Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
378142af
Unverified
Commit
378142af
authored
Oct 28, 2020
by
Sylvain Gugger
Committed by
GitHub
Oct 28, 2020
Browse files
Rename add_start_docstrings_to_callable (#8120)
parent
6241c873
Changes
55
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
97 additions
and
90 deletions
+97
-90
examples/bert-loses-patience/pabee/modeling_pabee_albert.py
examples/bert-loses-patience/pabee/modeling_pabee_albert.py
+3
-3
examples/bert-loses-patience/pabee/modeling_pabee_bert.py
examples/bert-loses-patience/pabee/modeling_pabee_bert.py
+3
-3
examples/deebert/src/modeling_highway_bert.py
examples/deebert/src/modeling_highway_bert.py
+3
-3
examples/deebert/src/modeling_highway_roberta.py
examples/deebert/src/modeling_highway_roberta.py
+2
-2
examples/movement-pruning/emmental/modeling_bert_masked.py
examples/movement-pruning/emmental/modeling_bert_masked.py
+6
-6
src/transformers/file_utils.py
src/transformers/file_utils.py
+1
-1
src/transformers/modeling_albert.py
src/transformers/modeling_albert.py
+8
-8
src/transformers/modeling_bart.py
src/transformers/modeling_bart.py
+5
-5
src/transformers/modeling_bert.py
src/transformers/modeling_bert.py
+10
-10
src/transformers/modeling_bert_generation.py
src/transformers/modeling_bert_generation.py
+3
-3
src/transformers/modeling_ctrl.py
src/transformers/modeling_ctrl.py
+3
-3
src/transformers/modeling_deberta.py
src/transformers/modeling_deberta.py
+3
-3
src/transformers/modeling_distilbert.py
src/transformers/modeling_distilbert.py
+9
-7
src/transformers/modeling_dpr.py
src/transformers/modeling_dpr.py
+9
-4
src/transformers/modeling_electra.py
src/transformers/modeling_electra.py
+8
-8
src/transformers/modeling_encoder_decoder.py
src/transformers/modeling_encoder_decoder.py
+2
-2
src/transformers/modeling_flaubert.py
src/transformers/modeling_flaubert.py
+2
-2
src/transformers/modeling_fsmt.py
src/transformers/modeling_fsmt.py
+3
-3
src/transformers/modeling_funnel.py
src/transformers/modeling_funnel.py
+9
-9
src/transformers/modeling_gpt2.py
src/transformers/modeling_gpt2.py
+5
-5
No files found.
examples/bert-loses-patience/pabee/modeling_pabee_albert.py
View file @
378142af
...
@@ -20,7 +20,7 @@ import torch
...
@@ -20,7 +20,7 @@ import torch
import
torch.nn
as
nn
import
torch.nn
as
nn
from
torch.nn
import
CrossEntropyLoss
,
MSELoss
from
torch.nn
import
CrossEntropyLoss
,
MSELoss
from
transformers.file_utils
import
add_start_docstrings
,
add_start_docstrings_to_
callable
from
transformers.file_utils
import
add_start_docstrings
,
add_start_docstrings_to_
model_forward
from
transformers.modeling_albert
import
(
from
transformers.modeling_albert
import
(
ALBERT_INPUTS_DOCSTRING
,
ALBERT_INPUTS_DOCSTRING
,
ALBERT_START_DOCSTRING
,
ALBERT_START_DOCSTRING
,
...
@@ -87,7 +87,7 @@ class AlbertModelWithPabee(AlbertModel):
...
@@ -87,7 +87,7 @@ class AlbertModelWithPabee(AlbertModel):
message
=
f
"*** Patience =
{
self
.
patience
}
Avg. Inference Layers =
{
avg_inf_layers
:.
2
f
}
Speed Up =
{
1
-
avg_inf_layers
/
self
.
config
.
num_hidden_layers
:.
2
f
}
***"
message
=
f
"*** Patience =
{
self
.
patience
}
Avg. Inference Layers =
{
avg_inf_layers
:.
2
f
}
Speed Up =
{
1
-
avg_inf_layers
/
self
.
config
.
num_hidden_layers
:.
2
f
}
***"
print
(
message
)
print
(
message
)
@
add_start_docstrings_to_
callable
(
ALBERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
ALBERT_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
=
None
,
...
@@ -230,7 +230,7 @@ class AlbertForSequenceClassificationWithPabee(AlbertPreTrainedModel):
...
@@ -230,7 +230,7 @@ class AlbertForSequenceClassificationWithPabee(AlbertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
ALBERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
ALBERT_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
=
None
,
...
...
examples/bert-loses-patience/pabee/modeling_pabee_bert.py
View file @
378142af
...
@@ -22,7 +22,7 @@ import torch
...
@@ -22,7 +22,7 @@ import torch
from
torch
import
nn
from
torch
import
nn
from
torch.nn
import
CrossEntropyLoss
,
MSELoss
from
torch.nn
import
CrossEntropyLoss
,
MSELoss
from
transformers.file_utils
import
add_start_docstrings
,
add_start_docstrings_to_
callable
from
transformers.file_utils
import
add_start_docstrings
,
add_start_docstrings_to_
model_forward
from
transformers.modeling_bert
import
(
from
transformers.modeling_bert
import
(
BERT_INPUTS_DOCSTRING
,
BERT_INPUTS_DOCSTRING
,
BERT_START_DOCSTRING
,
BERT_START_DOCSTRING
,
...
@@ -92,7 +92,7 @@ class BertModelWithPabee(BertModel):
...
@@ -92,7 +92,7 @@ class BertModelWithPabee(BertModel):
message
=
f
"*** Patience =
{
self
.
patience
}
Avg. Inference Layers =
{
avg_inf_layers
:.
2
f
}
Speed Up =
{
1
-
avg_inf_layers
/
self
.
config
.
num_hidden_layers
:.
2
f
}
***"
message
=
f
"*** Patience =
{
self
.
patience
}
Avg. Inference Layers =
{
avg_inf_layers
:.
2
f
}
Speed Up =
{
1
-
avg_inf_layers
/
self
.
config
.
num_hidden_layers
:.
2
f
}
***"
print
(
message
)
print
(
message
)
@
add_start_docstrings_to_
callable
(
BERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
BERT_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
=
None
,
...
@@ -254,7 +254,7 @@ class BertForSequenceClassificationWithPabee(BertPreTrainedModel):
...
@@ -254,7 +254,7 @@ class BertForSequenceClassificationWithPabee(BertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
BERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
BERT_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
=
None
,
...
...
examples/deebert/src/modeling_highway_bert.py
View file @
378142af
...
@@ -2,7 +2,7 @@ import torch
...
@@ -2,7 +2,7 @@ import torch
from
torch
import
nn
from
torch
import
nn
from
torch.nn
import
CrossEntropyLoss
,
MSELoss
from
torch.nn
import
CrossEntropyLoss
,
MSELoss
from
transformers.file_utils
import
add_start_docstrings
,
add_start_docstrings_to_
callable
from
transformers.file_utils
import
add_start_docstrings
,
add_start_docstrings_to_
model_forward
from
transformers.modeling_bert
import
(
from
transformers.modeling_bert
import
(
BERT_INPUTS_DOCSTRING
,
BERT_INPUTS_DOCSTRING
,
BERT_START_DOCSTRING
,
BERT_START_DOCSTRING
,
...
@@ -134,7 +134,7 @@ class DeeBertModel(BertPreTrainedModel):
...
@@ -134,7 +134,7 @@ class DeeBertModel(BertPreTrainedModel):
for
layer
,
heads
in
heads_to_prune
.
items
():
for
layer
,
heads
in
heads_to_prune
.
items
():
self
.
encoder
.
layer
[
layer
].
attention
.
prune_heads
(
heads
)
self
.
encoder
.
layer
[
layer
].
attention
.
prune_heads
(
heads
)
@
add_start_docstrings_to_
callable
(
BERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
BERT_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
=
None
,
...
@@ -288,7 +288,7 @@ class DeeBertForSequenceClassification(BertPreTrainedModel):
...
@@ -288,7 +288,7 @@ class DeeBertForSequenceClassification(BertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
BERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
BERT_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
=
None
,
...
...
examples/deebert/src/modeling_highway_roberta.py
View file @
378142af
...
@@ -4,7 +4,7 @@ import torch.nn as nn
...
@@ -4,7 +4,7 @@ import torch.nn as nn
from
torch.nn
import
CrossEntropyLoss
,
MSELoss
from
torch.nn
import
CrossEntropyLoss
,
MSELoss
from
transformers.configuration_roberta
import
RobertaConfig
from
transformers.configuration_roberta
import
RobertaConfig
from
transformers.file_utils
import
add_start_docstrings
,
add_start_docstrings_to_
callable
from
transformers.file_utils
import
add_start_docstrings
,
add_start_docstrings_to_
model_forward
from
transformers.modeling_roberta
import
ROBERTA_INPUTS_DOCSTRING
,
ROBERTA_START_DOCSTRING
,
RobertaEmbeddings
from
transformers.modeling_roberta
import
ROBERTA_INPUTS_DOCSTRING
,
ROBERTA_START_DOCSTRING
,
RobertaEmbeddings
from
.modeling_highway_bert
import
BertPreTrainedModel
,
DeeBertModel
,
HighwayException
,
entropy
from
.modeling_highway_bert
import
BertPreTrainedModel
,
DeeBertModel
,
HighwayException
,
entropy
...
@@ -45,7 +45,7 @@ class DeeRobertaForSequenceClassification(BertPreTrainedModel):
...
@@ -45,7 +45,7 @@ class DeeRobertaForSequenceClassification(BertPreTrainedModel):
self
.
dropout
=
nn
.
Dropout
(
config
.
hidden_dropout_prob
)
self
.
dropout
=
nn
.
Dropout
(
config
.
hidden_dropout_prob
)
self
.
classifier
=
nn
.
Linear
(
config
.
hidden_size
,
self
.
config
.
num_labels
)
self
.
classifier
=
nn
.
Linear
(
config
.
hidden_size
,
self
.
config
.
num_labels
)
@
add_start_docstrings_to_
callable
(
ROBERTA_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
ROBERTA_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
=
None
,
...
...
examples/movement-pruning/emmental/modeling_bert_masked.py
View file @
378142af
...
@@ -28,7 +28,7 @@ from torch.nn import CrossEntropyLoss, MSELoss
...
@@ -28,7 +28,7 @@ from torch.nn import CrossEntropyLoss, MSELoss
from
emmental
import
MaskedBertConfig
from
emmental
import
MaskedBertConfig
from
emmental.modules
import
MaskedLinear
from
emmental.modules
import
MaskedLinear
from
transformers.file_utils
import
add_start_docstrings
,
add_start_docstrings_to_
callable
from
transformers.file_utils
import
add_start_docstrings
,
add_start_docstrings_to_
model_forward
from
transformers.modeling_bert
import
ACT2FN
,
BertLayerNorm
,
load_tf_weights_in_bert
from
transformers.modeling_bert
import
ACT2FN
,
BertLayerNorm
,
load_tf_weights_in_bert
from
transformers.modeling_utils
import
PreTrainedModel
,
prune_linear_layer
from
transformers.modeling_utils
import
PreTrainedModel
,
prune_linear_layer
...
@@ -498,7 +498,7 @@ class MaskedBertModel(MaskedBertPreTrainedModel):
...
@@ -498,7 +498,7 @@ class MaskedBertModel(MaskedBertPreTrainedModel):
for
layer
,
heads
in
heads_to_prune
.
items
():
for
layer
,
heads
in
heads_to_prune
.
items
():
self
.
encoder
.
layer
[
layer
].
attention
.
prune_heads
(
heads
)
self
.
encoder
.
layer
[
layer
].
attention
.
prune_heads
(
heads
)
@
add_start_docstrings_to_
callable
(
MASKED_BERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
MASKED_BERT_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
=
None
,
...
@@ -671,7 +671,7 @@ class MaskedBertForSequenceClassification(MaskedBertPreTrainedModel):
...
@@ -671,7 +671,7 @@ class MaskedBertForSequenceClassification(MaskedBertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
MASKED_BERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
MASKED_BERT_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
=
None
,
...
@@ -756,7 +756,7 @@ class MaskedBertForMultipleChoice(MaskedBertPreTrainedModel):
...
@@ -756,7 +756,7 @@ class MaskedBertForMultipleChoice(MaskedBertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
MASKED_BERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
MASKED_BERT_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
=
None
,
...
@@ -846,7 +846,7 @@ class MaskedBertForTokenClassification(MaskedBertPreTrainedModel):
...
@@ -846,7 +846,7 @@ class MaskedBertForTokenClassification(MaskedBertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
MASKED_BERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
MASKED_BERT_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
=
None
,
...
@@ -932,7 +932,7 @@ class MaskedBertForQuestionAnswering(MaskedBertPreTrainedModel):
...
@@ -932,7 +932,7 @@ class MaskedBertForQuestionAnswering(MaskedBertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
MASKED_BERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
MASKED_BERT_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
=
None
,
...
...
src/transformers/file_utils.py
View file @
378142af
...
@@ -425,7 +425,7 @@ def add_start_docstrings(*docstr):
...
@@ -425,7 +425,7 @@ def add_start_docstrings(*docstr):
return
docstring_decorator
return
docstring_decorator
def
add_start_docstrings_to_
callable
(
*
docstr
):
def
add_start_docstrings_to_
model_forward
(
*
docstr
):
def
docstring_decorator
(
fn
):
def
docstring_decorator
(
fn
):
class_name
=
":class:`~transformers.{}`"
.
format
(
fn
.
__qualname__
.
split
(
"."
)[
0
])
class_name
=
":class:`~transformers.{}`"
.
format
(
fn
.
__qualname__
.
split
(
"."
)[
0
])
intro
=
" The {} forward method, overrides the :func:`__call__` special method."
.
format
(
class_name
)
intro
=
" The {} forward method, overrides the :func:`__call__` special method."
.
format
(
class_name
)
...
...
src/transformers/modeling_albert.py
View file @
378142af
...
@@ -30,7 +30,7 @@ from .file_utils import (
...
@@ -30,7 +30,7 @@ from .file_utils import (
ModelOutput
,
ModelOutput
,
add_code_sample_docstrings
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
replace_return_docstrings
,
)
)
from
.modeling_outputs
import
(
from
.modeling_outputs
import
(
...
@@ -631,7 +631,7 @@ class AlbertModel(AlbertPreTrainedModel):
...
@@ -631,7 +631,7 @@ class AlbertModel(AlbertPreTrainedModel):
inner_group_idx
=
int
(
layer
-
group_idx
*
self
.
config
.
inner_group_num
)
inner_group_idx
=
int
(
layer
-
group_idx
*
self
.
config
.
inner_group_num
)
self
.
encoder
.
albert_layer_groups
[
group_idx
].
albert_layers
[
inner_group_idx
].
attention
.
prune_heads
(
heads
)
self
.
encoder
.
albert_layer_groups
[
group_idx
].
albert_layers
[
inner_group_idx
].
attention
.
prune_heads
(
heads
)
@
add_start_docstrings_to_
callable
(
ALBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ALBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"albert-base-v2"
,
checkpoint
=
"albert-base-v2"
,
...
@@ -727,7 +727,7 @@ class AlbertForPreTraining(AlbertPreTrainedModel):
...
@@ -727,7 +727,7 @@ class AlbertForPreTraining(AlbertPreTrainedModel):
def
get_input_embeddings
(
self
):
def
get_input_embeddings
(
self
):
return
self
.
albert
.
embeddings
.
word_embeddings
return
self
.
albert
.
embeddings
.
word_embeddings
@
add_start_docstrings_to_
callable
(
ALBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ALBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
AlbertForPreTrainingOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
AlbertForPreTrainingOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
...
@@ -879,7 +879,7 @@ class AlbertForMaskedLM(AlbertPreTrainedModel):
...
@@ -879,7 +879,7 @@ class AlbertForMaskedLM(AlbertPreTrainedModel):
def
get_input_embeddings
(
self
):
def
get_input_embeddings
(
self
):
return
self
.
albert
.
embeddings
.
word_embeddings
return
self
.
albert
.
embeddings
.
word_embeddings
@
add_start_docstrings_to_
callable
(
ALBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ALBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"albert-base-v2"
,
checkpoint
=
"albert-base-v2"
,
...
@@ -967,7 +967,7 @@ class AlbertForSequenceClassification(AlbertPreTrainedModel):
...
@@ -967,7 +967,7 @@ class AlbertForSequenceClassification(AlbertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
ALBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ALBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"albert-base-v2"
,
checkpoint
=
"albert-base-v2"
,
...
@@ -1055,7 +1055,7 @@ class AlbertForTokenClassification(AlbertPreTrainedModel):
...
@@ -1055,7 +1055,7 @@ class AlbertForTokenClassification(AlbertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
ALBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ALBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"albert-base-v2"
,
checkpoint
=
"albert-base-v2"
,
...
@@ -1143,7 +1143,7 @@ class AlbertForQuestionAnswering(AlbertPreTrainedModel):
...
@@ -1143,7 +1143,7 @@ class AlbertForQuestionAnswering(AlbertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
ALBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ALBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"albert-base-v2"
,
checkpoint
=
"albert-base-v2"
,
...
@@ -1242,7 +1242,7 @@ class AlbertForMultipleChoice(AlbertPreTrainedModel):
...
@@ -1242,7 +1242,7 @@ class AlbertForMultipleChoice(AlbertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
ALBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ALBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"albert-base-v2"
,
checkpoint
=
"albert-base-v2"
,
...
...
src/transformers/modeling_bart.py
View file @
378142af
...
@@ -30,7 +30,7 @@ from .file_utils import (
...
@@ -30,7 +30,7 @@ from .file_utils import (
add_code_sample_docstrings
,
add_code_sample_docstrings
,
add_end_docstrings
,
add_end_docstrings
,
add_start_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
replace_return_docstrings
,
)
)
from
.modeling_outputs
import
(
from
.modeling_outputs
import
(
...
@@ -846,7 +846,7 @@ class BartModel(PretrainedBartModel):
...
@@ -846,7 +846,7 @@ class BartModel(PretrainedBartModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
BART_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
BART_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"facebook/bart-large"
,
checkpoint
=
"facebook/bart-large"
,
...
@@ -981,7 +981,7 @@ class BartForConditionalGeneration(PretrainedBartModel):
...
@@ -981,7 +981,7 @@ class BartForConditionalGeneration(PretrainedBartModel):
new_bias
=
torch
.
cat
([
self
.
final_logits_bias
,
extra_bias
],
dim
=
1
)
new_bias
=
torch
.
cat
([
self
.
final_logits_bias
,
extra_bias
],
dim
=
1
)
self
.
register_buffer
(
"final_logits_bias"
,
new_bias
)
self
.
register_buffer
(
"final_logits_bias"
,
new_bias
)
@
add_start_docstrings_to_
callable
(
BART_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
BART_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
Seq2SeqLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
Seq2SeqLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
add_end_docstrings
(
BART_GENERATION_EXAMPLE
)
@
add_end_docstrings
(
BART_GENERATION_EXAMPLE
)
def
forward
(
def
forward
(
...
@@ -1147,7 +1147,7 @@ class BartForSequenceClassification(PretrainedBartModel):
...
@@ -1147,7 +1147,7 @@ class BartForSequenceClassification(PretrainedBartModel):
self
.
model
.
_init_weights
(
self
.
classification_head
.
dense
)
self
.
model
.
_init_weights
(
self
.
classification_head
.
dense
)
self
.
model
.
_init_weights
(
self
.
classification_head
.
out_proj
)
self
.
model
.
_init_weights
(
self
.
classification_head
.
out_proj
)
@
add_start_docstrings_to_
callable
(
BART_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
BART_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"facebook/bart-large"
,
checkpoint
=
"facebook/bart-large"
,
...
@@ -1234,7 +1234,7 @@ class BartForQuestionAnswering(PretrainedBartModel):
...
@@ -1234,7 +1234,7 @@ class BartForQuestionAnswering(PretrainedBartModel):
self
.
model
.
_init_weights
(
self
.
qa_outputs
)
self
.
model
.
_init_weights
(
self
.
qa_outputs
)
@
add_start_docstrings_to_
callable
(
BART_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
BART_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"facebook/bart-large"
,
checkpoint
=
"facebook/bart-large"
,
...
...
src/transformers/modeling_bert.py
View file @
378142af
...
@@ -33,7 +33,7 @@ from .file_utils import (
...
@@ -33,7 +33,7 @@ from .file_utils import (
ModelOutput
,
ModelOutput
,
add_code_sample_docstrings
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
replace_return_docstrings
,
)
)
from
.modeling_outputs
import
(
from
.modeling_outputs
import
(
...
@@ -748,7 +748,7 @@ class BertModel(BertPreTrainedModel):
...
@@ -748,7 +748,7 @@ class BertModel(BertPreTrainedModel):
for
layer
,
heads
in
heads_to_prune
.
items
():
for
layer
,
heads
in
heads_to_prune
.
items
():
self
.
encoder
.
layer
[
layer
].
attention
.
prune_heads
(
heads
)
self
.
encoder
.
layer
[
layer
].
attention
.
prune_heads
(
heads
)
@
add_start_docstrings_to_
callable
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"bert-base-uncased"
,
checkpoint
=
"bert-base-uncased"
,
...
@@ -870,7 +870,7 @@ class BertForPreTraining(BertPreTrainedModel):
...
@@ -870,7 +870,7 @@ class BertForPreTraining(BertPreTrainedModel):
def
get_output_embeddings
(
self
):
def
get_output_embeddings
(
self
):
return
self
.
cls
.
predictions
.
decoder
return
self
.
cls
.
predictions
.
decoder
@
add_start_docstrings_to_
callable
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
BertForPreTrainingOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
BertForPreTrainingOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
...
@@ -983,7 +983,7 @@ class BertLMHeadModel(BertPreTrainedModel):
...
@@ -983,7 +983,7 @@ class BertLMHeadModel(BertPreTrainedModel):
def
get_output_embeddings
(
self
):
def
get_output_embeddings
(
self
):
return
self
.
cls
.
predictions
.
decoder
return
self
.
cls
.
predictions
.
decoder
@
add_start_docstrings_to_
callable
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
CausalLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
CausalLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
...
@@ -1103,7 +1103,7 @@ class BertForMaskedLM(BertPreTrainedModel):
...
@@ -1103,7 +1103,7 @@ class BertForMaskedLM(BertPreTrainedModel):
def
get_output_embeddings
(
self
):
def
get_output_embeddings
(
self
):
return
self
.
cls
.
predictions
.
decoder
return
self
.
cls
.
predictions
.
decoder
@
add_start_docstrings_to_
callable
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"bert-base-uncased"
,
checkpoint
=
"bert-base-uncased"
,
...
@@ -1206,7 +1206,7 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
...
@@ -1206,7 +1206,7 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
NextSentencePredictorOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
NextSentencePredictorOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
...
@@ -1300,7 +1300,7 @@ class BertForSequenceClassification(BertPreTrainedModel):
...
@@ -1300,7 +1300,7 @@ class BertForSequenceClassification(BertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"bert-base-uncased"
,
checkpoint
=
"bert-base-uncased"
,
...
@@ -1384,7 +1384,7 @@ class BertForMultipleChoice(BertPreTrainedModel):
...
@@ -1384,7 +1384,7 @@ class BertForMultipleChoice(BertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"bert-base-uncased"
,
checkpoint
=
"bert-base-uncased"
,
...
@@ -1479,7 +1479,7 @@ class BertForTokenClassification(BertPreTrainedModel):
...
@@ -1479,7 +1479,7 @@ class BertForTokenClassification(BertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"bert-base-uncased"
,
checkpoint
=
"bert-base-uncased"
,
...
@@ -1569,7 +1569,7 @@ class BertForQuestionAnswering(BertPreTrainedModel):
...
@@ -1569,7 +1569,7 @@ class BertForQuestionAnswering(BertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"bert-base-uncased"
,
checkpoint
=
"bert-base-uncased"
,
...
...
src/transformers/modeling_bert_generation.py
View file @
378142af
...
@@ -24,7 +24,7 @@ from .configuration_bert_generation import BertGenerationConfig
...
@@ -24,7 +24,7 @@ from .configuration_bert_generation import BertGenerationConfig
from
.file_utils
import
(
from
.file_utils
import
(
add_code_sample_docstrings
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
replace_return_docstrings
,
)
)
from
.modeling_bert
import
BertEncoder
from
.modeling_bert
import
BertEncoder
...
@@ -293,7 +293,7 @@ class BertGenerationEncoder(BertGenerationPreTrainedModel):
...
@@ -293,7 +293,7 @@ class BertGenerationEncoder(BertGenerationPreTrainedModel):
for
layer
,
heads
in
heads_to_prune
.
items
():
for
layer
,
heads
in
heads_to_prune
.
items
():
self
.
encoder
.
layer
[
layer
].
attention
.
prune_heads
(
heads
)
self
.
encoder
.
layer
[
layer
].
attention
.
prune_heads
(
heads
)
@
add_start_docstrings_to_
callable
(
BERT_GENERATION_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
BERT_GENERATION_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"google/bert_for_seq_generation_L-24_bbc_encoder"
,
checkpoint
=
"google/bert_for_seq_generation_L-24_bbc_encoder"
,
...
@@ -421,7 +421,7 @@ class BertGenerationDecoder(BertGenerationPreTrainedModel):
...
@@ -421,7 +421,7 @@ class BertGenerationDecoder(BertGenerationPreTrainedModel):
def
get_output_embeddings
(
self
):
def
get_output_embeddings
(
self
):
return
self
.
lm_head
.
decoder
return
self
.
lm_head
.
decoder
@
add_start_docstrings_to_
callable
(
BERT_GENERATION_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
BERT_GENERATION_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
CausalLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
CausalLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
...
...
src/transformers/modeling_ctrl.py
View file @
378142af
...
@@ -24,7 +24,7 @@ import torch.nn as nn
...
@@ -24,7 +24,7 @@ import torch.nn as nn
from
torch.nn
import
CrossEntropyLoss
from
torch.nn
import
CrossEntropyLoss
from
.configuration_ctrl
import
CTRLConfig
from
.configuration_ctrl
import
CTRLConfig
from
.file_utils
import
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
from
.file_utils
import
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
model_forward
from
.modeling_outputs
import
BaseModelOutputWithPast
,
CausalLMOutputWithPast
from
.modeling_outputs
import
BaseModelOutputWithPast
,
CausalLMOutputWithPast
from
.modeling_utils
import
Conv1D
,
PreTrainedModel
,
find_pruneable_heads_and_indices
,
prune_linear_layer
from
.modeling_utils
import
Conv1D
,
PreTrainedModel
,
find_pruneable_heads_and_indices
,
prune_linear_layer
from
.utils
import
logging
from
.utils
import
logging
...
@@ -349,7 +349,7 @@ class CTRLModel(CTRLPreTrainedModel):
...
@@ -349,7 +349,7 @@ class CTRLModel(CTRLPreTrainedModel):
for
layer
,
heads
in
heads_to_prune
.
items
():
for
layer
,
heads
in
heads_to_prune
.
items
():
self
.
h
[
layer
].
multi_head_attention
.
prune_heads
(
heads
)
self
.
h
[
layer
].
multi_head_attention
.
prune_heads
(
heads
)
@
add_start_docstrings_to_
callable
(
CTRL_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
CTRL_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"ctrl"
,
checkpoint
=
"ctrl"
,
...
@@ -521,7 +521,7 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
...
@@ -521,7 +521,7 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
return
{
"input_ids"
:
input_ids
,
"past_key_values"
:
past
,
"use_cache"
:
kwargs
[
"use_cache"
]}
return
{
"input_ids"
:
input_ids
,
"past_key_values"
:
past
,
"use_cache"
:
kwargs
[
"use_cache"
]}
@
add_start_docstrings_to_
callable
(
CTRL_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
CTRL_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"ctrl"
,
checkpoint
=
"ctrl"
,
...
...
src/transformers/modeling_deberta.py
View file @
378142af
...
@@ -24,7 +24,7 @@ from torch.nn import CrossEntropyLoss
...
@@ -24,7 +24,7 @@ from torch.nn import CrossEntropyLoss
from
.activations
import
ACT2FN
from
.activations
import
ACT2FN
from
.configuration_deberta
import
DebertaConfig
from
.configuration_deberta
import
DebertaConfig
from
.file_utils
import
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
from
.file_utils
import
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
model_forward
from
.modeling_outputs
import
BaseModelOutput
,
SequenceClassifierOutput
from
.modeling_outputs
import
BaseModelOutput
,
SequenceClassifierOutput
from
.modeling_utils
import
PreTrainedModel
from
.modeling_utils
import
PreTrainedModel
from
.utils
import
logging
from
.utils
import
logging
...
@@ -858,7 +858,7 @@ class DebertaModel(DebertaPreTrainedModel):
...
@@ -858,7 +858,7 @@ class DebertaModel(DebertaPreTrainedModel):
"""
"""
raise
NotImplementedError
(
"The prune function is not implemented in DeBERTa model."
)
raise
NotImplementedError
(
"The prune function is not implemented in DeBERTa model."
)
@
add_start_docstrings_to_
callable
(
DEBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
DEBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"microsoft/deberta-base"
,
checkpoint
=
"microsoft/deberta-base"
,
...
@@ -976,7 +976,7 @@ class DebertaForSequenceClassification(DebertaPreTrainedModel):
...
@@ -976,7 +976,7 @@ class DebertaForSequenceClassification(DebertaPreTrainedModel):
def
set_input_embeddings
(
self
,
new_embeddings
):
def
set_input_embeddings
(
self
,
new_embeddings
):
self
.
deberta
.
set_input_embeddings
(
new_embeddings
)
self
.
deberta
.
set_input_embeddings
(
new_embeddings
)
@
add_start_docstrings_to_
callable
(
DEBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
DEBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"microsoft/deberta-base"
,
checkpoint
=
"microsoft/deberta-base"
,
...
...
src/transformers/modeling_distilbert.py
View file @
378142af
...
@@ -32,7 +32,7 @@ from .configuration_distilbert import DistilBertConfig
...
@@ -32,7 +32,7 @@ from .configuration_distilbert import DistilBertConfig
from
.file_utils
import
(
from
.file_utils
import
(
add_code_sample_docstrings
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
replace_return_docstrings
,
)
)
from
.modeling_outputs
import
(
from
.modeling_outputs
import
(
...
@@ -436,7 +436,7 @@ class DistilBertModel(DistilBertPreTrainedModel):
...
@@ -436,7 +436,7 @@ class DistilBertModel(DistilBertPreTrainedModel):
for
layer
,
heads
in
heads_to_prune
.
items
():
for
layer
,
heads
in
heads_to_prune
.
items
():
self
.
transformer
.
layer
[
layer
].
attention
.
prune_heads
(
heads
)
self
.
transformer
.
layer
[
layer
].
attention
.
prune_heads
(
heads
)
@
add_start_docstrings_to_
callable
(
DISTILBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices"
))
@
add_start_docstrings_to_
model_forward
(
DISTILBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"distilbert-base-uncased"
,
checkpoint
=
"distilbert-base-uncased"
,
...
@@ -509,7 +509,7 @@ class DistilBertForMaskedLM(DistilBertPreTrainedModel):
...
@@ -509,7 +509,7 @@ class DistilBertForMaskedLM(DistilBertPreTrainedModel):
def
get_output_embeddings
(
self
):
def
get_output_embeddings
(
self
):
return
self
.
vocab_projector
return
self
.
vocab_projector
@
add_start_docstrings_to_
callable
(
DISTILBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices"
))
@
add_start_docstrings_to_
model_forward
(
DISTILBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"distilbert-base-uncased"
,
checkpoint
=
"distilbert-base-uncased"
,
...
@@ -595,7 +595,7 @@ class DistilBertForSequenceClassification(DistilBertPreTrainedModel):
...
@@ -595,7 +595,7 @@ class DistilBertForSequenceClassification(DistilBertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
DISTILBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices"
))
@
add_start_docstrings_to_
model_forward
(
DISTILBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"distilbert-base-uncased"
,
checkpoint
=
"distilbert-base-uncased"
,
...
@@ -676,7 +676,7 @@ class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
...
@@ -676,7 +676,7 @@ class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
DISTILBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices"
))
@
add_start_docstrings_to_
model_forward
(
DISTILBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"distilbert-base-uncased"
,
checkpoint
=
"distilbert-base-uncased"
,
...
@@ -772,7 +772,7 @@ class DistilBertForTokenClassification(DistilBertPreTrainedModel):
...
@@ -772,7 +772,7 @@ class DistilBertForTokenClassification(DistilBertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
DISTILBERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
DISTILBERT_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"distilbert-base-uncased"
,
checkpoint
=
"distilbert-base-uncased"
,
...
@@ -856,7 +856,9 @@ class DistilBertForMultipleChoice(DistilBertPreTrainedModel):
...
@@ -856,7 +856,9 @@ class DistilBertForMultipleChoice(DistilBertPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_callable
(
DISTILBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_start_docstrings_to_model_forward
(
DISTILBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
)
)
@
replace_return_docstrings
(
output_type
=
MultipleChoiceModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
MultipleChoiceModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
...
...
src/transformers/modeling_dpr.py
View file @
378142af
...
@@ -22,7 +22,12 @@ import torch
...
@@ -22,7 +22,12 @@ import torch
from
torch
import
Tensor
,
nn
from
torch
import
Tensor
,
nn
from
.configuration_dpr
import
DPRConfig
from
.configuration_dpr
import
DPRConfig
from
.file_utils
import
ModelOutput
,
add_start_docstrings
,
add_start_docstrings_to_callable
,
replace_return_docstrings
from
.file_utils
import
(
ModelOutput
,
add_start_docstrings
,
add_start_docstrings_to_model_forward
,
replace_return_docstrings
,
)
from
.modeling_bert
import
BertModel
from
.modeling_bert
import
BertModel
from
.modeling_outputs
import
BaseModelOutputWithPooling
from
.modeling_outputs
import
BaseModelOutputWithPooling
from
.modeling_utils
import
PreTrainedModel
from
.modeling_utils
import
PreTrainedModel
...
@@ -431,7 +436,7 @@ class DPRContextEncoder(DPRPretrainedContextEncoder):
...
@@ -431,7 +436,7 @@ class DPRContextEncoder(DPRPretrainedContextEncoder):
self
.
ctx_encoder
=
DPREncoder
(
config
)
self
.
ctx_encoder
=
DPREncoder
(
config
)
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
DPR_ENCODERS_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
DPR_ENCODERS_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
DPRContextEncoderOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
DPRContextEncoderOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
...
@@ -509,7 +514,7 @@ class DPRQuestionEncoder(DPRPretrainedQuestionEncoder):
...
@@ -509,7 +514,7 @@ class DPRQuestionEncoder(DPRPretrainedQuestionEncoder):
self
.
question_encoder
=
DPREncoder
(
config
)
self
.
question_encoder
=
DPREncoder
(
config
)
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
DPR_ENCODERS_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
DPR_ENCODERS_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
DPRQuestionEncoderOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
DPRQuestionEncoderOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
...
@@ -586,7 +591,7 @@ class DPRReader(DPRPretrainedReader):
...
@@ -586,7 +591,7 @@ class DPRReader(DPRPretrainedReader):
self
.
span_predictor
=
DPRSpanPredictor
(
config
)
self
.
span_predictor
=
DPRSpanPredictor
(
config
)
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
DPR_READER_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
DPR_READER_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
DPRReaderOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
DPRReaderOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
...
...
src/transformers/modeling_electra.py
View file @
378142af
...
@@ -30,7 +30,7 @@ from .file_utils import (
...
@@ -30,7 +30,7 @@ from .file_utils import (
ModelOutput
,
ModelOutput
,
add_code_sample_docstrings
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
replace_return_docstrings
,
)
)
from
.modeling_outputs
import
(
from
.modeling_outputs
import
(
...
@@ -693,7 +693,7 @@ class ElectraModel(ElectraPreTrainedModel):
...
@@ -693,7 +693,7 @@ class ElectraModel(ElectraPreTrainedModel):
for
layer
,
heads
in
heads_to_prune
.
items
():
for
layer
,
heads
in
heads_to_prune
.
items
():
self
.
encoder
.
layer
[
layer
].
attention
.
prune_heads
(
heads
)
self
.
encoder
.
layer
[
layer
].
attention
.
prune_heads
(
heads
)
@
add_start_docstrings_to_
callable
(
ELECTRA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ELECTRA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"google/electra-small-discriminator"
,
checkpoint
=
"google/electra-small-discriminator"
,
...
@@ -791,7 +791,7 @@ class ElectraForSequenceClassification(ElectraPreTrainedModel):
...
@@ -791,7 +791,7 @@ class ElectraForSequenceClassification(ElectraPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
ELECTRA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ELECTRA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"google/electra-small-discriminator"
,
checkpoint
=
"google/electra-small-discriminator"
,
...
@@ -873,7 +873,7 @@ class ElectraForPreTraining(ElectraPreTrainedModel):
...
@@ -873,7 +873,7 @@ class ElectraForPreTraining(ElectraPreTrainedModel):
self
.
discriminator_predictions
=
ElectraDiscriminatorPredictions
(
config
)
self
.
discriminator_predictions
=
ElectraDiscriminatorPredictions
(
config
)
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
ELECTRA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ELECTRA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
ElectraForPreTrainingOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
ElectraForPreTrainingOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
...
@@ -971,7 +971,7 @@ class ElectraForMaskedLM(ElectraPreTrainedModel):
...
@@ -971,7 +971,7 @@ class ElectraForMaskedLM(ElectraPreTrainedModel):
def
get_output_embeddings
(
self
):
def
get_output_embeddings
(
self
):
return
self
.
generator_lm_head
return
self
.
generator_lm_head
@
add_start_docstrings_to_
callable
(
ELECTRA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ELECTRA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"google/electra-small-discriminator"
,
checkpoint
=
"google/electra-small-discriminator"
,
...
@@ -1060,7 +1060,7 @@ class ElectraForTokenClassification(ElectraPreTrainedModel):
...
@@ -1060,7 +1060,7 @@ class ElectraForTokenClassification(ElectraPreTrainedModel):
self
.
classifier
=
nn
.
Linear
(
config
.
hidden_size
,
config
.
num_labels
)
self
.
classifier
=
nn
.
Linear
(
config
.
hidden_size
,
config
.
num_labels
)
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
ELECTRA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ELECTRA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"google/electra-small-discriminator"
,
checkpoint
=
"google/electra-small-discriminator"
,
...
@@ -1147,7 +1147,7 @@ class ElectraForQuestionAnswering(ElectraPreTrainedModel):
...
@@ -1147,7 +1147,7 @@ class ElectraForQuestionAnswering(ElectraPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
ELECTRA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ELECTRA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"google/electra-small-discriminator"
,
checkpoint
=
"google/electra-small-discriminator"
,
...
@@ -1248,7 +1248,7 @@ class ElectraForMultipleChoice(ElectraPreTrainedModel):
...
@@ -1248,7 +1248,7 @@ class ElectraForMultipleChoice(ElectraPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
ELECTRA_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ELECTRA_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"google/electra-small-discriminator"
,
checkpoint
=
"google/electra-small-discriminator"
,
...
...
src/transformers/modeling_encoder_decoder.py
View file @
378142af
...
@@ -19,7 +19,7 @@ from typing import Optional
...
@@ -19,7 +19,7 @@ from typing import Optional
from
.configuration_encoder_decoder
import
EncoderDecoderConfig
from
.configuration_encoder_decoder
import
EncoderDecoderConfig
from
.configuration_utils
import
PretrainedConfig
from
.configuration_utils
import
PretrainedConfig
from
.file_utils
import
add_start_docstrings
,
add_start_docstrings_to_
callable
,
replace_return_docstrings
from
.file_utils
import
add_start_docstrings
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
from
.modeling_outputs
import
Seq2SeqLMOutput
from
.modeling_outputs
import
Seq2SeqLMOutput
from
.modeling_utils
import
PreTrainedModel
from
.modeling_utils
import
PreTrainedModel
from
.utils
import
logging
from
.utils
import
logging
...
@@ -335,7 +335,7 @@ class EncoderDecoderModel(PreTrainedModel):
...
@@ -335,7 +335,7 @@ class EncoderDecoderModel(PreTrainedModel):
config
=
EncoderDecoderConfig
.
from_encoder_decoder_configs
(
encoder
.
config
,
decoder
.
config
,
**
kwargs
)
config
=
EncoderDecoderConfig
.
from_encoder_decoder_configs
(
encoder
.
config
,
decoder
.
config
,
**
kwargs
)
return
cls
(
encoder
=
encoder
,
decoder
=
decoder
,
config
=
config
)
return
cls
(
encoder
=
encoder
,
decoder
=
decoder
,
config
=
config
)
@
add_start_docstrings_to_
callable
(
ENCODER_DECODER_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
ENCODER_DECODER_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
Seq2SeqLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
Seq2SeqLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
...
...
src/transformers/modeling_flaubert.py
View file @
378142af
...
@@ -21,7 +21,7 @@ import torch
...
@@ -21,7 +21,7 @@ import torch
from
torch.nn
import
functional
as
F
from
torch.nn
import
functional
as
F
from
.configuration_flaubert
import
FlaubertConfig
from
.configuration_flaubert
import
FlaubertConfig
from
.file_utils
import
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
from
.file_utils
import
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
model_forward
from
.modeling_outputs
import
BaseModelOutput
from
.modeling_outputs
import
BaseModelOutput
from
.modeling_xlm
import
(
from
.modeling_xlm
import
(
XLMForMultipleChoice
,
XLMForMultipleChoice
,
...
@@ -140,7 +140,7 @@ class FlaubertModel(XLMModel):
...
@@ -140,7 +140,7 @@ class FlaubertModel(XLMModel):
self
.
layerdrop
=
getattr
(
config
,
"layerdrop"
,
0.0
)
self
.
layerdrop
=
getattr
(
config
,
"layerdrop"
,
0.0
)
self
.
pre_norm
=
getattr
(
config
,
"pre_norm"
,
False
)
self
.
pre_norm
=
getattr
(
config
,
"pre_norm"
,
False
)
@
add_start_docstrings_to_
callable
(
FLAUBERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
FLAUBERT_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"flaubert/flaubert_base_cased"
,
checkpoint
=
"flaubert/flaubert_base_cased"
,
...
