"vscode:/vscode.git/clone" did not exist on "562f864038cab68ca66925331c3f5cd7bf407a86"
Unverified Commit 7bb6933b authored by Joao Gante's avatar Joao Gante Committed by GitHub
Browse files

TF: standardize `test_model_common_attributes` for language models (#23457)

parent 4ed07528
...@@ -725,6 +725,11 @@ class TFCTRLForSequenceClassification(TFCTRLPreTrainedModel, TFSequenceClassific ...@@ -725,6 +725,11 @@ class TFCTRLForSequenceClassification(TFCTRLPreTrainedModel, TFSequenceClassific
self.transformer = TFCTRLMainLayer(config, name="transformer") self.transformer = TFCTRLMainLayer(config, name="transformer")
def get_output_embeddings(self): def get_output_embeddings(self):
# Remove after transformers v4.32. Fix this model's `test_model_common_attributes` test too.
logger.warning(
"Sequence classification models do not have output embeddings. `.get_output_embeddings` will be removed "
"in transformers v4.32."
)
return self.transformer.w return self.transformer.w
@unpack_inputs @unpack_inputs
......
...@@ -1032,6 +1032,11 @@ class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenc ...@@ -1032,6 +1032,11 @@ class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenc
self.transformer = TFTransfoXLMainLayer(config, name="transformer") self.transformer = TFTransfoXLMainLayer(config, name="transformer")
def get_output_embeddings(self): def get_output_embeddings(self):
# Remove after transformers v4.32. Fix this model's `test_model_common_attributes` test too.
logger.warning(
"Sequence classification models do not have output embeddings. `.get_output_embeddings` will be removed "
"in transformers v4.32."
)
return self.transformer.word_emb return self.transformer.word_emb
@unpack_inputs @unpack_inputs
......
...@@ -869,26 +869,6 @@ class TF{{cookiecutter.camelcase_modelname}}ModelTest(TFModelTesterMixin, unitte ...@@ -869,26 +869,6 @@ class TF{{cookiecutter.camelcase_modelname}}ModelTest(TFModelTesterMixin, unitte
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert isinstance(name, dict)
for k, v in name.items():
assert isinstance(v, tf.Variable)
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@unittest.skip(reason="Template classes interact badly with this test.") @unittest.skip(reason="Template classes interact badly with this test.")
def test_keras_fit(self): def test_keras_fit(self):
pass pass
......
...@@ -300,27 +300,6 @@ class TFAlbertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCa ...@@ -300,27 +300,6 @@ class TFAlbertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCa
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs) self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
list_lm_models = [TFAlbertForPreTraining, TFAlbertForMaskedLM]
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in list_lm_models:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert isinstance(name, dict)
for k, v in name.items():
assert isinstance(v, tf.Variable)
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
for model_name in TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
......
...@@ -225,26 +225,6 @@ class TFBartModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTester ...@@ -225,26 +225,6 @@ class TFBartModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTester
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert isinstance(name, dict)
for k, v in name.items():
assert isinstance(v, tf.Variable)
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@tooslow @tooslow
def test_saved_model_creation(self): def test_saved_model_creation(self):
pass pass
......
...@@ -726,27 +726,6 @@ class TFBertModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTester ...@@ -726,27 +726,6 @@ class TFBertModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTester
model = TFBertModel.from_pretrained("jplu/tiny-tf-bert-random") model = TFBertModel.from_pretrained("jplu/tiny-tf-bert-random")
self.assertIsNotNone(model) self.assertIsNotNone(model)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
list_lm_models = [TFBertForMaskedLM, TFBertForPreTraining, TFBertLMHeadModel]
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in list_lm_models:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert isinstance(name, dict)
for k, v in name.items():
assert isinstance(v, tf.Variable)
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
def test_custom_load_tf_weights(self): def test_custom_load_tf_weights(self):
model, output_loading_info = TFBertForTokenClassification.from_pretrained( model, output_loading_info = TFBertForTokenClassification.from_pretrained(
"jplu/tiny-tf-bert-random", output_loading_info=True "jplu/tiny-tf-bert-random", output_loading_info=True
......
...@@ -207,26 +207,6 @@ class TFBlenderbotModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.Te ...@@ -207,26 +207,6 @@ class TFBlenderbotModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.Te
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert isinstance(name, dict)
for k, v in name.items():
assert isinstance(v, tf.Variable)
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@tooslow @tooslow
def test_saved_model_creation(self): def test_saved_model_creation(self):
pass pass
......
...@@ -209,26 +209,6 @@ class TFBlenderbotSmallModelTest(TFModelTesterMixin, PipelineTesterMixin, unitte ...@@ -209,26 +209,6 @@ class TFBlenderbotSmallModelTest(TFModelTesterMixin, PipelineTesterMixin, unitte
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert isinstance(name, dict)
for k, v in name.items():
assert isinstance(v, tf.Variable)
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@tooslow @tooslow
def test_saved_model_creation(self): def test_saved_model_creation(self):
pass pass
......
