None, dtype=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return tf.reshape(tf.constant(values, dtype=dtype if dtype is not None else tf.float32), shape=shape)