"host/online_compilation/CMakeLists.txt" did not exist on "f2b92ba945a2ae55f11e7d412ea5b862e68b8dd9"
check_repo.py 29.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
26
from transformers import is_flax_available, is_tf_available, is_torch_available
from transformers.file_utils import ENV_VARS_TRUE_VALUES
27
28
from transformers.models.auto import get_values

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source"
35

36
37
38
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
39
    "RealmBertModel",
40
41
42
43
    "T5Stack",
    "TFDPRSpanPredictor",
]

44
45
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
46
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
47
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
48
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
49
50
51
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
52
53
54
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
55
56
57
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
58
59
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
60
61
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
62
63
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
64
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
65
    "BartEncoder",  # Building part of bigger (tested) model.
66
    "BertLMHeadModel",  # Needs to be setup as decoder.
67
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
68
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
69
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
70
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
71
    "MBartEncoder",  # Building part of bigger (tested) model.
72
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
73
74
75
76
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
77
    "PegasusEncoder",  # Building part of bigger (tested) model.
78
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
79
    "DPREncoder",  # Building part of bigger (tested) model.
80
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
81
82
83
84
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
85
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
86
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
87
    "TFDPREncoder",  # Building part of bigger (tested) model.
88
89
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
90
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
91
    "SeparableConv1D",  # Building part of bigger (tested) model.
92
93
94
95
96
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
97
98
99
100
101
102
103
104
105
106
107
108
    "camembert/test_modeling_camembert.py",
    "mt5/test_modeling_flax_mt5.py",
    "mbart/test_modeling_mbart.py",
    "mt5/test_modeling_mt5.py",
    "pegasus/test_modeling_pegasus.py",
    "camembert/test_modeling_tf_camembert.py",
    "mt5/test_modeling_tf_mt5.py",
    "xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "xlm_roberta/test_modeling_xlm_roberta.py",
    "vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
109
110
]

111
112
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
113
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
114
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
115
116
117
118
    "ViltForQuestionAnswering",
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
119
120
121
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
122
123
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
124
    "SegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
125
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
126
127
128
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
129
    "BeitForMaskedImageModeling",
Suraj Patil's avatar
Suraj Patil committed
130
131
    "CLIPTextModel",
    "CLIPVisionModel",
Yih-Dar's avatar
Yih-Dar committed
132
133
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
134
135
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
136
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
137
    "DetrForSegmentation",
138
139
140
    "DPRReader",
    "FlaubertForQuestionAnswering",
    "GPT2DoubleHeadsModel",
Ryokan RI's avatar
Ryokan RI committed
141
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
142
143
144
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
145
146
147
148
    "OpenAIGPTDoubleHeadsModel",
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
149
150
151
152
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
153
    "TFDPRReader",
154
155
    "TFGPT2DoubleHeadsModel",
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
156
157
158
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
159
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
160
    "HubertForCTC",
161
162
    "SEWForCTC",
    "SEWDForCTC",
163
164
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
165
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
166
167
168
169
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
170
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
171
    "TFHubertForCTC",
172
    "MaskFormerForInstanceSegmentation",
173
174
]

175
176
177
178
179
180
181
182
183
184
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
    ]
)


185
186
187
188
189
190
191
192
193
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


214
215
216
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
217
    """Get the model modules inside the transformers library."""
218
219
220
221
222
223
224
225
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
226
        "modeling_flax_auto",
227
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
228
        "modeling_flax_utils",
229
        "modeling_speech_encoder_decoder",
230
        "modeling_flax_speech_encoder_decoder",
231
        "modeling_flax_vision_encoder_decoder",
232
233
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
234
        "modeling_tf_encoder_decoder",
235
236
237
238
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
239
        "modeling_tf_vision_encoder_decoder",
240
        "modeling_vision_encoder_decoder",
241
242
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
243
244
245
246
247
248
249
250
251
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
252
253
254
    return modules


255
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
256
    """Get the objects in module that are models."""
257
    models = []
258
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
259
    for attr_name in dir(module):
260
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
261
262
263
264
265
266
267
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


