file_utils.py 35.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
"""
Utilities for working with the local dataset cache.
This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
Copyright by the AllenNLP authors.
"""
Aymeric Augustin's avatar
Aymeric Augustin committed
6

Aymeric Augustin's avatar
Aymeric Augustin committed
7
import fnmatch
thomwolf's avatar
thomwolf committed
8
9
import json
import os
10
import re
11
import shutil
Aymeric Augustin's avatar
Aymeric Augustin committed
12
import sys
13
import tarfile
thomwolf's avatar
thomwolf committed
14
import tempfile
15
from collections import OrderedDict
Aymeric Augustin's avatar
Aymeric Augustin committed
16
from contextlib import contextmanager
17
from dataclasses import fields
18
from functools import partial, wraps
thomwolf's avatar
thomwolf committed
19
from hashlib import sha256
20
from pathlib import Path
21
from typing import Any, Dict, Optional, Tuple, Union
Aymeric Augustin's avatar
Aymeric Augustin committed
22
from urllib.parse import urlparse
23
from zipfile import ZipFile, is_zipfile
thomwolf's avatar
thomwolf committed
24

25
import numpy as np
26
27
from tqdm.auto import tqdm

Aymeric Augustin's avatar
Aymeric Augustin committed
28
29
30
import requests
from filelock import FileLock

31
from . import __version__
Lysandre Debut's avatar
Lysandre Debut committed
32
from .utils import logging
thomwolf's avatar
thomwolf committed
33

Lysandre's avatar
Lysandre committed
34

Lysandre Debut's avatar
Lysandre Debut committed
35
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
thomwolf's avatar
thomwolf committed
36

thomwolf's avatar
thomwolf committed
37
try:
38
39
40
    USE_TF = os.environ.get("USE_TF", "AUTO").upper()
    USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
    if USE_TORCH in ("1", "ON", "YES", "AUTO") and USE_TF not in ("1", "ON", "YES"):
41
        import torch
42

43
44
        _torch_available = True  # pylint: disable=invalid-name
        logger.info("PyTorch version {} available.".format(torch.__version__))
45
    else:
46
        logger.info("Disabling PyTorch because USE_TF is set")
47
        _torch_available = False
thomwolf's avatar
thomwolf committed
48
49
50
except ImportError:
    _torch_available = False  # pylint: disable=invalid-name

Lysandre's avatar
Lysandre committed
51
try:
52
53
54
55
    USE_TF = os.environ.get("USE_TF", "AUTO").upper()
    USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()

    if USE_TF in ("1", "ON", "YES", "AUTO") and USE_TORCH not in ("1", "ON", "YES"):
thomwolf's avatar
thomwolf committed
56
        import tensorflow as tf
57
58

        assert hasattr(tf, "__version__") and int(tf.__version__[0]) >= 2
thomwolf's avatar
thomwolf committed
59
60
61
        _tf_available = True  # pylint: disable=invalid-name
        logger.info("TensorFlow version {} available.".format(tf.__version__))
    else:
62
        logger.info("Disabling Tensorflow because USE_TORCH is set")
thomwolf's avatar
thomwolf committed
63
        _tf_available = False
Lysandre's avatar
Lysandre committed
64
65
except (ImportError, AssertionError):
    _tf_available = False  # pylint: disable=invalid-name
thomwolf's avatar
thomwolf committed
66

67

68
69
70
71
72
73
74
75
try:
    import nlp  # noqa: F401

    _nlp_available = True

except ImportError:
    _nlp_available = False

76
77
try:
    from torch.hub import _get_torch_home
78

79
80
81
    torch_cache_home = _get_torch_home()
except ImportError:
    torch_cache_home = os.path.expanduser(
82
83
        os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
    )
84
85
86


try:
87
    import torch_xla.core.xla_model as xm  # noqa: F401
88
89
90
91
92
93
94
95
96

    if _torch_available:
        _torch_tpu_available = True  # pylint: disable=
    else:
        _torch_tpu_available = False
except ImportError:
    _torch_tpu_available = False


Patrick von Platen's avatar
Patrick von Platen committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
try:
    import psutil  # noqa: F401

    _psutil_available = True

except ImportError:
    _psutil_available = False


try:
    import py3nvml  # noqa: F401

    _py3nvml_available = True

except ImportError:
    _py3nvml_available = False


try:
    from apex import amp  # noqa: F401

    _has_apex = True
except ImportError:
    _has_apex = False

122
default_cache_path = os.path.join(torch_cache_home, "transformers")
123

124

125
126
127
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
thomwolf's avatar
thomwolf committed
128

129
WEIGHTS_NAME = "pytorch_model.bin"
130
131
TF2_WEIGHTS_NAME = "tf_model.h5"
TF_WEIGHTS_NAME = "model.ckpt"
132
CONFIG_NAME = "config.json"
133
MODEL_CARD_NAME = "modelcard.json"
Thomas Wolf's avatar
Thomas Wolf committed
134

Lysandre's avatar
Lysandre committed
135

136
137
138
MULTIPLE_CHOICE_DUMMY_INPUTS = [
    [[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2  # Needs to have 0s and 1s only since XLM uses it for langs too.
139
140
141
DUMMY_INPUTS = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
DUMMY_MASK = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]

142
S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert"
Julien Chaumond's avatar
Julien Chaumond committed
143
CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co"
144

Thomas Wolf's avatar
Thomas Wolf committed
145

thomwolf's avatar
thomwolf committed
146
147
148
def is_torch_available():
    return _torch_available

149

thomwolf's avatar
thomwolf committed
150
151
152
def is_tf_available():
    return _tf_available

153

154
155
156
157
def is_torch_tpu_available():
    return _torch_tpu_available


158
159
160
161
def is_nlp_available():
    return _nlp_available


Patrick von Platen's avatar
Patrick von Platen committed
162
163
164
165
166
167
168
169
170
171
172
173
def is_psutil_available():
    return _psutil_available


def is_py3nvml_available():
    return _py3nvml_available


def is_apex_available():
    return _has_apex


Aymeric Augustin's avatar
Aymeric Augustin committed
174
175
def add_start_docstrings(*docstr):
    def docstring_decorator(fn):
176
177
178
179
180
181
182
183
184
185
        fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
        return fn

    return docstring_decorator


def add_start_docstrings_to_callable(*docstr):
    def docstring_decorator(fn):
        class_name = ":class:`~transformers.{}`".format(fn.__qualname__.split(".")[0])
        intro = "   The {} forward method, overrides the :func:`__call__` special method.".format(class_name)
Lysandre's avatar
Lysandre committed
186
187
        note = r"""

188
189
190
191
    .. note::
        Although the recipe for forward pass needs to be defined within
        this function, one should call the :class:`Module` instance afterwards
        instead of this since the former takes care of running the
192
        pre and post processing steps while the latter silently ignores them.
193
194
        """
        fn.__doc__ = intro + note + "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
Aymeric Augustin's avatar
Aymeric Augustin committed
195
        return fn
196

Aymeric Augustin's avatar
Aymeric Augustin committed
197
    return docstring_decorator
198

199

Aymeric Augustin's avatar
Aymeric Augustin committed
200
201
202
203
def add_end_docstrings(*docstr):
    def docstring_decorator(fn):
        fn.__doc__ = fn.__doc__ + "".join(docstr)
        return fn
204

Aymeric Augustin's avatar
Aymeric Augustin committed
205
    return docstring_decorator
thomwolf's avatar
thomwolf committed
206

207

Sylvain Gugger's avatar
Sylvain Gugger committed
208
PT_RETURN_INTRODUCTION = r"""
209
    Returns:
210
        :class:`~{full_output_type}` or :obj:`tuple(torch.FloatTensor)`:
211
212
        A :class:`~{full_output_type}` (if ``return_dict=True`` is passed or when ``config.return_dict=True``) or a
        tuple of :obj:`torch.FloatTensor` comprising various elements depending on the configuration
213
214
        (:class:`~transformers.{config_class}`) and inputs.

215
216
217
"""


Sylvain Gugger's avatar
Sylvain Gugger committed
218
219
220
221
222
223
224
225
226
227
TF_RETURN_INTRODUCTION = r"""
    Returns:
        :class:`~{full_output_type}` or :obj:`tuple(tf.Tensor)`:
        A :class:`~{full_output_type}` (if ``return_dict=True`` is passed or when ``config.return_dict=True``) or a
        tuple of :obj:`tf.Tensor` comprising various elements depending on the configuration
        (:class:`~transformers.{config_class}`) and inputs.

"""


228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
def _get_indent(t):
    """Returns the indentation in the first line of t"""
    search = re.search(r"^(\s*)\S", t)
    return "" if search is None else search.groups()[0]


def _convert_output_args_doc(output_args_doc):
    """Convert output_args_doc to display properly."""
    # Split output_arg_doc in blocks argument/description
    indent = _get_indent(output_args_doc)
    blocks = []
    current_block = ""
    for line in output_args_doc.split("\n"):
        # If the indent is the same as the beginning, the line is the name of new arg.
        if _get_indent(line) == indent:
            if len(current_block) > 0:
                blocks.append(current_block[:-1])
            current_block = f"{line}\n"
        else:
            # Otherwise it's part of the description of the current arg.
            # We need to remove 2 spaces to the indentation.
            current_block += f"{line[2:]}\n"
    blocks.append(current_block[:-1])

    # Format each block for proper rendering
    for i in range(len(blocks)):
        blocks[i] = re.sub(r"^(\s+)(\S+)(\s+)", r"\1- **\2**\3", blocks[i])
        blocks[i] = re.sub(r":\s*\n\s*(\S)", r" -- \1", blocks[i])

    return "\n".join(blocks)


260
261
262
263
264
265
266
267
268
269
270
271
272
def _prepare_output_docstrings(output_type, config_class):
    """
    Prepares the return part of the docstring using `output_type`.
    """
    docstrings = output_type.__doc__

    # Remove the head of the docstring to keep the list of args only
    lines = docstrings.split("\n")
    i = 0
    while i < len(lines) and re.search(r"^\s*(Args|Parameters):\s*$", lines[i]) is None:
        i += 1
    if i < len(lines):
        docstrings = "\n".join(lines[(i + 1) :])
273
        docstrings = _convert_output_args_doc(docstrings)
274
275

    # Add the return introduction
276
    full_output_type = f"{output_type.__module__}.{output_type.__name__}"
Sylvain Gugger's avatar
Sylvain Gugger committed
277
278
    intro = TF_RETURN_INTRODUCTION if output_type.__name__.startswith("TF") else PT_RETURN_INTRODUCTION
    intro = intro.format(full_output_type=full_output_type, config_class=config_class)
279
280
281
    return intro + docstrings


282
283
284
285
286
287
288
PT_TOKEN_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
289
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
290
291
292
293
294

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0)  # Batch size 1

        >>> outputs = model(**inputs, labels=labels)
295
296
        >>> loss = outputs.loss
        >>> logits = outputs.logits
297
298
299
300
301
302
303
304
305
"""

PT_QUESTION_ANSWERING_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
306
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
307

308
309
        >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        >>> inputs = tokenizer(question, text, return_tensors='pt')
310
311
312
313
        >>> start_positions = torch.tensor([1])
        >>> end_positions = torch.tensor([3])

        >>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
314
        >>> loss = outputs.loss
315
316
        >>> start_scores = outputs.start_logits
        >>> end_scores = outputs.end_logits
317
318
319
320
321
322
323
324
325
"""

PT_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
326
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
327
328
329
330

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        >>> outputs = model(**inputs, labels=labels)
331
332
        >>> loss = outputs.loss
        >>> logits = outputs.logits
333
334
335
336
337
338
339
340
341
"""

PT_MASKED_LM_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
342
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
343
344
345
346

        >>> input_ids = tokenizer("Hello, my dog is cute", return_tensors="pt")["input_ids"]

        >>> outputs = model(input_ids, labels=input_ids)
347
348
        >>> loss = outputs.loss
        >>> prediction_logits = outputs.logits
349
350
351
352
353
354
355
356
357
"""

PT_BASE_MODEL_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
358
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
359
360
361
362

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs)

363
        >>> last_hidden_states = outputs.last_hidden_state
364
365
366
367
368
369
370
371
372
"""

PT_MULTIPLE_CHOICE_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
373
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
374
375
376
377
378
379

        >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
        >>> choice0 = "It is eaten with a fork and a knife."
        >>> choice1 = "It is eaten while held in the hand."
        >>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

380
        >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True)
381
382
383
        >>> outputs = model(**{{k: v.unsqueeze(0) for k,v in encoding.items()}}, labels=labels)  # batch size is 1

        >>> # the linear classifier still needs to be trained
384
385
        >>> loss = outputs.loss
        >>> logits = outputs.logits
386
387
388
389
390
391
392
393
394
"""

PT_CAUSAL_LM_SAMPLE = r"""
    Example::

        >>> import torch
        >>> from transformers import {tokenizer_class}, {model_class}

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
395
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
396
397
398

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs, labels=inputs["input_ids"])
399
400
        >>> loss = outputs.loss
        >>> logits = outputs.logits
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
"""

TF_TOKEN_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
        >>> model = {model_class}.from_pretrained('{checkpoint}')

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> input_ids = inputs["input_ids"]
        >>> inputs["labels"] = tf.reshape(tf.constant([1] * tf.size(input_ids).numpy()), (-1, tf.size(input_ids))) # Batch size 1

        >>> outputs = model(inputs)
        >>> loss, scores = outputs[:2]
"""

TF_QUESTION_ANSWERING_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
        >>> model = {model_class}.from_pretrained('{checkpoint}')

        >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        >>> input_dict = tokenizer(question, text, return_tensors='tf')
        >>> start_scores, end_scores = model(input_dict)

        >>> all_tokens = tokenizer.convert_ids_to_tokens(input_dict["input_ids"].numpy()[0])
        >>> answer = ' '.join(all_tokens[tf.math.argmax(start_scores, 1)[0] : tf.math.argmax(end_scores, 1)[0]+1])
"""

TF_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
        >>> model = {model_class}.from_pretrained('{checkpoint}')

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1

        >>> outputs = model(inputs)
        >>> loss, logits = outputs[:2]
"""

TF_MASKED_LM_SAMPLE = r"""
    Example::
        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
        >>> model = {model_class}.from_pretrained('{checkpoint}')

        >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :]  # Batch size 1

        >>> outputs = model(input_ids)
        >>> prediction_scores = outputs[0]
"""

TF_BASE_MODEL_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
        >>> model = {model_class}.from_pretrained('{checkpoint}')

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> outputs = model(inputs)

        >>> last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
"""

TF_MULTIPLE_CHOICE_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
        >>> model = {model_class}.from_pretrained('{checkpoint}')

        >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
        >>> choice0 = "It is eaten with a fork and a knife."
        >>> choice1 = "It is eaten while held in the hand."

495
        >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='tf', padding=True)
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
        >>> inputs = {{k: tf.expand_dims(v, 0) for k, v in encoding.items()}}
        >>> outputs = model(inputs)  # batch size is 1

        >>> # the linear classifier still needs to be trained
        >>> logits = outputs[0]
"""

TF_CAUSAL_LM_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
        >>> model = {model_class}.from_pretrained('{checkpoint}')

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> outputs = model(inputs)
        >>> logits = outputs[0]
"""


518
def add_code_sample_docstrings(*docstr, tokenizer_class=None, checkpoint=None, output_type=None, config_class=None):
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    def docstring_decorator(fn):
        model_class = fn.__qualname__.split(".")[0]
        is_tf_class = model_class[:2] == "TF"

        if "SequenceClassification" in model_class:
            code_sample = TF_SEQUENCE_CLASSIFICATION_SAMPLE if is_tf_class else PT_SEQUENCE_CLASSIFICATION_SAMPLE
        elif "QuestionAnswering" in model_class:
            code_sample = TF_QUESTION_ANSWERING_SAMPLE if is_tf_class else PT_QUESTION_ANSWERING_SAMPLE
        elif "TokenClassification" in model_class:
            code_sample = TF_TOKEN_CLASSIFICATION_SAMPLE if is_tf_class else PT_TOKEN_CLASSIFICATION_SAMPLE
        elif "MultipleChoice" in model_class:
            code_sample = TF_MULTIPLE_CHOICE_SAMPLE if is_tf_class else PT_MULTIPLE_CHOICE_SAMPLE
        elif "MaskedLM" in model_class:
            code_sample = TF_MASKED_LM_SAMPLE if is_tf_class else PT_MASKED_LM_SAMPLE
        elif "LMHead" in model_class:
            code_sample = TF_CAUSAL_LM_SAMPLE if is_tf_class else PT_CAUSAL_LM_SAMPLE
535
        elif "Model" in model_class or "Encoder" in model_class:
536
537
538
539
            code_sample = TF_BASE_MODEL_SAMPLE if is_tf_class else PT_BASE_MODEL_SAMPLE
        else:
            raise ValueError(f"Docstring can't be built for model {model_class}")

540
        output_doc = _prepare_output_docstrings(output_type, config_class) if output_type is not None else ""
541
        built_doc = code_sample.format(model_class=model_class, tokenizer_class=tokenizer_class, checkpoint=checkpoint)
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
        fn.__doc__ = (fn.__doc__ or "") + "".join(docstr) + output_doc + built_doc
        return fn

    return docstring_decorator


def replace_return_docstrings(output_type=None, config_class=None):
    def docstring_decorator(fn):
        docstrings = fn.__doc__
        lines = docstrings.split("\n")
        i = 0
        while i < len(lines) and re.search(r"^\s*Returns?:\s*$", lines[i]) is None:
            i += 1
        if i < len(lines):
            lines[i] = _prepare_output_docstrings(output_type, config_class)
            docstrings = "\n".join(lines)
        else:
            raise ValueError(
                f"The function {fn} should have an empty 'Return:' or 'Returns:' in its docstring as placeholder, current docstring is:\n{docstrings}"
            )
        fn.__doc__ = docstrings
563
564
565
566
567
        return fn

    return docstring_decorator


568
569
def is_remote_url(url_or_filename):
    parsed = urlparse(url_or_filename)
Julien Chaumond's avatar
Julien Chaumond committed
570
    return parsed.scheme in ("http", "https")
571

572

Julien Chaumond's avatar
Julien Chaumond committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
def hf_bucket_url(model_id: str, filename: str, use_cdn=True) -> str:
    """
    Resolve a model identifier, and a file name, to a HF-hosted url
    on either S3 or Cloudfront (a Content Delivery Network, or CDN).

    Cloudfront is replicated over the globe so downloads are way faster
    for the end user (and it also lowers our bandwidth costs). However, it
    is more aggressively cached by default, so may not always reflect the
    latest changes to the underlying file (default TTL is 24 hours).

    In terms of client-side caching from this library, even though
    Cloudfront relays the ETags from S3, using one or the other
    (or switching from one to the other) will affect caching: cached files
    are not shared between the two because the cached file's name contains
    a hash of the url.
    """
    endpoint = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
    legacy_format = "/" not in model_id
    if legacy_format:
        return f"{endpoint}/{model_id}-{filename}"
593
    else:
Julien Chaumond's avatar
Julien Chaumond committed
594
        return f"{endpoint}/{model_id}/{filename}"
595
596


thomwolf's avatar
thomwolf committed
597
def url_to_filename(url, etag=None):
thomwolf's avatar
thomwolf committed
598
599
600
601
    """
    Convert `url` into a hashed filename in a repeatable way.
    If `etag` is specified, append its hash to the url's, delimited
    by a period.
602
    If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name
thomwolf's avatar
thomwolf committed
603
604
    so that TF 2.0 can identify it as a HDF5 file
    (see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380)
thomwolf's avatar
thomwolf committed
605
    """
606
    url_bytes = url.encode("utf-8")
thomwolf's avatar
thomwolf committed
607
608
609
610
    url_hash = sha256(url_bytes)
    filename = url_hash.hexdigest()

    if etag:
611
        etag_bytes = etag.encode("utf-8")
thomwolf's avatar
thomwolf committed
612
        etag_hash = sha256(etag_bytes)
613
        filename += "." + etag_hash.hexdigest()
thomwolf's avatar
thomwolf committed
614

615
616
    if url.endswith(".h5"):
        filename += ".h5"
thomwolf's avatar
thomwolf committed
617

thomwolf's avatar
thomwolf committed
618
619
620
    return filename


thomwolf's avatar
thomwolf committed
621
def filename_to_url(filename, cache_dir=None):
thomwolf's avatar
thomwolf committed
622
623
    """
    Return the url and etag (which may be ``None``) stored for `filename`.
thomwolf's avatar
thomwolf committed
624
    Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist.
thomwolf's avatar
thomwolf committed
625
626
    """
    if cache_dir is None:
627
        cache_dir = TRANSFORMERS_CACHE
628
    if isinstance(cache_dir, Path):
629
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
630
631
632

    cache_path = os.path.join(cache_dir, filename)
    if not os.path.exists(cache_path):
thomwolf's avatar
thomwolf committed
633
        raise EnvironmentError("file {} not found".format(cache_path))
thomwolf's avatar
thomwolf committed
634

635
    meta_path = cache_path + ".json"
thomwolf's avatar
thomwolf committed
636
    if not os.path.exists(meta_path):
thomwolf's avatar
thomwolf committed
637
        raise EnvironmentError("file {} not found".format(meta_path))
thomwolf's avatar
thomwolf committed
638

thomwolf's avatar
thomwolf committed
639
    with open(meta_path, encoding="utf-8") as meta_file:
thomwolf's avatar
thomwolf committed
640
        metadata = json.load(meta_file)
641
642
    url = metadata["url"]
    etag = metadata["etag"]
thomwolf's avatar
thomwolf committed
643
644
645
646

    return url, etag


647
def cached_path(
648
649
650
651
652
    url_or_filename,
    cache_dir=None,
    force_download=False,
    proxies=None,
    resume_download=False,
Julien Chaumond's avatar
Julien Chaumond committed
653
    user_agent: Union[Dict, str, None] = None,
654
655
    extract_compressed_file=False,
    force_extract=False,
656
    local_files_only=False,
657
) -> Optional[str]:
thomwolf's avatar
thomwolf committed
658
659
660
661
662
    """
    Given something that might be a URL (or might be a local path),
    determine which. If it's a URL, download the file and cache it, and
    return the path to the cached file. If it's already a local path,
    make sure the file exists and then return the path.
663
664
665
    Args:
        cache_dir: specify a cache directory to save the file to (overwrite the default cache dir).
        force_download: if True, re-dowload the file even if it's already cached in the cache dir.
666
        resume_download: if True, resume the download if incompletly recieved file is found.
667
        user_agent: Optional string or dict that will be appended to the user-agent on remote requests.
668
669
670
671
        extract_compressed_file: if True and the path point to a zip or tar file, extract the compressed
            file in a folder along the archive.
        force_extract: if True when extract_compressed_file is True and the archive was already extracted,
            re-extract the archive and overide the folder where it was extracted.
672
673
674
675

    Return:
        None in case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
        Local path (string) otherwise
thomwolf's avatar
thomwolf committed
676
677
    """
    if cache_dir is None:
678
        cache_dir = TRANSFORMERS_CACHE
679
    if isinstance(url_or_filename, Path):
680
        url_or_filename = str(url_or_filename)
681
    if isinstance(cache_dir, Path):
682
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
683

684
    if is_remote_url(url_or_filename):
thomwolf's avatar
thomwolf committed
685
        # URL, so get it from the cache (downloading if necessary)
686
        output_path = get_from_cache(
687
688
689
690
691
692
            url_or_filename,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            resume_download=resume_download,
            user_agent=user_agent,
693
            local_files_only=local_files_only,
694
        )
thomwolf's avatar
thomwolf committed
695
696
    elif os.path.exists(url_or_filename):
        # File, and it exists.
697
        output_path = url_or_filename
698
    elif urlparse(url_or_filename).scheme == "":
thomwolf's avatar
thomwolf committed
699
        # File, but it doesn't exist.
thomwolf's avatar
thomwolf committed
700
        raise EnvironmentError("file {} not found".format(url_or_filename))
thomwolf's avatar
thomwolf committed
701
702
703
704
    else:
        # Something unknown
        raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
    if extract_compressed_file:
        if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path):
            return output_path

        # Path where we extract compressed archives
        # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
        output_dir, output_file = os.path.split(output_path)
        output_extract_dir_name = output_file.replace(".", "-") + "-extracted"
        output_path_extracted = os.path.join(output_dir, output_extract_dir_name)

        if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract:
            return output_path_extracted

        # Prevent parallel extractions
        lock_path = output_path + ".lock"
        with FileLock(lock_path):
            shutil.rmtree(output_path_extracted, ignore_errors=True)
            os.makedirs(output_path_extracted)
            if is_zipfile(output_path):
                with ZipFile(output_path, "r") as zip_file:
                    zip_file.extractall(output_path_extracted)
                    zip_file.close()
            elif tarfile.is_tarfile(output_path):
                tar_file = tarfile.open(output_path)
                tar_file.extractall(output_path_extracted)
                tar_file.close()
thomwolf's avatar
cleanup  
thomwolf committed
731
732
            else:
                raise EnvironmentError("Archive format of {} could not be identified".format(output_path))
733
734
735
736
737

        return output_path_extracted

    return output_path

thomwolf's avatar
thomwolf committed
738

Julien Chaumond's avatar
Julien Chaumond committed
739
def http_get(url, temp_file, proxies=None, resume_size=0, user_agent: Union[Dict, str, None] = None):
740
    ua = "transformers/{}; python/{}".format(__version__, sys.version.split()[0])
741
742
743
744
    if is_torch_available():
        ua += "; torch/{}".format(torch.__version__)
    if is_tf_available():
        ua += "; tensorflow/{}".format(tf.__version__)
745
    if isinstance(user_agent, dict):
746
        ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items())
Aymeric Augustin's avatar
Aymeric Augustin committed
747
    elif isinstance(user_agent, str):
748
749
        ua += "; " + user_agent
    headers = {"user-agent": ua}
750
    if resume_size > 0:
751
        headers["Range"] = "bytes=%d-" % (resume_size,)
752
753
754
    response = requests.get(url, stream=True, proxies=proxies, headers=headers)
    if response.status_code == 416:  # Range not satisfiable
        return
755
    content_length = response.headers.get("Content-Length")
756
    total = resume_size + int(content_length) if content_length is not None else None
757
758
759
760
761
762
    progress = tqdm(
        unit="B",
        unit_scale=True,
        total=total,
        initial=resume_size,
        desc="Downloading",
Lysandre's avatar
Lysandre committed
763
        disable=bool(logging.get_verbosity() == logging.NOTSET),
764
    )
765
    for chunk in response.iter_content(chunk_size=1024):
766
        if chunk:  # filter out keep-alive new chunks
thomwolf's avatar
thomwolf committed
767
768
769
770
771
            progress.update(len(chunk))
            temp_file.write(chunk)
    progress.close()


772
def get_from_cache(
773
774
775
776
777
778
    url,
    cache_dir=None,
    force_download=False,
    proxies=None,
    etag_timeout=10,
    resume_download=False,
Julien Chaumond's avatar
Julien Chaumond committed
779
    user_agent: Union[Dict, str, None] = None,
780
    local_files_only=False,
781
) -> Optional[str]:
thomwolf's avatar
thomwolf committed
782
    """
783
    Given a URL, look for the corresponding file in the local cache.
thomwolf's avatar
thomwolf committed
784
    If it's not there, download it. Then return the path to the cached file.
785
786
787
788

    Return:
        None in case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
        Local path (string) otherwise
thomwolf's avatar
thomwolf committed
789
790
    """
    if cache_dir is None:
791
        cache_dir = TRANSFORMERS_CACHE
792
    if isinstance(cache_dir, Path):
793
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
794

795
    os.makedirs(cache_dir, exist_ok=True)
thomwolf's avatar
thomwolf committed
796

797
798
    etag = None
    if not local_files_only:
Julien Chaumond's avatar
Julien Chaumond committed
799
800
801
802
803
804
805
        try:
            response = requests.head(url, allow_redirects=True, proxies=proxies, timeout=etag_timeout)
            if response.status_code == 200:
                etag = response.headers.get("ETag")
        except (EnvironmentError, requests.exceptions.Timeout):
            # etag is already None
            pass
thomwolf's avatar
thomwolf committed
806
807
808
809
810
811

    filename = url_to_filename(url, etag)

    # get cache path to put the file
    cache_path = os.path.join(cache_dir, filename)

812
    # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
813
    # try to get the last downloaded one
814
815
816
817
818
819
820
821
822
823
824
825
    if etag is None:
        if os.path.exists(cache_path):
            return cache_path
        else:
            matching_files = [
                file
                for file in fnmatch.filter(os.listdir(cache_dir), filename + ".*")
                if not file.endswith(".json") and not file.endswith(".lock")
            ]
            if len(matching_files) > 0:
                return os.path.join(cache_dir, matching_files[-1])
            else:
826
827
828
829
830
831
832
833
834
                # If files cannot be found and local_files_only=True,
                # the models might've been found if local_files_only=False
                # Notify the user about that
                if local_files_only:
                    raise ValueError(
                        "Cannot find the requested files in the cached path and outgoing traffic has been"
                        " disabled. To enable model look-ups and downloads online, set 'local_files_only'"
                        " to False."
                    )
835
836
837
838
839
                return None

    # From now on, etag is not None.
    if os.path.exists(cache_path) and not force_download:
        return cache_path
840

841
    # Prevent parallel downloads of the same file with a lock.
842
    lock_path = cache_path + ".lock"
843
844
    with FileLock(lock_path):

Julien Chaumond's avatar
Julien Chaumond committed
845
846
847
848
849
        # If the download just completed while the lock was activated.
        if os.path.exists(cache_path) and not force_download:
            # Even if returning early like here, the lock will be released.
            return cache_path

850
        if resume_download:
851
852
            incomplete_path = cache_path + ".incomplete"

853
854
            @contextmanager
            def _resumable_file_manager():
855
                with open(incomplete_path, "a+b") as f:
856
                    yield f
857

858
859
860
861
862
            temp_file_manager = _resumable_file_manager
            if os.path.exists(incomplete_path):
                resume_size = os.stat(incomplete_path).st_size
            else:
                resume_size = 0
863
        else:
864
            temp_file_manager = partial(tempfile.NamedTemporaryFile, dir=cache_dir, delete=False)
865
            resume_size = 0
866

867
868
869
870
871
        # Download to temporary file, then copy to cache dir once finished.
        # Otherwise you get corrupt cache entries if the download gets interrupted.
        with temp_file_manager() as temp_file:
            logger.info("%s not found in cache or force_download set to True, downloading to %s", url, temp_file.name)

Julien Chaumond's avatar
Julien Chaumond committed
872
            http_get(url, temp_file, proxies=proxies, resume_size=resume_size, user_agent=user_agent)
873
874

        logger.info("storing %s in cache at %s", url, cache_path)
875
        os.replace(temp_file.name, cache_path)
876
877
878
879
880
881

        logger.info("creating metadata file for %s", cache_path)
        meta = {"url": url, "etag": etag}
        meta_path = cache_path + ".json"
        with open(meta_path, "w") as meta_file:
            json.dump(meta, meta_file)
thomwolf's avatar
thomwolf committed
882
883

    return cache_path
Julien Chaumond's avatar
Julien Chaumond committed
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930


class cached_property(property):
    """
    Descriptor that mimics @property but caches output in member variable.

    From tensorflow_datasets

    Built-in in functools from Python 3.8.
    """

    def __get__(self, obj, objtype=None):
        # See docs.python.org/3/howto/descriptor.html#properties
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError("unreadable attribute")
        attr = "__cached_" + self.fget.__name__
        cached = getattr(obj, attr, None)
        if cached is None:
            cached = self.fget(obj)
            setattr(obj, attr, cached)
        return cached


def torch_required(func):
    # Chose a different decorator name than in tests so it's clear they are not the same.
    @wraps(func)
    def wrapper(*args, **kwargs):
        if is_torch_available():
            return func(*args, **kwargs)
        else:
            raise ImportError(f"Method `{func.__name__}` requires PyTorch.")

    return wrapper


def tf_required(func):
    # Chose a different decorator name than in tests so it's clear they are not the same.
    @wraps(func)
    def wrapper(*args, **kwargs):
        if is_tf_available():
            return func(*args, **kwargs)
        else:
            raise ImportError(f"Method `{func.__name__}` requires TF.")

    return wrapper
931
932


933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
def is_tensor(x):
    """ Tests if ``x`` is a :obj:`torch.Tensor`, :obj:`tf.Tensor` or :obj:`np.ndarray`. """
    if is_torch_available():
        import torch

        if isinstance(x, torch.Tensor):
            return True
    if is_tf_available():
        import tensorflow as tf

        if isinstance(x, tf.Tensor):
            return True
    return isinstance(x, np.ndarray)


class ModelOutput(OrderedDict):
949
    """
950
    Base class for all model outputs as dataclass. Has a ``__getitem__`` that allows indexing by integer or slice (like
951
952
953
954
955
956
    a tuple) or strings (like a dictionnary) that will ignore the ``None`` attributes. Otherwise behaves like a
    regular python dictionary.

    .. warning::
        You can't unpack a :obj:`ModelOutput` directly. Use the :meth:`~transformers.file_utils.ModelOutput.to_tuple`
        method to convert it to a tuple before.
957
958
    """

959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
    def __post_init__(self):
        class_fields = fields(self)

        # Safety and consistency checks
        assert len(class_fields), f"{self.__class__.__name__} has no fields."
        assert all(
            field.default is None for field in class_fields[1:]
        ), f"{self.__class__.__name__} should not have more than one required field."

        first_field = getattr(self, class_fields[0].name)
        other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:])

        if other_fields_are_none and not is_tensor(first_field):
            try:
                iterator = iter(first_field)
                first_field_iterator = True
            except TypeError:
                first_field_iterator = False

            # if we provided an iterator as first field and the iterator is a (key, value) iterator
            # set the associated fields
            if first_field_iterator:
                for element in iterator:
                    if (
                        not isinstance(element, (list, tuple))
                        or not len(element) == 2
                        or not isinstance(element[0], str)
                    ):
                        break
                    setattr(self, element[0], element[1])
                    if element[1] is not None:
                        self[element[0]] = element[1]
        else:
            for field in class_fields:
                v = getattr(self, field.name)
                if v is not None:
                    self[field.name] = v
996

997
998
    def __delitem__(self, *args, **kwargs):
        raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
999

1000
1001
    def setdefault(self, *args, **kwargs):
        raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
1002

1003
1004
1005
1006
1007
    def pop(self, *args, **kwargs):
        raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")

    def update(self, *args, **kwargs):
        raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
1008

1009
1010
1011
1012
1013
1014
    def __getitem__(self, k):
        if isinstance(k, str):
            inner_dict = {k: v for (k, v) in self.items()}
            return inner_dict[k]
        else:
            return self.to_tuple()[k]
1015

1016
1017
1018
1019
1020
    def to_tuple(self) -> Tuple[Any]:
        """
        Convert self to a tuple containing all the attributes/keys that are not ``None``.
        """
        return tuple(self[k] for k in self.keys())