file_utils.py 70.7 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2020 The HuggingFace Team, the AllenNLP library authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
14
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
15
16
Utilities for working with the local dataset cache. Parts of this file is adapted from the AllenNLP library at
https://github.com/allenai/allennlp.
thomwolf's avatar
thomwolf committed
17
"""
18
import copy
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import fnmatch
20
import functools
21
import importlib.util
Julien Chaumond's avatar
Julien Chaumond committed
22
import io
thomwolf's avatar
thomwolf committed
23
24
import json
import os
25
import re
26
import shutil
Aymeric Augustin's avatar
Aymeric Augustin committed
27
import sys
28
import tarfile
thomwolf's avatar
thomwolf committed
29
import tempfile
30
import types
31
from collections import OrderedDict, UserDict
Aymeric Augustin's avatar
Aymeric Augustin committed
32
from contextlib import contextmanager
33
from dataclasses import fields
Sylvain Gugger's avatar
Sylvain Gugger committed
34
from distutils.dir_util import copy_tree
35
from enum import Enum
36
from functools import partial, wraps
thomwolf's avatar
thomwolf committed
37
from hashlib import sha256
38
from pathlib import Path
39
from types import ModuleType
40
from typing import Any, BinaryIO, Dict, List, Optional, Tuple, Union
Aymeric Augustin's avatar
Aymeric Augustin committed
41
from urllib.parse import urlparse
42
from uuid import uuid4
43
from zipfile import ZipFile, is_zipfile
thomwolf's avatar
thomwolf committed
44

45
import numpy as np
46
from packaging import version
47
48
from tqdm.auto import tqdm

Aymeric Augustin's avatar
Aymeric Augustin committed
49
50
import requests
from filelock import FileLock
Sylvain Gugger's avatar
Sylvain Gugger committed
51
from huggingface_hub import HfApi, HfFolder, Repository
52
from transformers.utils.versions import importlib_metadata
Aymeric Augustin's avatar
Aymeric Augustin committed
53

54
from . import __version__
Lysandre Debut's avatar
Lysandre Debut committed
55
from .utils import logging
thomwolf's avatar
thomwolf committed
56

Lysandre's avatar
Lysandre committed
57

Lysandre Debut's avatar
Lysandre Debut committed
58
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
thomwolf's avatar
thomwolf committed
59

60
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
61
62
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})

63
64
65
USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()
66

67
68
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
    _torch_available = importlib.util.find_spec("torch") is not None
69
    if _torch_available:
70
71
72
73
74
75
76
77
78
79
80
81
82
        try:
            _torch_version = importlib_metadata.version("torch")
            logger.info(f"PyTorch version {_torch_version} available.")
        except importlib_metadata.PackageNotFoundError:
            _torch_available = False
else:
    logger.info("Disabling PyTorch because USE_TF is set")
    _torch_available = False


if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
    _tf_available = importlib.util.find_spec("tensorflow") is not None
    if _tf_available:
83
84
85
86
87
88
89
90
91
92
        candidates = (
            "tensorflow",
            "tensorflow-cpu",
            "tensorflow-gpu",
            "tf-nightly",
            "tf-nightly-cpu",
            "tf-nightly-gpu",
            "intel-tensorflow",
        )
        _tf_version = None
93
        # For the metadata, we have to look for both tensorflow and tensorflow-cpu
94
        for pkg in candidates:
95
            try:
96
97
                _tf_version = importlib_metadata.version(pkg)
                break
98
            except importlib_metadata.PackageNotFoundError:
99
100
                pass
        _tf_available = _tf_version is not None
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    if _tf_available:
        if version.parse(_tf_version) < version.parse("2"):
            logger.info(f"TensorFlow found but with version {_tf_version}. Transformers requires version 2 minimum.")
            _tf_available = False
        else:
            logger.info(f"TensorFlow version {_tf_version} available.")
else:
    logger.info("Disabling Tensorflow because USE_TORCH is set")
    _tf_available = False


if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
    _flax_available = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("flax") is not None
    if _flax_available:
        try:
            _jax_version = importlib_metadata.version("jax")
            _flax_version = importlib_metadata.version("flax")
            logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
        except importlib_metadata.PackageNotFoundError:
            _flax_available = False
else:
    _flax_available = False


_datasets_available = importlib.util.find_spec("datasets") is not None
Patrick von Platen's avatar
Patrick von Platen committed
126
try:
127
128
129
130
131
132
133
134
    # Check we're not importing a "datasets" directory somewhere but the actual library by trying to grab the version
    # AND checking it has an author field in the metadata that is HuggingFace.
    _ = importlib_metadata.version("datasets")
    _datasets_metadata = importlib_metadata.metadata("datasets")
    if _datasets_metadata.get("author", "") != "HuggingFace Inc.":
        _datasets_available = False
except importlib_metadata.PackageNotFoundError:
    _datasets_available = False
Patrick von Platen's avatar
Patrick von Platen committed
135

Ola Piktus's avatar
Ola Piktus committed
136

137
_faiss_available = importlib.util.find_spec("faiss") is not None
Ola Piktus's avatar
Ola Piktus committed
138
try:
139
140
141
    _faiss_version = importlib_metadata.version("faiss")
    logger.debug(f"Successfully imported faiss version {_faiss_version}")
except importlib_metadata.PackageNotFoundError:
Patrick von Platen's avatar
Patrick von Platen committed
142
143
144
145
146
    try:
        _faiss_version = importlib_metadata.version("faiss-cpu")
        logger.debug(f"Successfully imported faiss version {_faiss_version}")
    except importlib_metadata.PackageNotFoundError:
        _faiss_available = False
Ola Piktus's avatar
Ola Piktus committed
147

148

149
150
151
152
153
154
155
156
157
158
_onnx_available = (
    importlib.util.find_spec("keras2onnx") is not None and importlib.util.find_spec("onnxruntime") is not None
)
try:
    _onxx_version = importlib_metadata.version("onnx")
    logger.debug(f"Successfully imported onnx version {_onxx_version}")
except importlib_metadata.PackageNotFoundError:
    _onnx_available = False


159
_scatter_available = importlib.util.find_spec("torch_scatter") is not None
160
try:
161
    _scatter_version = importlib_metadata.version("torch_scatter")
162
163
    logger.debug(f"Successfully imported torch-scatter version {_scatter_version}")
except importlib_metadata.PackageNotFoundError:
NielsRogge's avatar
NielsRogge committed
164
165
166
    _scatter_available = False


Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
170
171
172
173
_soundfile_available = importlib.util.find_spec("soundfile") is not None
try:
    _soundfile_version = importlib_metadata.version("soundfile")
    logger.debug(f"Successfully imported soundfile version {_soundfile_version}")
except importlib_metadata.PackageNotFoundError:
    _soundfile_available = False

174
175

_torchaudio_available = importlib.util.find_spec("torchaudio") is not None
Suraj Patil's avatar
Suraj Patil committed
176
177
try:
    _torchaudio_version = importlib_metadata.version("torchaudio")
178
    logger.debug(f"Successfully imported torchaudio version {_torchaudio_version}")
Suraj Patil's avatar
Suraj Patil committed
179
180
181
except importlib_metadata.PackageNotFoundError:
    _torchaudio_available = False

Patrick von Platen's avatar
Patrick von Platen committed
182

183
torch_cache_home = os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
184
185
186
187
188
189
190
191
192
193
old_default_cache_path = os.path.join(torch_cache_home, "transformers")
# New default cache, shared with the Datasets library
hf_cache_home = os.path.expanduser(
    os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
)
default_cache_path = os.path.join(hf_cache_home, "transformers")

# Onetime move from the old location to the new one if no ENV variable has been set.
if (
    os.path.isdir(old_default_cache_path)
194
    and not os.path.isdir(default_cache_path)
195
196
197
198
    and "PYTORCH_PRETRAINED_BERT_CACHE" not in os.environ
    and "PYTORCH_TRANSFORMERS_CACHE" not in os.environ
    and "TRANSFORMERS_CACHE" not in os.environ
):
199
    logger.warning(
200
201
202
203
204
205
206
        "In Transformers v4.0.0, the default path to cache downloaded models changed from "
        "'~/.cache/torch/transformers' to '~/.cache/huggingface/transformers'. Since you don't seem to have overridden "
        "and '~/.cache/torch/transformers' is a directory that exists, we're moving it to "
        "'~/.cache/huggingface/transformers' to avoid redownloading models you have already in the cache. You should "
        "only see this message once."
    )
    shutil.move(old_default_cache_path, default_cache_path)
207

208
209
210
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
211
SESSION_ID = uuid4().hex
212
DISABLE_TELEMETRY = os.getenv("DISABLE_TELEMETRY", False) in ENV_VARS_TRUE_VALUES
thomwolf's avatar
thomwolf committed
213

214
WEIGHTS_NAME = "pytorch_model.bin"
215
216
TF2_WEIGHTS_NAME = "tf_model.h5"
TF_WEIGHTS_NAME = "model.ckpt"
217
FLAX_WEIGHTS_NAME = "flax_model.msgpack"
218
CONFIG_NAME = "config.json"
219
FEATURE_EXTRACTOR_NAME = "preprocessor_config.json"
220
MODEL_CARD_NAME = "modelcard.json"
Thomas Wolf's avatar
Thomas Wolf committed
221