298
299
300
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Patrick von Platen's avatar
Patrick von Platen committed
301
    """Get the model test files."""
302
303
304
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
305
        "test_modeling_flax_encoder_decoder",
306
        "test_modeling_flax_speech_encoder_decoder",
307
308
        "test_modeling_marian",
        "test_modeling_tf_common",
309
        "test_modeling_tf_encoder_decoder",
310
311
    ]
    test_files = []
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    for file_or_dir in os.listdir(PATH_TO_TESTS):
        path = os.path.join(PATH_TO_TESTS, file_or_dir)
        if os.path.isdir(path):
            filenames = [os.path.join(file_or_dir, file) for file in os.listdir(path)]
        else:
            filenames = [file_or_dir]

        for filename in filenames:
            if (
                os.path.isfile(os.path.join(PATH_TO_TESTS, filename))
                and "test_modeling" in filename
                and not os.path.splitext(filename)[0] in _ignore_files
            ):
                test_files.append(filename)
326
327
328
329
330
331
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
332
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
333
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
334
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
335
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
336
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
337
338
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
339
    if len(all_models) > 0:
340
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
341
342
343
344
345
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
346
347
348
349
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
350
    """Check models defined in module are tested in test_file."""
351
    # XxxPreTrainedModel are not tested
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
        if test_file in TEST_FILES_WITH_NO_COMMON_TESTS:
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
375
    """Check all models are properly tested."""
376
377
378
379
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
380
381
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
382
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
383
384
385
386
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
387
388
389
390
391
392
393
        new_failures = check_models_are_tested(module, test_file)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


394
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
395
    """Return the list of all models in at least one auto class."""
396
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
397
398
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
399
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
400
401
402
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
403
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
404
405
406
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
407
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
408
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
409
    return [cls for cls in result]
410
411


412
413
414
415
416
417
418
419
420
421
422
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


423
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
424
    """Check models defined in module are each in an auto class."""
425
426
427
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
428
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
429
430
431
432
433
434
435
436
437
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
438
    """Check all models are each in an auto class."""
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
460
461
462
463
464
465
466
467
468
469
470
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
471
472
473
474
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
475
    """Check that in the test file `filename` the slow decorator is always last."""
476
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
493
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
494
495
496
497
498
499
500
501
502
503
504
505
506
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
            f"The parameterized decorator (and its variants) should always be first, but this is not the case in the following files:\n{msg}"
        )


507
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
508
    """Parse the content of all doc files to detect which classes and functions it documents"""
509
510
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
511
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
512
513
514
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
515
516
517
518
519
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
520
521
522
523
524
525
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
526
    "BartPretrainedModel",
527
528
    "DataCollator",
    "DataCollatorForSOP",
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
544
    "TFBartPretrainedModel",
545
546
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
547
    "Wav2Vec2ForMaskedLM",
548
    "Wav2Vec2Tokenizer",
549
550
551
552
553
554
555
556
557
558
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
559
560
    "TFTrainer",
    "TFTrainingArguments",
561
562
563
564
565
566
567
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
568
    "CharacterTokenizer",  # Internal, should never have been in the main init.
569
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
570
    "DummyObject",  # Just picked by mistake sometimes.
571
    "MecabTokenizer",  # Internal, should never have been in the main init.
572
573
574
575
576
577
578
579
580
581
582
583
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "cached_path",  # Internal used for downloading models.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
584
    "requires_backends",  # Internal function
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
636
    """Check all models are properly documented."""
637
    documented_objs = find_all_documented_objects()
638
639
640
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
641
642
643
644
645
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
646
    check_docstrings_are_in_md()
647
648
649
650
651
652
653
654
655
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
656
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
        with open(file, "r") as f:
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
716
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
717
718
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
719
720


721
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
722
    """Check all models are properly tested and documented."""
723
724
    print("Checking all models are included.")
    check_model_list()
725
726
    print("Checking all models are public.")
    check_models_are_in_init()
727
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
728
    check_all_decorator_order()
729
    check_all_models_are_tested()
730
    print("Checking all objects are properly documented.")
731
    check_all_objects_are_documented()
732
733
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
734
735
736
737


if __name__ == "__main__":
    check_repo_quality()