...@@ -416,24 +416,6 @@ class TFGPT2ModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTester ...@@ -416,24 +416,6 @@ class TFGPT2ModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTester
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs) self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert name is None
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
def test_gpt2_sequence_classification_model(self): def test_gpt2_sequence_classification_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs) self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs)
......
...@@ -363,24 +363,6 @@ class TFGPTJModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTester ...@@ -363,24 +363,6 @@ class TFGPTJModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTester
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gptj_lm_head_model(*config_and_inputs) self.model_tester.create_and_check_gptj_lm_head_model(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert name is None
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@slow @slow
@unittest.skipIf( @unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) > 0, not is_tf_available() or len(tf.config.list_physical_devices("GPU")) > 0,
......
...@@ -222,26 +222,6 @@ class TFLEDModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase) ...@@ -222,26 +222,6 @@ class TFLEDModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase)
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert isinstance(name, dict)
for k, v in name.items():
assert isinstance(v, tf.Variable)
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
def test_attention_outputs(self): def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
inputs_dict["global_attention_mask"] = tf.zeros_like(inputs_dict["attention_mask"]) inputs_dict["global_attention_mask"] = tf.zeros_like(inputs_dict["attention_mask"])
......
...@@ -581,27 +581,6 @@ class TFLxmertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCa ...@@ -581,27 +581,6 @@ class TFLxmertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCa
extended_model = tf.keras.Model(inputs=[input_ids, visual_feats, visual_pos], outputs=[outputs]) extended_model = tf.keras.Model(inputs=[input_ids, visual_feats, visual_pos], outputs=[outputs])
extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
list_lm_models = [TFLxmertForPreTraining]
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in list_lm_models:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert isinstance(name, dict)
for k, v in name.items():
assert isinstance(v, tf.Variable)
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@tooslow @tooslow
def test_saved_model_creation(self): def test_saved_model_creation(self):
pass pass
......
...@@ -240,26 +240,6 @@ class TFMarianModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCa ...@@ -240,26 +240,6 @@ class TFMarianModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCa
extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs]) extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert isinstance(name, dict)
for k, v in name.items():
assert isinstance(v, tf.Variable)
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@tooslow @tooslow
def test_saved_model_creation(self): def test_saved_model_creation(self):
pass pass
......
...@@ -222,26 +222,6 @@ class TFMBartModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCas ...@@ -222,26 +222,6 @@ class TFMBartModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCas
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert isinstance(name, dict)
for k, v in name.items():
assert isinstance(v, tf.Variable)
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@tooslow @tooslow
def test_saved_model_creation(self): def test_saved_model_creation(self):
pass pass
......
...@@ -311,27 +311,6 @@ class TFMobileBertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.Te ...@@ -311,27 +311,6 @@ class TFMobileBertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.Te
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*config_and_inputs) self.model_tester.create_and_check_mobilebert_for_token_classification(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
list_lm_models = [TFMobileBertForMaskedLM, TFMobileBertForPreTraining]
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in list_lm_models:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert isinstance(name, dict)
for k, v in name.items():
assert isinstance(v, tf.Variable)
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@slow @slow
def test_keras_fit(self): def test_keras_fit(self):
# Override as it is a slow test on this model # Override as it is a slow test on this model
......
...@@ -247,24 +247,6 @@ class TFOpenAIGPTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.Tes ...@@ -247,24 +247,6 @@ class TFOpenAIGPTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.Tes
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_double_head(*config_and_inputs) self.model_tester.create_and_check_openai_gpt_double_head(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert name is None
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
def test_openai_gpt_sequence_classification_model(self): def test_openai_gpt_sequence_classification_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*config_and_inputs) self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*config_and_inputs)
......
...@@ -171,20 +171,6 @@ class TFOPTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase) ...@@ -171,20 +171,6 @@ class TFOPTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase)
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
else:
x = model.get_output_embeddings()
assert x is None
def test_resize_token_embeddings(self): def test_resize_token_embeddings(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
......
...@@ -238,26 +238,6 @@ class TFPegasusModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestC ...@@ -238,26 +238,6 @@ class TFPegasusModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestC
extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs]) extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert isinstance(name, dict)
for k, v in name.items():
assert isinstance(v, tf.Variable)
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@tooslow @tooslow
def test_saved_model_creation(self): def test_saved_model_creation(self):
pass pass
......
...@@ -300,24 +300,6 @@ class TFT5ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): ...@@ -300,24 +300,6 @@ class TFT5ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
self.model_tester.create_and_check_t5_decoder_model_past_large_inputs(*config_and_inputs) self.model_tester.create_and_check_t5_decoder_model_past_large_inputs(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert name is None
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@tooslow @tooslow
def test_saved_model_creation(self): def test_saved_model_creation(self):
pass pass
......
...@@ -160,24 +160,6 @@ class TFXGLMModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase ...@@ -160,24 +160,6 @@ class TFXGLMModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase
def test_config(self): def test_config(self):
self.config_tester.run_common_tests() self.config_tester.run_common_tests()
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert name is None
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment