"examples/nas/oneshot/enas/macro.py" did not exist on "73b2221b5eb4fd21802e6bf41e21d5df8ef9bf2c"
run_clm.py 27.8 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=text-generation
Sylvain Gugger's avatar
Sylvain Gugger committed
21
"""
22
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
25
26
27
28

import logging
import math
import os
import sys
from dataclasses import dataclass, field
29
from itertools import chain
Sylvain Gugger's avatar
Sylvain Gugger committed
30
31
from typing import Optional

32
import datasets
33
import evaluate
34
import torch
35
from datasets import load_dataset
Sylvain Gugger's avatar
Sylvain Gugger committed
36
37
38
39
40
41
42
43
44
45
46
47

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
48
    is_torch_xla_available,
Sylvain Gugger's avatar
Sylvain Gugger committed
49
50
    set_seed,
)
51
from transformers.testing_utils import CaptureLogger
52
from transformers.trainer_utils import get_last_checkpoint
53
from transformers.utils import check_min_version, send_example_telemetry
54
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
55
56


57
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
58
check_min_version("4.44.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
59

60
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
61

Sylvain Gugger's avatar
Sylvain Gugger committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
logger = logging.getLogger(__name__)


MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
78
            "help": (
79
                "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
Sylvain Gugger's avatar
Sylvain Gugger committed
80
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
81
82
83
84
85
86
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
87
88
89
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
90
91
92
93
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
94
95
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
96
97
98
99
100
101
102
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
103
104
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
Sylvain Gugger's avatar
Sylvain Gugger committed
105
106
107
108
109
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
110
111
112
113
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
114
115
    token: str = field(
        default=None,
116
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
117
            "help": (
118
119
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
120
            )
121
122
        },
    )
123
124
125
126
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
127
128
129
                "Whether to trust the execution of code from datasets/models defined on the Hub."
                " This option should only be set to `True` for repositories you trust and in which you have read the"
                " code, as it will execute code present on the Hub on your local machine."
130
131
132
            )
        },
    )
133
134
135
136
137
138
139
140
141
142
    torch_dtype: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
                "dtype will be automatically derived from the model's weights."
            ),
            "choices": ["auto", "bfloat16", "float16", "float32"],
        },
    )
143
144
145
146
    low_cpu_mem_usage: bool = field(
        default=False,
        metadata={
            "help": (
147
                "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
148
149
150
151
                "set True will benefit LLM loading time and RAM consumption."
            )
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
152

153
154
155
156
157
158
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
177
178
179
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
180
181
182
183
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
184
185
        },
    )
186
    max_eval_samples: Optional[int] = field(
187
188
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
189
190
191
192
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
193
194
        },
    )
195
    streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
196
197
    block_size: Optional[int] = field(
        default=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
198
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
199
200
201
202
203
            "help": (
                "Optional input sequence length after tokenization. "
                "The training dataset will be truncated in block of this size for training. "
                "Default to the model max input length for single sentence inputs (take into account special tokens)."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
204
205
206
207
208
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
209
210
211
212
213
214
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
215
216
217
218
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
219
    keep_linebreaks: bool = field(
220
        default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
221
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
222
223

    def __post_init__(self):
224
225
226
        if self.streaming:
            require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")

Sylvain Gugger's avatar
Sylvain Gugger committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

251
252
253
254
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_clm", model_args, data_args)

Sylvain Gugger's avatar
Sylvain Gugger committed
255
256
    # Setup logging
    logging.basicConfig(
257
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Sylvain Gugger's avatar
Sylvain Gugger committed
258
        datefmt="%m/%d/%Y %H:%M:%S",
259
        handlers=[logging.StreamHandler(sys.stdout)],
Sylvain Gugger's avatar
Sylvain Gugger committed
260
    )
261

262
263
264
265
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

266
267
268
269
270
271
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
272
273
274

    # Log on each process the small summary:
    logger.warning(
275
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
276
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
Sylvain Gugger's avatar
Sylvain Gugger committed
277
    )
278
    logger.info(f"Training/evaluation parameters {training_args}")
Sylvain Gugger's avatar
Sylvain Gugger committed
279

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
295
296
297
298
299
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
Sylvain Gugger's avatar
Sylvain Gugger committed
300
    # (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
301
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
302
303
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
Sylvain Gugger's avatar
Sylvain Gugger committed
304
305
306
307
308
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
309
        raw_datasets = load_dataset(
310
311
312
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
313
            token=model_args.token,
314
            streaming=data_args.streaming,
315
            trust_remote_code=model_args.trust_remote_code,
316
317
318
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
319
320
321
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
322
                cache_dir=model_args.cache_dir,
323
                token=model_args.token,
324
                streaming=data_args.streaming,
325
                trust_remote_code=model_args.trust_remote_code,
326
            )
327
            raw_datasets["train"] = load_dataset(
328
329
330
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
331
                cache_dir=model_args.cache_dir,
332
                token=model_args.token,
333
                streaming=data_args.streaming,
334
                trust_remote_code=model_args.trust_remote_code,
335
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
336
337
    else:
        data_files = {}
338
        dataset_args = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
339
340
341
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
342
            data_files["validation"] = data_args.validation_file
343
344
345
346
347
        extension = (
            data_args.train_file.split(".")[-1]
            if data_args.train_file is not None
            else data_args.validation_file.split(".")[-1]
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
348
349
        if extension == "txt":
            extension = "text"
350
            dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
351
352
353
354
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
355
            token=model_args.token,
356
357
            **dataset_args,
        )
358
359
360
361
362
363
364
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
365
                token=model_args.token,
366
                **dataset_args,
367
368
369
370
371
372
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
373
                token=model_args.token,
374
                **dataset_args,
375
376
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
377
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
378
    # https://huggingface.co/docs/datasets/loading_datasets.
Sylvain Gugger's avatar
Sylvain Gugger committed
379
380
381
382
383
384
385

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

386
387
388
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
389
        "token": model_args.token,
390
        "trust_remote_code": model_args.trust_remote_code,
391
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
392
    if model_args.config_name:
393
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
394
    elif model_args.model_name_or_path:
395
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
396
397
398
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
399
400
401
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
402
            logger.info(f"New config: {config}")
Sylvain Gugger's avatar
Sylvain Gugger committed
403

404
405
406
407
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
408
        "token": model_args.token,
409
        "trust_remote_code": model_args.trust_remote_code,
410
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
411
    if model_args.tokenizer_name:
412
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
413
    elif model_args.model_name_or_path:
414
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
415
416
    else:
        raise ValueError(
417
            "You are instantiating a new tokenizer from scratch. This is not supported by this script. "
Sylvain Gugger's avatar
Sylvain Gugger committed
418
419
420
421
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
422
423
424
425
426
        torch_dtype = (
            model_args.torch_dtype
            if model_args.torch_dtype in ["auto", None]
            else getattr(torch, model_args.torch_dtype)
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
427
428
429
430
431
        model = AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
432
            revision=model_args.model_revision,
433
            token=model_args.token,
434
            trust_remote_code=model_args.trust_remote_code,
435
            torch_dtype=torch_dtype,
436
            low_cpu_mem_usage=model_args.low_cpu_mem_usage,
Sylvain Gugger's avatar
Sylvain Gugger committed
437
438
        )
    else:
439
        model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
440
        n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
441
        logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
Sylvain Gugger's avatar
Sylvain Gugger committed
442

443
444
445
446
447
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
Sylvain Gugger's avatar
Sylvain Gugger committed
448
449
450
451

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
452
        column_names = list(raw_datasets["train"].features)
Sylvain Gugger's avatar
Sylvain Gugger committed
453
    else:
454
        column_names = list(raw_datasets["validation"].features)
Sylvain Gugger's avatar
Sylvain Gugger committed
455
456
    text_column_name = "text" if "text" in column_names else column_names[0]

457
458
459
    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

Sylvain Gugger's avatar
Sylvain Gugger committed
460
    def tokenize_function(examples):
461
462
463
464
465
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
466
467
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                " before being passed to the model."
468
469
            )
        return output
Sylvain Gugger's avatar
Sylvain Gugger committed
470

471
    with training_args.main_process_first(desc="dataset map tokenization"):
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        if not data_args.streaming:
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset",
            )
        else:
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                remove_columns=column_names,
            )
487
488
489
490
491
    if hasattr(config, "max_position_embeddings"):
        max_pos_embeddings = config.max_position_embeddings
    else:
        # Define a default value if the attribute is missing in the config.
        max_pos_embeddings = 1024
Sylvain Gugger's avatar
Sylvain Gugger committed
492

493
    if data_args.block_size is None:
494
        block_size = tokenizer.model_max_length
495
        if block_size > max_pos_embeddings:
496
            logger.warning(
497
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
498
                f"Using block_size={min(1024, max_pos_embeddings)} instead. You can change that default value by passing --block_size xxx."
499
            )
500
501
502
503
            if max_pos_embeddings > 0:
                block_size = min(1024, max_pos_embeddings)
            else:
                block_size = 1024
Sylvain Gugger's avatar
Sylvain Gugger committed
504
    else:
505
        if data_args.block_size > tokenizer.model_max_length:
506
            logger.warning(
507
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "
508
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
Sylvain Gugger's avatar
Sylvain Gugger committed
509
            )
510
        block_size = min(data_args.block_size, tokenizer.model_max_length)
Sylvain Gugger's avatar
Sylvain Gugger committed
511
512
513
514

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
515
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
Sylvain Gugger's avatar
Sylvain Gugger committed
516
        total_length = len(concatenated_examples[list(examples.keys())[0]])
517
518
519
        # We drop the small remainder, and if the total_length < block_size  we exclude this batch and return an empty dict.
        # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
        total_length = (total_length // block_size) * block_size
Sylvain Gugger's avatar
Sylvain Gugger committed
520
521
522
523
524
525
526
527
528
529
530
531
532
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
533
    # https://huggingface.co/docs/datasets/process#map
534

535
    with training_args.main_process_first(desc="grouping texts together"):
536
537
538
539
540
541
542
543
544
545
546
547
548
        if not data_args.streaming:
            lm_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc=f"Grouping texts in chunks of {block_size}",
            )
        else:
            lm_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
549

550
551
552
553
554
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
555
556
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
557
558
559
560
561

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
562
        if data_args.max_eval_samples is not None:
563
564
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
565

566
        def preprocess_logits_for_metrics(logits, labels):
davidleonfdez's avatar
davidleonfdez committed
567
568
569
570
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
571
572
            return logits.argmax(dim=-1)

573
        metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
574
575
576
577
578
579
580
581
582

        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            # preds have the same shape as the labels, after the argmax(-1) has been calculated
            # by preprocess_logits_for_metrics but we need to shift the labels
            labels = labels[:, 1:].reshape(-1)
            preds = preds[:, :-1].reshape(-1)
            return metric.compute(predictions=preds, references=labels)

Sylvain Gugger's avatar
Sylvain Gugger committed
583
584
585
586
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
587
588
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
589
590
591
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it.
        data_collator=default_data_collator,
592
        compute_metrics=compute_metrics if training_args.do_eval and not is_torch_xla_available() else None,
593
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
594
        if training_args.do_eval and not is_torch_xla_available()
595
        else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
596
597
598
599
    )

    # Training
    if training_args.do_train:
600
601
602
603
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
604
605
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
Sylvain Gugger's avatar
Sylvain Gugger committed
606
607
        trainer.save_model()  # Saves the tokenizer too for easy upload

608
        metrics = train_result.metrics
609

610
611
612
613
614
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

615
616
617
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
618

Sylvain Gugger's avatar
Sylvain Gugger committed
619
620
621
622
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

623
        metrics = trainer.evaluate()
Sylvain Gugger's avatar
Sylvain Gugger committed
624

625
626
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
627
628
629
630
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
631
        metrics["perplexity"] = perplexity
Sylvain Gugger's avatar
Sylvain Gugger committed
632

633
634
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Sylvain Gugger's avatar
Sylvain Gugger committed
635

636
637
638
639
640
641
642
643
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
644

645
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
646
        trainer.push_to_hub(**kwargs)
647
648
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
649

Sylvain Gugger's avatar
Sylvain Gugger committed
650
651
652
653
654
655
656
657

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()