222
223
SENTENCEPIECE_UNDERLINE = "▁"
SPIECE_UNDERLINE = SENTENCEPIECE_UNDERLINE  # Kept for backward compatibility
Lysandre's avatar
Lysandre committed
224

225
226
227
MULTIPLE_CHOICE_DUMMY_INPUTS = [
    [[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2  # Needs to have 0s and 1s only since XLM uses it for langs too.
228
229
230
DUMMY_INPUTS = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
DUMMY_MASK = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]

231
S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert"
Julien Chaumond's avatar
Julien Chaumond committed
232
CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co"
Sylvain Gugger's avatar
Sylvain Gugger committed
233
234
235
236
237
238

_staging_mode = os.environ.get("HUGGINGFACE_CO_STAGING", "NO").upper() in ENV_VARS_TRUE_VALUES
_default_endpoint = "https://moon-staging.huggingface.co" if _staging_mode else "https://huggingface.co"

HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HUGGINGFACE_CO_RESOLVE_ENDPOINT", _default_endpoint)
HUGGINGFACE_CO_PREFIX = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/{model_id}/resolve/{revision}/{filename}"
Julien Chaumond's avatar
Julien Chaumond committed
239

240
241
242
243
PRESET_MIRROR_DICT = {
    "tuna": "https://mirrors.tuna.tsinghua.edu.cn/hugging-face-models",
    "bfsu": "https://mirrors.bfsu.edu.cn/hugging-face-models",
}
244

Thomas Wolf's avatar
Thomas Wolf committed
245

246
247
248
249
250
251
252
_is_offline_mode = True if os.environ.get("TRANSFORMERS_OFFLINE", "0").upper() in ENV_VARS_TRUE_VALUES else False


def is_offline_mode():
    return _is_offline_mode


thomwolf's avatar
thomwolf committed
253
254
255
def is_torch_available():
    return _torch_available

256

257
258
259
260
261
262
263
264
265
def is_torch_cuda_available():
    if is_torch_available():
        import torch

        return torch.cuda.is_available()
    else:
        return False


thomwolf's avatar
thomwolf committed
266
267
268
def is_tf_available():
    return _tf_available

269

270
271
272
273
def is_onnx_available():
    return _onnx_available


274
275
276
277
def is_flax_available():
    return _flax_available


278
def is_torch_tpu_available():
279
280
281
282
283
284
285
286
    if not _torch_available:
        return False
    # This test is probably enough, but just in case, we unpack a bit.
    if importlib.util.find_spec("torch_xla") is None:
        return False
    if importlib.util.find_spec("torch_xla.core") is None:
        return False
    return importlib.util.find_spec("torch_xla.core.xla_model") is not None
287
288


289
290
def is_datasets_available():
    return _datasets_available
291
292


Patrick von Platen's avatar
Patrick von Platen committed
293
def is_psutil_available():
294
    return importlib.util.find_spec("psutil") is not None
Patrick von Platen's avatar
Patrick von Platen committed
295
296
297


def is_py3nvml_available():
298
    return importlib.util.find_spec("py3nvml") is not None
Patrick von Platen's avatar
Patrick von Platen committed
299
300
301


def is_apex_available():
302
    return importlib.util.find_spec("apex") is not None
Patrick von Platen's avatar
Patrick von Platen committed
303
304


Ola Piktus's avatar
Ola Piktus committed
305
306
307
308
def is_faiss_available():
    return _faiss_available


309
def is_sklearn_available():
310
311
312
313
314
    if importlib.util.find_spec("sklearn") is None:
        return False
    if importlib.util.find_spec("scipy") is None:
        return False
    return importlib.util.find_spec("sklearn.metrics") and importlib.util.find_spec("scipy.stats")
315
316
317


def is_sentencepiece_available():
318
    return importlib.util.find_spec("sentencepiece") is not None
319
320


321
def is_protobuf_available():
322
323
324
    if importlib.util.find_spec("google") is None:
        return False
    return importlib.util.find_spec("google.protobuf") is not None
325
326


327
def is_tokenizers_available():
328
    return importlib.util.find_spec("tokenizers") is not None
329
330


331
332
333
334
def is_vision_available():
    return importlib.util.find_spec("PIL") is not None


335
def is_in_notebook():
336
337
338
339
340
341
342
343
344
345
346
    try:
        # Test adapted from tqdm.autonotebook: https://github.com/tqdm/tqdm/blob/master/tqdm/autonotebook.py
        get_ipython = sys.modules["IPython"].get_ipython
        if "IPKernelApp" not in get_ipython().config:
            raise ImportError("console")
        if "VSCODE_PID" in os.environ:
            raise ImportError("vscode")

        return importlib.util.find_spec("IPython") is not None
    except (AttributeError, ImportError, KeyError):
        return False
347
348


NielsRogge's avatar
NielsRogge committed
349
350
351
352
353
def is_scatter_available():
    return _scatter_available


def is_pandas_available():
354
    return importlib.util.find_spec("pandas") is not None
NielsRogge's avatar
NielsRogge committed
355
356


Sylvain Gugger's avatar
Sylvain Gugger committed
357
def is_sagemaker_dp_enabled():
Sylvain Gugger's avatar
Sylvain Gugger committed
358
359
360
361
362
363
364
365
    # Get the sagemaker specific env variable.
    sagemaker_params = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        sagemaker_params = json.loads(sagemaker_params)
        if not sagemaker_params.get("sagemaker_distributed_dataparallel_enabled", False):
            return False
    except json.JSONDecodeError:
Sylvain Gugger's avatar
Sylvain Gugger committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        return False
    # Lastly, check if the `smdistributed` module is present.
    return importlib.util.find_spec("smdistributed") is not None


def is_sagemaker_mp_enabled():
    # Get the sagemaker specific mp parameters from smp_options variable.
    smp_options = os.getenv("SM_HP_MP_PARAMETERS", "{}")
    try:
        # Parse it and check the field "partitions" is included, it is required for model parallel.
        smp_options = json.loads(smp_options)
        if "partitions" not in smp_options:
            return False
    except json.JSONDecodeError:
        return False

    # Get the sagemaker specific framework parameters from mpi_options variable.
    mpi_options = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        mpi_options = json.loads(mpi_options)
        if not mpi_options.get("sagemaker_mpi_enabled", False):
            return False
    except json.JSONDecodeError:
Sylvain Gugger's avatar
Sylvain Gugger committed
390
391
392
393
394
        return False
    # Lastly, check if the `smdistributed` module is present.
    return importlib.util.find_spec("smdistributed") is not None


395
def is_training_run_on_sagemaker():
396
    return "SAGEMAKER_JOB_NAME" in os.environ
397
398


Patrick von Platen's avatar
Patrick von Platen committed
399
400
401
402
def is_soundfile_availble():
    return _soundfile_available


Suraj Patil's avatar
Suraj Patil committed
403
404
405
406
def is_torchaudio_available():
    return _torchaudio_available


407
408
409
410
411
def is_speech_available():
    # For now this depends on torchaudio but the exact dependency might evolve in the future.
    return _torchaudio_available


412
413
414
415
416
417
418
419
420
421
422
423
424
def torch_only_method(fn):
    def wrapper(*args, **kwargs):
        if not _torch_available:
            raise ImportError(
                "You need to install pytorch to use this method or class, "
                "or activate it with environment variables USE_TORCH=1 and USE_TF=0."
            )
        else:
            return fn(*args, **kwargs)

    return wrapper


425
# docstyle-ignore
426
DATASETS_IMPORT_ERROR = """
427
{0} requires the 🤗 Datasets library but it was not found in your environment. You can install it with:
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
```
pip install datasets
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install datasets
```
then restarting your kernel.

Note that if you have a local folder named `datasets` or a local python file named `datasets.py` in your current
working directory, python may try to import this instead of the 🤗 Datasets library. You should rename this folder or
that python file if that's the case.
"""


443
# docstyle-ignore
444
TOKENIZERS_IMPORT_ERROR = """
445
{0} requires the 🤗 Tokenizers library but it was not found in your environment. You can install it with:
446
447
448
449
450
451
452
453
454
455
```
pip install tokenizers
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install tokenizers
```
"""


456
# docstyle-ignore
457
SENTENCEPIECE_IMPORT_ERROR = """
458
{0} requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the
459
installation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones
460
that match your environment.
461
462
463
"""


464
465
466
467
468
469
470
471
# docstyle-ignore
PROTOBUF_IMPORT_ERROR = """
{0} requires the protobuf library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/protocolbuffers/protobuf/tree/master/python#installation and follow the ones
that match your environment.
"""


472
# docstyle-ignore
473
FAISS_IMPORT_ERROR = """
474
{0} requires the faiss library but it was not found in your environment. Checkout the instructions on the
475
installation page of its repo: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md and follow the ones
476
that match your environment.
477
478
479
"""


480
# docstyle-ignore
481
PYTORCH_IMPORT_ERROR = """
482
483
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
484
485
486
"""


487
# docstyle-ignore
488
SKLEARN_IMPORT_ERROR = """
489
{0} requires the scikit-learn library but it was not found in your environment. You can install it with:
490
491
492
493
494
495
496
497
498
499
```
pip install -U scikit-learn
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install -U scikit-learn
```
"""


500
# docstyle-ignore
501
TENSORFLOW_IMPORT_ERROR = """
502
503
{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the
installation page: https://www.tensorflow.org/install and follow the ones that match your environment.
504
505
506
"""


507
# docstyle-ignore
508
FLAX_IMPORT_ERROR = """
509
510
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/google/flax and follow the ones that match your environment.
511
512
513
"""


NielsRogge's avatar
NielsRogge committed
514
515
516
517
518
519
520
# docstyle-ignore
SCATTER_IMPORT_ERROR = """
{0} requires the torch-scatter library but it was not found in your environment. You can install it with pip as
explained here: https://github.com/rusty1s/pytorch_scatter.
"""


521
522
523
524
525
526
527
# docstyle-ignore
PANDAS_IMPORT_ERROR = """
{0} requires the pandas library but it was not found in your environment. You can install it with pip as
explained here: https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html.
"""


528
529
530
531
532
533
534
# docstyle-ignore
SPEECH_IMPORT_ERROR = """
{0} requires the torchaudio library but it was not found in your environment. You can install it with pip:
`pip install torchaudio`
"""


535
536
537
538
539
540
541
# docstyle-ignore
VISION_IMPORT_ERROR = """
{0} requires the PIL library but it was not found in your environment. You can install it with pip:
`pip install pillow`
"""


542
543
544
545
546
547
548
549
550
551
552
553
BACKENDS_MAPPING = OrderedDict(
    [
        ("datasets", (is_datasets_available, DATASETS_IMPORT_ERROR)),
        ("faiss", (is_faiss_available, FAISS_IMPORT_ERROR)),
        ("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
        ("pandas", (is_pandas_available, PANDAS_IMPORT_ERROR)),
        ("protobuf", (is_protobuf_available, PROTOBUF_IMPORT_ERROR)),
        ("scatter", (is_scatter_available, SCATTER_IMPORT_ERROR)),
        ("sentencepiece", (is_sentencepiece_available, SENTENCEPIECE_IMPORT_ERROR)),
        ("sklearn", (is_sklearn_available, SKLEARN_IMPORT_ERROR)),
        ("speech", (is_speech_available, SPEECH_IMPORT_ERROR)),
        ("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
554
        ("tokenizers", (is_tokenizers_available, TOKENIZERS_IMPORT_ERROR)),
555
556
557
558
        ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
        ("vision", (is_vision_available, VISION_IMPORT_ERROR)),
    ]
)
NielsRogge's avatar
NielsRogge committed
559

560

561
562
563
def requires_backends(obj, backends):
    if not isinstance(backends, (list, tuple)):
        backends = [backends]
564

565
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
566
567
    if not all(BACKENDS_MAPPING[backend][0]() for backend in backends):
        raise ImportError("".join([BACKENDS_MAPPING[backend][1].format(name) for backend in backends]))
568
569


Aymeric Augustin's avatar
Aymeric Augustin committed
570
571
def add_start_docstrings(*docstr):
    def docstring_decorator(fn):
572
573
574
575
576
577
        fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
        return fn

    return docstring_decorator


578
def add_start_docstrings_to_model_forward(*docstr):
579
    def docstring_decorator(fn):
580
581
        class_name = f":class:`~transformers.{fn.__qualname__.split('.')[0]}`"
        intro = f"   The {class_name} forward method, overrides the :func:`__call__` special method."
Lysandre's avatar
Lysandre committed
582
583
        note = r"""

584
    .. note::
Sylvain Gugger's avatar
Sylvain Gugger committed
585
586
587
        Although the recipe for forward pass needs to be defined within this function, one should call the
        :class:`Module` instance afterwards instead of this since the former takes care of running the pre and post
        processing steps while the latter silently ignores them.
588
589
        """
        fn.__doc__ = intro + note + "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
Aymeric Augustin's avatar
Aymeric Augustin committed
590
        return fn
591

Aymeric Augustin's avatar
Aymeric Augustin committed
592
    return docstring_decorator
593

594

Aymeric Augustin's avatar
Aymeric Augustin committed
595
596
597
598
def add_end_docstrings(*docstr):
    def docstring_decorator(fn):
        fn.__doc__ = fn.__doc__ + "".join(docstr)
        return fn
599

Aymeric Augustin's avatar
Aymeric Augustin committed
600
    return docstring_decorator
thomwolf's avatar
thomwolf committed
601

602

Sylvain Gugger's avatar
Sylvain Gugger committed
603
PT_RETURN_INTRODUCTION = r"""
604
    Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
605
606
607
        :class:`~{full_output_type}` or :obj:`tuple(torch.FloatTensor)`: A :class:`~{full_output_type}` (if
        ``return_dict=True`` is passed or when ``config.return_dict=True``) or a tuple of :obj:`torch.FloatTensor`
        comprising various elements depending on the configuration (:class:`~transformers.{config_class}`) and inputs.
608

609
610
611
"""


Sylvain Gugger's avatar
Sylvain Gugger committed
612
613
TF_RETURN_INTRODUCTION = r"""
    Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
614
615
616
        :class:`~{full_output_type}` or :obj:`tuple(tf.Tensor)`: A :class:`~{full_output_type}` (if
        ``return_dict=True`` is passed or when ``config.return_dict=True``) or a tuple of :obj:`tf.Tensor` comprising
        various elements depending on the configuration (:class:`~transformers.{config_class}`) and inputs.
Sylvain Gugger's avatar
Sylvain Gugger committed
617
618
619
620

"""


621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
def _get_indent(t):
    """Returns the indentation in the first line of t"""
    search = re.search(r"^(\s*)\S", t)
    return "" if search is None else search.groups()[0]


def _convert_output_args_doc(output_args_doc):
    """Convert output_args_doc to display properly."""
    # Split output_arg_doc in blocks argument/description
    indent = _get_indent(output_args_doc)
    blocks = []
    current_block = ""
    for line in output_args_doc.split("\n"):
        # If the indent is the same as the beginning, the line is the name of new arg.
        if _get_indent(line) == indent:
            if len(current_block) > 0:
                blocks.append(current_block[:-1])
            current_block = f"{line}\n"
        else:
            # Otherwise it's part of the description of the current arg.
            # We need to remove 2 spaces to the indentation.
            current_block += f"{line[2:]}\n"
    blocks.append(current_block[:-1])

    # Format each block for proper rendering
    for i in range(len(blocks)):
        blocks[i] = re.sub(r"^(\s+)(\S+)(\s+)", r"\1- **\2**\3", blocks[i])
        blocks[i] = re.sub(r":\s*\n\s*(\S)", r" -- \1", blocks[i])

    return "\n".join(blocks)


653
654
655
656
657
658
659
660
661
662
663
664
665
def _prepare_output_docstrings(output_type, config_class):
    """
    Prepares the return part of the docstring using `output_type`.
    """
    docstrings = output_type.__doc__

    # Remove the head of the docstring to keep the list of args only
    lines = docstrings.split("\n")
    i = 0
    while i < len(lines) and re.search(r"^\s*(Args|Parameters):\s*$", lines[i]) is None:
        i += 1
    if i < len(lines):
        docstrings = "\n".join(lines[(i + 1) :])
666
        docstrings = _convert_output_args_doc(docstrings)
667
668

    # Add the return introduction
669
    full_output_type = f"{output_type.__module__}.{output_type.__name__}"
Sylvain Gugger's avatar
Sylvain Gugger committed
670
671
    intro = TF_RETURN_INTRODUCTION if output_type.__name__.startswith("TF") else PT_RETURN_INTRODUCTION
    intro = intro.format(full_output_type=full_output_type, config_class=config_class)
672
673
674
    return intro + docstrings


675
676
677
678
679
680
681
PT_TOKEN_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
682
        >>> model = {model_class}.from_pretrained('{checkpoint}')
683
684
685
686
687

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0)  # Batch size 1

        >>> outputs = model(**inputs, labels=labels)
688
689
        >>> loss = outputs.loss
        >>> logits = outputs.logits
690
691
692
693
694
695
696
697
698
"""

PT_QUESTION_ANSWERING_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
699
        >>> model = {model_class}.from_pretrained('{checkpoint}')
700

701
702
        >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        >>> inputs = tokenizer(question, text, return_tensors='pt')
703
704
705
706
        >>> start_positions = torch.tensor([1])
        >>> end_positions = torch.tensor([3])

        >>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
707
        >>> loss = outputs.loss
708
709
        >>> start_scores = outputs.start_logits
        >>> end_scores = outputs.end_logits
710
711
712
713
714
715
716
717
718
"""

PT_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
719
        >>> model = {model_class}.from_pretrained('{checkpoint}')
720
721
722
723

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        >>> outputs = model(**inputs, labels=labels)
724
725
        >>> loss = outputs.loss
        >>> logits = outputs.logits
726
727
728
729
730
731
732
733
734
"""

PT_MASKED_LM_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
735
        >>> model = {model_class}.from_pretrained('{checkpoint}')
736

Sylvain Gugger's avatar
Sylvain Gugger committed
737
738
        >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt")
        >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
739

Sylvain Gugger's avatar
Sylvain Gugger committed
740
        >>> outputs = model(**inputs, labels=labels)
741
        >>> loss = outputs.loss
Sylvain Gugger's avatar
Sylvain Gugger committed
742
        >>> logits = outputs.logits
743
744
745
746
747
748
749
750
751
"""

PT_BASE_MODEL_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
752
        >>> model = {model_class}.from_pretrained('{checkpoint}')
753
754
755
756

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs)

757
        >>> last_hidden_states = outputs.last_hidden_state
758
759
760
761
762
763
764
765
766
"""

PT_MULTIPLE_CHOICE_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
767
        >>> model = {model_class}.from_pretrained('{checkpoint}')
768
769
770
771
772
773

        >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
        >>> choice0 = "It is eaten with a fork and a knife."
        >>> choice1 = "It is eaten while held in the hand."
        >>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

774
        >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True)
775
776
777
        >>> outputs = model(**{{k: v.unsqueeze(0) for k,v in encoding.items()}}, labels=labels)  # batch size is 1

        >>> # the linear classifier still needs to be trained
778
779
        >>> loss = outputs.loss
        >>> logits = outputs.logits
780
781
782
783
784
785
786
787
788
"""

PT_CAUSAL_LM_SAMPLE = r"""
    Example::

        >>> import torch
        >>> from transformers import {tokenizer_class}, {model_class}

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
Jungwhan's avatar
Jungwhan committed
789
        >>> model = {model_class}.from_pretrained('{checkpoint}')
790
791
792

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs, labels=inputs["input_ids"])
793
794
        >>> loss = outputs.loss
        >>> logits = outputs.logits
795
796
"""

797
798
799
800
801
802
803
804
805
806
807
PT_SAMPLE_DOCSTRINGS = {
    "SequenceClassification": PT_SEQUENCE_CLASSIFICATION_SAMPLE,
    "QuestionAnswering": PT_QUESTION_ANSWERING_SAMPLE,
    "TokenClassification": PT_TOKEN_CLASSIFICATION_SAMPLE,
    "MultipleChoice": PT_MULTIPLE_CHOICE_SAMPLE,
    "MaskedLM": PT_MASKED_LM_SAMPLE,
    "LMHead": PT_CAUSAL_LM_SAMPLE,
    "BaseModel": PT_BASE_MODEL_SAMPLE,
}


808
809
810
811
812
813
814
TF_TOKEN_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
815
        >>> model = {model_class}.from_pretrained('{checkpoint}')
816
817
818
819
820
821

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> input_ids = inputs["input_ids"]
        >>> inputs["labels"] = tf.reshape(tf.constant([1] * tf.size(input_ids).numpy()), (-1, tf.size(input_ids))) # Batch size 1

        >>> outputs = model(inputs)
Sylvain Gugger's avatar
Sylvain Gugger committed
822
823
        >>> loss = outputs.loss
        >>> logits = outputs.logits
824
825
826
827
828
829
830
831
832
"""

TF_QUESTION_ANSWERING_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
833
        >>> model = {model_class}.from_pretrained('{checkpoint}')
834
835
836

        >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        >>> input_dict = tokenizer(question, text, return_tensors='tf')
Sylvain Gugger's avatar
Sylvain Gugger committed
837
838
839
        >>> outputs = model(input_dict)
        >>> start_logits = outputs.start_logits
        >>> end_logits = outputs.end_logits
840
841

        >>> all_tokens = tokenizer.convert_ids_to_tokens(input_dict["input_ids"].numpy()[0])
Sylvain Gugger's avatar
Sylvain Gugger committed
842
        >>> answer = ' '.join(all_tokens[tf.math.argmax(start_logits, 1)[0] : tf.math.argmax(end_logits, 1)[0]+1])
843
844
845
846
847
848
849
850
851
"""

TF_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
852
        >>> model = {model_class}.from_pretrained('{checkpoint}')
853
854
855
856
857

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1

        >>> outputs = model(inputs)
Sylvain Gugger's avatar
Sylvain Gugger committed
858
859
        >>> loss = outputs.loss
        >>> logits = outputs.logits
860
861
862
863
"""

TF_MASKED_LM_SAMPLE = r"""
    Example::
Sylvain Gugger's avatar
Sylvain Gugger committed
864

865
866
867
868
        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
869
        >>> model = {model_class}.from_pretrained('{checkpoint}')
870

Sylvain Gugger's avatar
Sylvain Gugger committed
871
872
        >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="tf")
        >>> inputs["labels"] = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
873

Sylvain Gugger's avatar
Sylvain Gugger committed
874
875
876
        >>> outputs = model(inputs)
        >>> loss = outputs.loss
        >>> logits = outputs.logits
877
878
879
880
881
882
883
884
885
"""

TF_BASE_MODEL_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
886
        >>> model = {model_class}.from_pretrained('{checkpoint}')
887
888
889
890

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> outputs = model(inputs)

891
        >>> last_hidden_states = outputs.last_hidden_state
892
893
894
895
896
897
898
899
900
"""

TF_MULTIPLE_CHOICE_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
901
        >>> model = {model_class}.from_pretrained('{checkpoint}')
902
903
904
905
906

        >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
        >>> choice0 = "It is eaten with a fork and a knife."
        >>> choice1 = "It is eaten while held in the hand."

907
        >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='tf', padding=True)
908
909
910
911
        >>> inputs = {{k: tf.expand_dims(v, 0) for k, v in encoding.items()}}
        >>> outputs = model(inputs)  # batch size is 1

        >>> # the linear classifier still needs to be trained
Sylvain Gugger's avatar
Sylvain Gugger committed
912
        >>> logits = outputs.logits
913
914
915
916
917
918
919
920
921
"""

TF_CAUSAL_LM_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
922
        >>> model = {model_class}.from_pretrained('{checkpoint}')
923
924
925

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> outputs = model(inputs)
Sylvain Gugger's avatar
Sylvain Gugger committed
926
        >>> logits = outputs.logits
927
928
"""

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
TF_SAMPLE_DOCSTRINGS = {
    "SequenceClassification": TF_SEQUENCE_CLASSIFICATION_SAMPLE,
    "QuestionAnswering": TF_QUESTION_ANSWERING_SAMPLE,
    "TokenClassification": TF_TOKEN_CLASSIFICATION_SAMPLE,
    "MultipleChoice": TF_MULTIPLE_CHOICE_SAMPLE,
    "MaskedLM": TF_MASKED_LM_SAMPLE,
    "LMHead": TF_CAUSAL_LM_SAMPLE,
    "BaseModel": TF_BASE_MODEL_SAMPLE,
}


FLAX_TOKEN_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
        >>> model = {model_class}.from_pretrained('{checkpoint}')

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors='jax')

        >>> outputs = model(**inputs)
        >>> logits = outputs.logits
"""

FLAX_QUESTION_ANSWERING_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
        >>> model = {model_class}.from_pretrained('{checkpoint}')

        >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        >>> inputs = tokenizer(question, text, return_tensors='jax')

        >>> outputs = model(**inputs)
        >>> start_scores = outputs.start_logits
        >>> end_scores = outputs.end_logits
"""

FLAX_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
        >>> model = {model_class}.from_pretrained('{checkpoint}')

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors='jax')

        >>> outputs = model(**inputs, labels=labels)
        >>> logits = outputs.logits
"""

FLAX_MASKED_LM_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
        >>> model = {model_class}.from_pretrained('{checkpoint}')

        >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors='jax')

        >>> outputs = model(**inputs)
        >>> logits = outputs.logits
"""

FLAX_BASE_MODEL_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
        >>> model = {model_class}.from_pretrained('{checkpoint}')

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors='jax')
        >>> outputs = model(**inputs)

        >>> last_hidden_states = outputs.last_hidden_state
"""

FLAX_MULTIPLE_CHOICE_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
        >>> model = {model_class}.from_pretrained('{checkpoint}')

        >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
        >>> choice0 = "It is eaten with a fork and a knife."
        >>> choice1 = "It is eaten while held in the hand."

        >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='jax', padding=True)
        >>> outputs = model(**{{k: v[None, :] for k,v in encoding.items()}})

        >>> logits = outputs.logits
"""

FLAX_SAMPLE_DOCSTRINGS = {
    "SequenceClassification": FLAX_SEQUENCE_CLASSIFICATION_SAMPLE,
    "QuestionAnswering": FLAX_QUESTION_ANSWERING_SAMPLE,
    "TokenClassification": FLAX_TOKEN_CLASSIFICATION_SAMPLE,
    "MultipleChoice": FLAX_MULTIPLE_CHOICE_SAMPLE,
    "MaskedLM": FLAX_MASKED_LM_SAMPLE,
    "BaseModel": FLAX_BASE_MODEL_SAMPLE,
}

1039

Sylvain Gugger's avatar
Sylvain Gugger committed
1040
def add_code_sample_docstrings(
1041
    *docstr, tokenizer_class=None, checkpoint=None, output_type=None, config_class=None, mask=None, model_cls=None
Sylvain Gugger's avatar
Sylvain Gugger committed
1042
):
1043
    def docstring_decorator(fn):
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
        # model_class defaults to function's class if not specified otherwise
        model_class = fn.__qualname__.split(".")[0] if model_cls is None else model_cls

        if model_class[:2] == "TF":
            sample_docstrings = TF_SAMPLE_DOCSTRINGS
        elif model_class[:4] == "Flax":
            sample_docstrings = FLAX_SAMPLE_DOCSTRINGS
        else:
            sample_docstrings = PT_SAMPLE_DOCSTRINGS

Sylvain Gugger's avatar
Sylvain Gugger committed
1054
        doc_kwargs = dict(model_class=model_class, tokenizer_class=tokenizer_class, checkpoint=checkpoint)
1055
1056

        if "SequenceClassification" in model_class:
1057
            code_sample = sample_docstrings["SequenceClassification"]
1058
        elif "QuestionAnswering" in model_class:
1059
            code_sample = sample_docstrings["QuestionAnswering"]
1060
        elif "TokenClassification" in model_class:
1061
            code_sample = sample_docstrings["TokenClassification"]
1062
        elif "MultipleChoice" in model_class:
1063
            code_sample = sample_docstrings["MultipleChoice"]
Sylvain Gugger's avatar
Sylvain Gugger committed
1064
1065
        elif "MaskedLM" in model_class or model_class in ["FlaubertWithLMHeadModel", "XLMWithLMHeadModel"]:
            doc_kwargs["mask"] = "[MASK]" if mask is None else mask
1066
            code_sample = sample_docstrings["MaskedLM"]
Lysandre Debut's avatar
Lysandre Debut committed
1067
        elif "LMHead" in model_class or "CausalLM" in model_class:
1068
            code_sample = sample_docstrings["LMHead"]
1069
        elif "Model" in model_class or "Encoder" in model_class:
1070
            code_sample = sample_docstrings["BaseModel"]
1071
1072
1073
        else:
            raise ValueError(f"Docstring can't be built for model {model_class}")

1074
        output_doc = _prepare_output_docstrings(output_type, config_class) if output_type is not None else ""
Sylvain Gugger's avatar
Sylvain Gugger committed
1075
        built_doc = code_sample.format(**doc_kwargs)
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
        fn.__doc__ = (fn.__doc__ or "") + "".join(docstr) + output_doc + built_doc
        return fn

    return docstring_decorator


def replace_return_docstrings(output_type=None, config_class=None):
    def docstring_decorator(fn):
        docstrings = fn.__doc__
        lines = docstrings.split("\n")
        i = 0
        while i < len(lines) and re.search(r"^\s*Returns?:\s*$", lines[i]) is None:
            i += 1
        if i < len(lines):
            lines[i] = _prepare_output_docstrings(output_type, config_class)
            docstrings = "\n".join(lines)
        else:
            raise ValueError(
                f"The function {fn} should have an empty 'Return:' or 'Returns:' in its docstring as placeholder, current docstring is:\n{docstrings}"
            )
        fn.__doc__ = docstrings
1097
1098
1099
1100
1101
        return fn

    return docstring_decorator


1102
1103
def is_remote_url(url_or_filename):
    parsed = urlparse(url_or_filename)
Julien Chaumond's avatar
Julien Chaumond committed
1104
    return parsed.scheme in ("http", "https")
1105

1106

1107
1108
1109
def hf_bucket_url(
    model_id: str, filename: str, subfolder: Optional[str] = None, revision: Optional[str] = None, mirror=None
) -> str:
Julien Chaumond's avatar
Julien Chaumond committed
1110
    """
Julien Chaumond's avatar
Julien Chaumond committed
1111
1112
    Resolve a model identifier, a file name, and an optional revision id, to a huggingface.co-hosted url, redirecting
    to Cloudfront (a Content Delivery Network, or CDN) for large files.
Sylvain Gugger's avatar
Sylvain Gugger committed
1113
1114

    Cloudfront is replicated over the globe so downloads are way faster for the end user (and it also lowers our
Julien Chaumond's avatar
Julien Chaumond committed
1115
1116
1117
1118
1119
1120
    bandwidth costs).

    Cloudfront aggressively caches files by default (default TTL is 24 hours), however this is not an issue here
    because we migrated to a git-based versioning system on huggingface.co, so we now store the files on S3/Cloudfront
    in a content-addressable way (i.e., the file name is its hash). Using content-addressable filenames means cache
    can't ever be stale.
Sylvain Gugger's avatar
Sylvain Gugger committed
1121

Julien Chaumond's avatar
Julien Chaumond committed
1122
1123
1124
    In terms of client-side caching from this library, we base our caching on the objects' ETag. An object' ETag is:
    its sha1 if stored in git, or its sha256 if stored in git-lfs. Files cached locally from transformers before v3.5.0
    are not shared with those new files, because the cached file's name contains a hash of the url (which changed).
Julien Chaumond's avatar
Julien Chaumond committed
1125
    """
1126
1127
1128
    if subfolder is not None:
        filename = f"{subfolder}/{filename}"

Julien Chaumond's avatar
Julien Chaumond committed
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
    if mirror:
        endpoint = PRESET_MIRROR_DICT.get(mirror, mirror)
        legacy_format = "/" not in model_id
        if legacy_format:
            return f"{endpoint}/{model_id}-{filename}"
        else:
            return f"{endpoint}/{model_id}/{filename}"

    if revision is None:
        revision = "main"
    return HUGGINGFACE_CO_PREFIX.format(model_id=model_id, revision=revision, filename=filename)
1140
1141


Julien Chaumond's avatar
Julien Chaumond committed
1142
def url_to_filename(url: str, etag: Optional[str] = None) -> str:
thomwolf's avatar
thomwolf committed
1143
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1144
1145
1146
1147
    Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the url's,
    delimited by a period. If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name so that TF 2.0 can
    identify it as a HDF5 file (see
    https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380)
thomwolf's avatar
thomwolf committed
1148
    """
1149
    url_bytes = url.encode("utf-8")
Julien Chaumond's avatar
Julien Chaumond committed
1150
    filename = sha256(url_bytes).hexdigest()
thomwolf's avatar
thomwolf committed
1151
1152

    if etag:
1153
        etag_bytes = etag.encode("utf-8")
Julien Chaumond's avatar
Julien Chaumond committed
1154
        filename += "." + sha256(etag_bytes).hexdigest()
thomwolf's avatar
thomwolf committed
1155

1156
1157
    if url.endswith(".h5"):
        filename += ".h5"
thomwolf's avatar
thomwolf committed
1158

thomwolf's avatar
thomwolf committed
1159
1160
1161
    return filename


thomwolf's avatar
thomwolf committed
1162
def filename_to_url(filename, cache_dir=None):
thomwolf's avatar
thomwolf committed
1163
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1164
1165
    Return the url and etag (which may be ``None``) stored for `filename`. Raise ``EnvironmentError`` if `filename` or
    its stored metadata do not exist.
thomwolf's avatar
thomwolf committed
1166
1167
    """
    if cache_dir is None:
1168
        cache_dir = TRANSFORMERS_CACHE
1169
    if isinstance(cache_dir, Path):
1170
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
1171
1172
1173

    cache_path = os.path.join(cache_dir, filename)
    if not os.path.exists(cache_path):
1174
        raise EnvironmentError(f"file {cache_path} not found")
thomwolf's avatar
thomwolf committed
1175

1176
    meta_path = cache_path + ".json"
thomwolf's avatar
thomwolf committed
1177
    if not os.path.exists(meta_path):
1178
        raise EnvironmentError(f"file {meta_path} not found")
thomwolf's avatar
thomwolf committed
1179

thomwolf's avatar
thomwolf committed
1180
    with open(meta_path, encoding="utf-8") as meta_file:
thomwolf's avatar
thomwolf committed
1181
        metadata = json.load(meta_file)
1182
1183
    url = metadata["url"]
    etag = metadata["etag"]
thomwolf's avatar
thomwolf committed
1184
1185
1186
1187

    return url, etag


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
def get_cached_models(cache_dir: Union[str, Path] = None) -> List[Tuple]:
    """
    Returns a list of tuples representing model binaries that are cached locally. Each tuple has shape
    :obj:`(model_url, etag, size_MB)`. Filenames in :obj:`cache_dir` are use to get the metadata for each model, only
    urls ending with `.bin` are added.

    Args:
        cache_dir (:obj:`Union[str, Path]`, `optional`):
            The cache directory to search for models within. Will default to the transformers cache if unset.

    Returns:
        List[Tuple]: List of tuples each with shape :obj:`(model_url, etag, size_MB)`
    """
    if cache_dir is None:
        cache_dir = TRANSFORMERS_CACHE
    elif isinstance(cache_dir, Path):
        cache_dir = str(cache_dir)

    cached_models = []
    for file in os.listdir(cache_dir):
        if file.endswith(".json"):
            meta_path = os.path.join(cache_dir, file)
            with open(meta_path, encoding="utf-8") as meta_file:
                metadata = json.load(meta_file)
                url = metadata["url"]
                etag = metadata["etag"]
                if url.endswith(".bin"):
                    size_MB = os.path.getsize(meta_path.strip(".json")) / 1e6
                    cached_models.append((url, etag, size_MB))

    return cached_models


1221
def cached_path(
1222
1223
1224
1225
1226
    url_or_filename,
    cache_dir=None,
    force_download=False,
    proxies=None,
    resume_download=False,
Julien Chaumond's avatar
Julien Chaumond committed
1227
    user_agent: Union[Dict, str, None] = None,
1228
1229
    extract_compressed_file=False,
    force_extract=False,
1230
    use_auth_token: Union[bool, str, None] = None,
1231
    local_files_only=False,
1232
) -> Optional[str]:
thomwolf's avatar
thomwolf committed
1233
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1234
1235
1236
1237
    Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file
    and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and
    then return the path

1238
1239
    Args:
        cache_dir: specify a cache directory to save the file to (overwrite the default cache dir).
1240
1241
        force_download: if True, re-download the file even if it's already cached in the cache dir.
        resume_download: if True, resume the download if incompletely received file is found.
1242
        user_agent: Optional string or dict that will be appended to the user-agent on remote requests.
1243
1244
        use_auth_token: Optional string or boolean to use as Bearer token for remote files. If True,
            will get token from ~/.huggingface.
1245
1246
1247
        extract_compressed_file: if True and the path point to a zip or tar file, extract the compressed
            file in a folder along the archive.
        force_extract: if True when extract_compressed_file is True and the archive was already extracted,
1248
            re-extract the archive and override the folder where it was extracted.
1249
1250

    Return:
Julien Chaumond's avatar
Julien Chaumond committed
1251
1252
1253
1254
        Local path (string) of file or if networking is off, last version of file cached on disk.

    Raises:
        In case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
thomwolf's avatar
thomwolf committed
1255
1256
    """
    if cache_dir is None:
1257
        cache_dir = TRANSFORMERS_CACHE
1258
    if isinstance(url_or_filename, Path):
1259
        url_or_filename = str(url_or_filename)
1260
    if isinstance(cache_dir, Path):
1261
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
1262

1263
1264
1265
1266
    if is_offline_mode() and not local_files_only:
        logger.info("Offline mode: forcing local_files_only=True")
        local_files_only = True

1267
    if is_remote_url(url_or_filename):
thomwolf's avatar
thomwolf committed
1268
        # URL, so get it from the cache (downloading if necessary)
1269
        output_path = get_from_cache(
1270
1271
1272
1273
1274
1275
            url_or_filename,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            resume_download=resume_download,
            user_agent=user_agent,
1276
            use_auth_token=use_auth_token,
1277
            local_files_only=local_files_only,
1278
        )
thomwolf's avatar
thomwolf committed
1279
1280
    elif os.path.exists(url_or_filename):
        # File, and it exists.
1281
        output_path = url_or_filename
1282
    elif urlparse(url_or_filename).scheme == "":
thomwolf's avatar
thomwolf committed
1283
        # File, but it doesn't exist.
1284
        raise EnvironmentError(f"file {url_or_filename} not found")
thomwolf's avatar
thomwolf committed
1285
1286
    else:
        # Something unknown
1287
        raise ValueError(f"unable to parse {url_or_filename} as a URL or as a local path")
thomwolf's avatar
thomwolf committed
1288

1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
    if extract_compressed_file:
        if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path):
            return output_path

        # Path where we extract compressed archives
        # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
        output_dir, output_file = os.path.split(output_path)
        output_extract_dir_name = output_file.replace(".", "-") + "-extracted"
        output_path_extracted = os.path.join(output_dir, output_extract_dir_name)

        if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract:
            return output_path_extracted

        # Prevent parallel extractions
        lock_path = output_path + ".lock"
        with FileLock(lock_path):
            shutil.rmtree(output_path_extracted, ignore_errors=True)
            os.makedirs(output_path_extracted)
            if is_zipfile(output_path):
                with ZipFile(output_path, "r") as zip_file:
                    zip_file.extractall(output_path_extracted)
                    zip_file.close()
            elif tarfile.is_tarfile(output_path):
                tar_file = tarfile.open(output_path)
                tar_file.extractall(output_path_extracted)
                tar_file.close()
thomwolf's avatar
cleanup  
thomwolf committed
1315
            else:
1316
                raise EnvironmentError(f"Archive format of {output_path} could not be identified")
1317
1318
1319
1320
1321

        return output_path_extracted

    return output_path

thomwolf's avatar
thomwolf committed
1322

1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
def define_sagemaker_information():
    try:
        instance_data = requests.get(os.environ["ECS_CONTAINER_METADATA_URI"]).json()
        dlc_container_used = instance_data["Image"]
        dlc_tag = instance_data["Image"].split(":")[1]
    except Exception:
        dlc_container_used = None
        dlc_tag = None

    sagemaker_params = json.loads(os.getenv("SM_FRAMEWORK_PARAMS", "{}"))
    runs_distributed_training = True if "sagemaker_distributed_dataparallel_enabled" in sagemaker_params else False
    account_id = os.getenv("TRAINING_JOB_ARN").split(":")[4] if "TRAINING_JOB_ARN" in os.environ else None

    sagemaker_object = {
        "sm_framework": os.getenv("SM_FRAMEWORK_MODULE", None),
        "sm_region": os.getenv("AWS_REGION", None),
        "sm_number_gpu": os.getenv("SM_NUM_GPUS", 0),
        "sm_number_cpu": os.getenv("SM_NUM_CPUS", 0),
        "sm_distributed_training": runs_distributed_training,
        "sm_deep_learning_container": dlc_container_used,
        "sm_deep_learning_container_tag": dlc_tag,
        "sm_account_id": account_id,
    }
    return sagemaker_object


Julien Chaumond's avatar
Julien Chaumond committed
1349
1350
1351
1352
def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
    """
    Formats a user-agent string with basic info about a request.
    """
1353
    ua = f"transformers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"
1354
    if is_torch_available():
1355
        ua += f"; torch/{_torch_version}"
1356
    if is_tf_available():
1357
        ua += f"; tensorflow/{_tf_version}"
1358
1359
    if DISABLE_TELEMETRY:
        return ua + "; telemetry/off"
1360
1361
    if is_training_run_on_sagemaker():
        ua += "; " + "; ".join(f"{k}/{v}" for k, v in define_sagemaker_information().items())
1362
1363
1364
    # CI will set this value to True
    if os.environ.get("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
        ua += "; is_ci/true"
1365
    if isinstance(user_agent, dict):
1366
        ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items())
Aymeric Augustin's avatar
Aymeric Augustin committed
1367
    elif isinstance(user_agent, str):
1368
        ua += "; " + user_agent
Julien Chaumond's avatar
Julien Chaumond committed
1369
1370
1371
    return ua


1372
def http_get(url: str, temp_file: BinaryIO, proxies=None, resume_size=0, headers: Optional[Dict[str, str]] = None):
Julien Chaumond's avatar
Julien Chaumond committed
1373
    """
1374
    Download remote file. Do not gobble up errors.
Julien Chaumond's avatar
Julien Chaumond committed
1375
    """
1376
    headers = copy.deepcopy(headers)
1377
    if resume_size > 0:
1378
        headers["Range"] = f"bytes={resume_size}-"
Julien Chaumond's avatar
Julien Chaumond committed
1379
1380
1381
    r = requests.get(url, stream=True, proxies=proxies, headers=headers)
    r.raise_for_status()
    content_length = r.headers.get("Content-Length")
1382
    total = resume_size + int(content_length) if content_length is not None else None
1383
1384
1385
1386
1387
1388
    progress = tqdm(
        unit="B",
        unit_scale=True,
        total=total,
        initial=resume_size,
        desc="Downloading",
Lysandre's avatar
Lysandre committed
1389
        disable=bool(logging.get_verbosity() == logging.NOTSET),
1390
    )
Julien Chaumond's avatar
Julien Chaumond committed
1391
    for chunk in r.iter_content(chunk_size=1024):
1392
        if chunk:  # filter out keep-alive new chunks
thomwolf's avatar
thomwolf committed
1393
1394
1395
1396
1397
            progress.update(len(chunk))
            temp_file.write(chunk)
    progress.close()


1398
def get_from_cache(
Julien Chaumond's avatar
Julien Chaumond committed
1399
    url: str,
1400
1401
1402
1403
1404
    cache_dir=None,
    force_download=False,
    proxies=None,
    etag_timeout=10,
    resume_download=False,
Julien Chaumond's avatar
Julien Chaumond committed
1405
    user_agent: Union[Dict, str, None] = None,
1406
    use_auth_token: Union[bool, str, None] = None,
1407
    local_files_only=False,
1408
) -> Optional[str]:
thomwolf's avatar
thomwolf committed
1409
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1410
1411
    Given a URL, look for the corresponding file in the local cache. If it's not there, download it. Then return the
    path to the cached file.
1412
1413

    Return:
Julien Chaumond's avatar
Julien Chaumond committed
1414
1415
1416
1417
        Local path (string) of file or if networking is off, last version of file cached on disk.

    Raises:
        In case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
thomwolf's avatar
thomwolf committed
1418
1419
    """
    if cache_dir is None:
1420
        cache_dir = TRANSFORMERS_CACHE
1421
    if isinstance(cache_dir, Path):
1422
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
1423

1424
    os.makedirs(cache_dir, exist_ok=True)
thomwolf's avatar
thomwolf committed
1425

1426
1427
    headers = {"user-agent": http_user_agent(user_agent)}
    if isinstance(use_auth_token, str):
1428
        headers["authorization"] = f"Bearer {use_auth_token}"
1429
1430
1431
1432
    elif use_auth_token:
        token = HfFolder.get_token()
        if token is None:
            raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.")
1433
        headers["authorization"] = f"Bearer {token}"
1434

Julien Chaumond's avatar
Julien Chaumond committed
1435
    url_to_download = url
1436
1437
    etag = None
    if not local_files_only:
Julien Chaumond's avatar
Julien Chaumond committed
1438
        try:
Julien Chaumond's avatar
Julien Chaumond committed
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
            r = requests.head(url, headers=headers, allow_redirects=False, proxies=proxies, timeout=etag_timeout)
            r.raise_for_status()
            etag = r.headers.get("X-Linked-Etag") or r.headers.get("ETag")
            # We favor a custom header indicating the etag of the linked resource, and
            # we fallback to the regular etag header.
            # If we don't have any of those, raise an error.
            if etag is None:
                raise OSError(
                    "Distant resource does not have an ETag, we won't be able to reliably ensure reproducibility."
                )
            # In case of a redirect,
            # save an extra redirect on the request.get call,
            # and ensure we download the exact atomic version even if it changed
            # between the HEAD and the GET (unlikely, but hey).
            if 300 <= r.status_code <= 399:
                url_to_download = r.headers["Location"]
1455
1456
1457
        except (requests.exceptions.SSLError, requests.exceptions.ProxyError):
            # Actually raise for those subclasses of ConnectionError
            raise
Julien Chaumond's avatar
Julien Chaumond committed
1458
        except (requests.exceptions.ConnectionError, requests.exceptions.Timeout):
1459
1460
            # Otherwise, our Internet connection is down.
            # etag is None
Julien Chaumond's avatar
Julien Chaumond committed
1461
            pass
thomwolf's avatar
thomwolf committed
1462
1463
1464
1465
1466
1467

    filename = url_to_filename(url, etag)

    # get cache path to put the file
    cache_path = os.path.join(cache_dir, filename)

Julien Chaumond's avatar
Julien Chaumond committed
1468
    # etag is None == we don't have a connection or we passed local_files_only.
1469
    # try to get the last downloaded one
1470
1471
1472
1473
1474
1475
    if etag is None:
        if os.path.exists(cache_path):
            return cache_path
        else:
            matching_files = [
                file
1476
                for file in fnmatch.filter(os.listdir(cache_dir), filename.split(".")[0] + ".*")
1477
1478
1479
1480
1481
                if not file.endswith(".json") and not file.endswith(".lock")
            ]
            if len(matching_files) > 0:
                return os.path.join(cache_dir, matching_files[-1])
            else:
1482
1483
1484
1485
                # If files cannot be found and local_files_only=True,
                # the models might've been found if local_files_only=False
                # Notify the user about that
                if local_files_only:
1486
                    raise FileNotFoundError(
1487
1488
1489
1490
                        "Cannot find the requested files in the cached path and outgoing traffic has been"
                        " disabled. To enable model look-ups and downloads online, set 'local_files_only'"
                        " to False."
                    )
Julien Chaumond's avatar
Julien Chaumond committed
1491
1492
1493
1494
1495
                else:
                    raise ValueError(
                        "Connection error, and we cannot find the requested files in the cached path."
                        " Please try again or make sure your Internet connection is on."
                    )
1496
1497
1498
1499

    # From now on, etag is not None.
    if os.path.exists(cache_path) and not force_download:
        return cache_path
1500

1501
    # Prevent parallel downloads of the same file with a lock.
1502
    lock_path = cache_path + ".lock"
1503
1504
    with FileLock(lock_path):

Julien Chaumond's avatar
Julien Chaumond committed
1505
1506
1507
1508
1509
        # If the download just completed while the lock was activated.
        if os.path.exists(cache_path) and not force_download:
            # Even if returning early like here, the lock will be released.
            return cache_path

1510
        if resume_download:
1511
1512
            incomplete_path = cache_path + ".incomplete"

1513
            @contextmanager
Julien Chaumond's avatar
Julien Chaumond committed
1514
1515
            def _resumable_file_manager() -> "io.BufferedWriter":
                with open(incomplete_path, "ab") as f:
1516
                    yield f
1517

1518
1519
1520
1521
1522
            temp_file_manager = _resumable_file_manager
            if os.path.exists(incomplete_path):
                resume_size = os.stat(incomplete_path).st_size
            else:
                resume_size = 0
1523
        else:
Julien Chaumond's avatar
Julien Chaumond committed
1524
            temp_file_manager = partial(tempfile.NamedTemporaryFile, mode="wb", dir=cache_dir, delete=False)
1525
            resume_size = 0
1526

1527
1528
1529
        # Download to temporary file, then copy to cache dir once finished.
        # Otherwise you get corrupt cache entries if the download gets interrupted.
        with temp_file_manager() as temp_file:
1530
            logger.info(f"{url} not found in cache or force_download set to True, downloading to {temp_file.name}")
1531

1532
            http_get(url_to_download, temp_file, proxies=proxies, resume_size=resume_size, headers=headers)
1533

1534
        logger.info(f"storing {url} in cache at {cache_path}")
1535
        os.replace(temp_file.name, cache_path)
1536

1537
        logger.info(f"creating metadata file for {cache_path}")
1538
1539
1540
1541
        meta = {"url": url, "etag": etag}
        meta_path = cache_path + ".json"
        with open(meta_path, "w") as meta_file:
            json.dump(meta, meta_file)
thomwolf's avatar
thomwolf committed
1542
1543

    return cache_path
Julien Chaumond's avatar
Julien Chaumond committed
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590


class cached_property(property):
    """
    Descriptor that mimics @property but caches output in member variable.

    From tensorflow_datasets

    Built-in in functools from Python 3.8.
    """

    def __get__(self, obj, objtype=None):
        # See docs.python.org/3/howto/descriptor.html#properties
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError("unreadable attribute")
        attr = "__cached_" + self.fget.__name__
        cached = getattr(obj, attr, None)
        if cached is None:
            cached = self.fget(obj)
            setattr(obj, attr, cached)
        return cached


def torch_required(func):
    # Chose a different decorator name than in tests so it's clear they are not the same.
    @wraps(func)
    def wrapper(*args, **kwargs):
        if is_torch_available():
            return func(*args, **kwargs)
        else:
            raise ImportError(f"Method `{func.__name__}` requires PyTorch.")

    return wrapper


def tf_required(func):
    # Chose a different decorator name than in tests so it's clear they are not the same.
    @wraps(func)
    def wrapper(*args, **kwargs):
        if is_tf_available():
            return func(*args, **kwargs)
        else:
            raise ImportError(f"Method `{func.__name__}` requires TF.")

    return wrapper
1591
1592


1593
def is_tensor(x):
1594
1595
1596
1597
    """
    Tests if ``x`` is a :obj:`torch.Tensor`, :obj:`tf.Tensor`, obj:`jaxlib.xla_extension.DeviceArray` or
    :obj:`np.ndarray`.
    """
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
    if is_torch_available():
        import torch

        if isinstance(x, torch.Tensor):
            return True
    if is_tf_available():
        import tensorflow as tf

        if isinstance(x, tf.Tensor):
            return True
1608
1609
1610

    if is_flax_available():
        import jaxlib.xla_extension as jax_xla
1611
        from jax.core import Tracer
1612

1613
        if isinstance(x, (jax_xla.DeviceArray, Tracer)):
1614
1615
            return True

1616
1617
1618
    return isinstance(x, np.ndarray)


1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
def _is_numpy(x):
    return isinstance(x, np.ndarray)


def _is_torch(x):
    import torch

    return isinstance(x, torch.Tensor)


def _is_torch_device(x):
    import torch

    return isinstance(x, torch.device)


def _is_tensorflow(x):
    import tensorflow as tf

    return isinstance(x, tf.Tensor)


def _is_jax(x):
    import jax.numpy as jnp  # noqa: F811

    return isinstance(x, jnp.ndarray)


def to_py_obj(obj):
    """
    Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a python list.
    """
    if isinstance(obj, (dict, UserDict)):
        return {k: to_py_obj(v) for k, v in obj.items()}
    elif isinstance(obj, (list, tuple)):
        return [to_py_obj(o) for o in obj]
    elif is_tf_available() and _is_tensorflow(obj):
        return obj.numpy().tolist()
    elif is_torch_available() and _is_torch(obj):
        return obj.detach().cpu().tolist()
    elif isinstance(obj, np.ndarray):
        return obj.tolist()
    else:
        return obj


1665
class ModelOutput(OrderedDict):
1666
    """
1667
    Base class for all model outputs as dataclass. Has a ``__getitem__`` that allows indexing by integer or slice (like
Sylvain Gugger's avatar
Sylvain Gugger committed
1668
1669
    a tuple) or strings (like a dictionary) that will ignore the ``None`` attributes. Otherwise behaves like a regular
    python dictionary.
1670
1671
1672
1673

    .. warning::
        You can't unpack a :obj:`ModelOutput` directly. Use the :meth:`~transformers.file_utils.ModelOutput.to_tuple`
        method to convert it to a tuple before.
1674
1675
    """

1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
    def __post_init__(self):
        class_fields = fields(self)

        # Safety and consistency checks
        assert len(class_fields), f"{self.__class__.__name__} has no fields."
        assert all(
            field.default is None for field in class_fields[1:]
        ), f"{self.__class__.__name__} should not have more than one required field."

        first_field = getattr(self, class_fields[0].name)
        other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:])

        if other_fields_are_none and not is_tensor(first_field):
            try:
                iterator = iter(first_field)
                first_field_iterator = True
            except TypeError:
                first_field_iterator = False

            # if we provided an iterator as first field and the iterator is a (key, value) iterator
            # set the associated fields
            if first_field_iterator:
                for element in iterator:
                    if (
                        not isinstance(element, (list, tuple))
                        or not len(element) == 2
                        or not isinstance(element[0], str)
                    ):
                        break
                    setattr(self, element[0], element[1])
                    if element[1] is not None:
                        self[element[0]] = element[1]
1708
1709
            elif first_field is not None:
                self[class_fields[0].name] = first_field
1710
1711
1712
1713
1714
        else:
            for field in class_fields:
                v = getattr(self, field.name)
                if v is not None:
                    self[field.name] = v
1715

1716
1717
    def __delitem__(self, *args, **kwargs):
        raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
1718

1719
1720
    def setdefault(self, *args, **kwargs):
        raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
1721

1722
1723
1724
1725
1726
    def pop(self, *args, **kwargs):
        raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")

    def update(self, *args, **kwargs):
        raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
1727

1728
1729
1730
1731
1732
1733
    def __getitem__(self, k):
        if isinstance(k, str):
            inner_dict = {k: v for (k, v) in self.items()}
            return inner_dict[k]
        else:
            return self.to_tuple()[k]
1734

1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
    def __setattr__(self, name, value):
        if name in self.keys() and value is not None:
            # Don't call self.__setitem__ to avoid recursion errors
            super().__setitem__(name, value)
        super().__setattr__(name, value)

    def __setitem__(self, key, value):
        # Will raise a KeyException if needed
        super().__setitem__(key, value)
        # Don't call self.__setattr__ to avoid recursion errors
        super().__setattr__(key, value)

1747
1748
1749
1750
1751
    def to_tuple(self) -> Tuple[Any]:
        """
        Convert self to a tuple containing all the attributes/keys that are not ``None``.
        """
        return tuple(self[k] for k in self.keys())
1752
1753


1754
1755
1756
1757
1758
1759
1760
1761
class ExplicitEnum(Enum):
    """
    Enum with more explicit error message for missing values.
    """

    @classmethod
    def _missing_(cls, value):
        raise ValueError(
1762
            f"{value} is not a valid {cls.__name__}, please select one of {list(cls._value2member_map_.keys())}"
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
        )


class PaddingStrategy(ExplicitEnum):
    """
    Possible values for the ``padding`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for tab-completion
    in an IDE.
    """

    LONGEST = "longest"
    MAX_LENGTH = "max_length"
    DO_NOT_PAD = "do_not_pad"


class TensorType(ExplicitEnum):
    """
    Possible values for the ``return_tensors`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for
    tab-completion in an IDE.
    """

    PYTORCH = "pt"
    TENSORFLOW = "tf"
    NUMPY = "np"
    JAX = "jax"


1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
class _BaseLazyModule(ModuleType):
    """
    Module class that surfaces all objects but only performs associated imports when the objects are requested.
    """

    # Very heavily inspired by optuna.integration._IntegrationModule
    # https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
    def __init__(self, name, import_structure):
        super().__init__(name)
        self._modules = set(import_structure.keys())
        self._class_to_module = {}
        for key, values in import_structure.items():
            for value in values:
                self._class_to_module[value] = key
        # Needed for autocompletion in an IDE
        self.__all__ = list(import_structure.keys()) + sum(import_structure.values(), [])

    # Needed for autocompletion in an IDE
    def __dir__(self):
        return super().__dir__() + self.__all__

    def __getattr__(self, name: str) -> Any:
        if name in self._modules:
            value = self._get_module(name)
        elif name in self._class_to_module.keys():
            module = self._get_module(self._class_to_module[name])
            value = getattr(module, name)
        else:
            raise AttributeError(f"module {self.__name__} has no attribute {name}")

        setattr(self, name, value)
        return value

    def _get_module(self, module_name: str) -> ModuleType:
        raise NotImplementedError
1824
1825
1826


def copy_func(f):
Patrick von Platen's avatar
Patrick von Platen committed
1827
    """Returns a copy of a function f."""
1828
1829
1830
1831
1832
    # Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard)
    g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__, argdefs=f.__defaults__, closure=f.__closure__)
    g = functools.update_wrapper(g, f)
    g.__kwdefaults__ = f.__kwdefaults__
    return g
Sylvain Gugger's avatar
Sylvain Gugger committed
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954


class PushToHubMixin:
    """
    A Mixin containing the functionality to push a model or tokenizer to the hub.
    """

    def push_to_hub(
        self,
        repo_name: Optional[str] = None,
        repo_url: Optional[str] = None,
        commit_message: Optional[str] = None,
        organization: Optional[str] = None,
        private: bool = None,
        use_auth_token: Optional[Union[bool, str]] = None,
    ) -> str:
        """
        Upload model checkpoint or tokenizer files to the 🤗 model hub.

        Parameters:
            repo_name (:obj:`str`, `optional`):
                Repository name for your model or tokenizer in the hub. If not specified, the repository name will be
                the stem of :obj:`save_directory`.
            repo_url (:obj:`str`, `optional`):
                Specify this in case you want to push to an existing repository in the hub. If unspecified, a new
                repository will be created in your namespace (unless you specify an :obj:`organization`) with
                :obj:`repo_name`.
            commit_message (:obj:`str`, `optional`):
                Message to commit while pushing. Will default to :obj:`"add config"`, :obj:`"add tokenizer"` or
                :obj:`"add model"` depending on the type of the class.
            organization (:obj:`str`, `optional`):
                Organization in which you want to push your model or tokenizer (you must be a member of this
                organization).
            private (:obj:`bool`, `optional`):
                Whether or not the repository created should be private (requires a paying subscription).
            use_auth_token (:obj:`bool` or :obj:`str`, `optional`):
                The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
                generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`). Will default to
                :obj:`True` if :obj:`repo_url` is not specified.


        Returns:
            The url of the commit of your model in the given repository.
        """
        with tempfile.TemporaryDirectory() as tmp_dir:
            self.save_pretrained(tmp_dir)
            self._push_to_hub(
                save_directory=tmp_dir,
                repo_name=repo_name,
                repo_url=repo_url,
                commit_message=commit_message,
                organization=organization,
                private=private,
                use_auth_token=use_auth_token,
            )

    @classmethod
    def _push_to_hub(
        cls,
        save_directory: Optional[str] = None,
        save_files: Optional[List[str]] = None,
        repo_name: Optional[str] = None,
        repo_url: Optional[str] = None,
        commit_message: Optional[str] = None,
        organization: Optional[str] = None,
        private: bool = None,
        use_auth_token: Optional[Union[bool, str]] = None,
    ) -> str:
        # Private version of push_to_hub, that either accepts a folder to push or a list of files.
        if save_directory is None and save_files is None:
            raise ValueError("_push_to_hub requires either a `save_directory` or a list of `save_files`.")
        if repo_name is None and repo_url is None and save_directory is None:
            raise ValueError("Need either a `repo_name` or `repo_url` to know where to push!")

        if repo_name is None and repo_url is None and save_files is None:
            repo_name = Path(save_directory).name
        if use_auth_token is None and repo_url is None:
            use_auth_token = True

        if isinstance(use_auth_token, str):
            token = use_auth_token
        elif use_auth_token:
            token = HfFolder.get_token()
            if token is None:
                raise ValueError(
                    "You must login to the Hugging Face hub on this computer by typing `transformers-cli login` and "
                    "entering your credentials to use `use_auth_token=True`. Alternatively, you can pass your own "
                    "token as the `use_auth_token` argument."
                )
        else:
            token = None

        if repo_url is None:
            # Special provision for the test endpoint (CI)
            repo_url = HfApi(endpoint=HUGGINGFACE_CO_RESOLVE_ENDPOINT).create_repo(
                token,
                repo_name,
                organization=organization,
                private=private,
                repo_type=None,
                exist_ok=True,
            )

        if commit_message is None:
            if "Tokenizer" in cls.__name__:
                commit_message = "add tokenizer"
            if "Config" in cls.__name__:
                commit_message = "add config"
            else:
                commit_message = "add model"

        with tempfile.TemporaryDirectory() as tmp_dir:
            # First create the repo (and clone its content if it's nonempty), then add the files (otherwise there is
            # no diff so nothing is pushed).
            repo = Repository(tmp_dir, clone_from=repo_url, use_auth_token=use_auth_token)
            if save_directory is None:
                for filename in save_files:
                    shutil.copy(filename, Path(tmp_dir) / Path(filename).name)
            else:
                copy_tree(save_directory, tmp_dir)

            return repo.push_to_hub(commit_message=commit_message)