...
src/transformers/modeling_fsmt.py
View file @
378142af
...
@@ -43,7 +43,7 @@ from .file_utils import (
...
@@ -43,7 +43,7 @@ from .file_utils import (
add_code_sample_docstrings
,
add_code_sample_docstrings
,
add_end_docstrings
,
add_end_docstrings
,
add_start_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
replace_return_docstrings
,
)
)
from
.modeling_outputs
import
BaseModelOutput
,
BaseModelOutputWithPast
,
Seq2SeqLMOutput
,
Seq2SeqModelOutput
from
.modeling_outputs
import
BaseModelOutput
,
BaseModelOutputWithPast
,
Seq2SeqLMOutput
,
Seq2SeqModelOutput
...
@@ -899,7 +899,7 @@ class FSMTModel(PretrainedFSMTModel):
...
@@ -899,7 +899,7 @@ class FSMTModel(PretrainedFSMTModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
FSMT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
FSMT_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"facebook/wmt19-ru-en"
,
checkpoint
=
"facebook/wmt19-ru-en"
,
...
@@ -1039,7 +1039,7 @@ class FSMTForConditionalGeneration(PretrainedFSMTModel):
...
@@ -1039,7 +1039,7 @@ class FSMTForConditionalGeneration(PretrainedFSMTModel):
return
new_embeddings
return
new_embeddings
@
add_start_docstrings_to_
callable
(
FSMT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
FSMT_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
Seq2SeqLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
Seq2SeqLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
add_end_docstrings
(
FSMT_GENERATION_EXAMPLE
)
@
add_end_docstrings
(
FSMT_GENERATION_EXAMPLE
)
def
forward
(
def
forward
(
...
...
src/transformers/modeling_funnel.py
View file @
378142af
...
@@ -30,7 +30,7 @@ from .file_utils import (
...
@@ -30,7 +30,7 @@ from .file_utils import (
ModelOutput
,
ModelOutput
,
add_code_sample_docstrings
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
replace_return_docstrings
,
)
)
from
.modeling_outputs
import
(
from
.modeling_outputs
import
(
...
@@ -906,7 +906,7 @@ class FunnelBaseModel(FunnelPreTrainedModel):
...
@@ -906,7 +906,7 @@ class FunnelBaseModel(FunnelPreTrainedModel):
def
set_input_embeddings
(
self
,
new_embeddings
):
def
set_input_embeddings
(
self
,
new_embeddings
):
self
.
embeddings
.
word_embeddings
=
new_embeddings
self
.
embeddings
.
word_embeddings
=
new_embeddings
@
add_start_docstrings_to_
callable
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"funnel-transformer/small-base"
,
checkpoint
=
"funnel-transformer/small-base"
,
...
@@ -983,7 +983,7 @@ class FunnelModel(FunnelPreTrainedModel):
...
@@ -983,7 +983,7 @@ class FunnelModel(FunnelPreTrainedModel):
def
set_input_embeddings
(
self
,
new_embeddings
):
def
set_input_embeddings
(
self
,
new_embeddings
):
self
.
embeddings
.
word_embeddings
=
new_embeddings
self
.
embeddings
.
word_embeddings
=
new_embeddings
@
add_start_docstrings_to_
callable
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"funnel-transformer/small"
,
checkpoint
=
"funnel-transformer/small"
,
...
@@ -1082,7 +1082,7 @@ class FunnelForPreTraining(FunnelPreTrainedModel):
...
@@ -1082,7 +1082,7 @@ class FunnelForPreTraining(FunnelPreTrainedModel):
self
.
discriminator_predictions
=
FunnelDiscriminatorPredictions
(
config
)
self
.
discriminator_predictions
=
FunnelDiscriminatorPredictions
(
config
)
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
FunnelForPreTrainingOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
FunnelForPreTrainingOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
...
@@ -1167,7 +1167,7 @@ class FunnelForMaskedLM(FunnelPreTrainedModel):
...
@@ -1167,7 +1167,7 @@ class FunnelForMaskedLM(FunnelPreTrainedModel):
def
get_output_embeddings
(
self
):
def
get_output_embeddings
(
self
):
return
self
.
lm_head
return
self
.
lm_head
@
add_start_docstrings_to_
callable
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"funnel-transformer/small"
,
checkpoint
=
"funnel-transformer/small"
,
...
@@ -1240,7 +1240,7 @@ class FunnelForSequenceClassification(FunnelPreTrainedModel):
...
@@ -1240,7 +1240,7 @@ class FunnelForSequenceClassification(FunnelPreTrainedModel):
self
.
classifier
=
FunnelClassificationHead
(
config
,
config
.
num_labels
)
self
.
classifier
=
FunnelClassificationHead
(
config
,
config
.
num_labels
)
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"funnel-transformer/small-base"
,
checkpoint
=
"funnel-transformer/small-base"
,
...
@@ -1317,7 +1317,7 @@ class FunnelForMultipleChoice(FunnelPreTrainedModel):
...
@@ -1317,7 +1317,7 @@ class FunnelForMultipleChoice(FunnelPreTrainedModel):
self
.
classifier
=
FunnelClassificationHead
(
config
,
1
)
self
.
classifier
=
FunnelClassificationHead
(
config
,
1
)
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"funnel-transformer/small-base"
,
checkpoint
=
"funnel-transformer/small-base"
,
...
@@ -1403,7 +1403,7 @@ class FunnelForTokenClassification(FunnelPreTrainedModel):
...
@@ -1403,7 +1403,7 @@ class FunnelForTokenClassification(FunnelPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"funnel-transformer/small"
,
checkpoint
=
"funnel-transformer/small"
,
...
@@ -1485,7 +1485,7 @@ class FunnelForQuestionAnswering(FunnelPreTrainedModel):
...
@@ -1485,7 +1485,7 @@ class FunnelForQuestionAnswering(FunnelPreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
FUNNEL_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"funnel-transformer/small"
,
checkpoint
=
"funnel-transformer/small"
,
...
...
src/transformers/modeling_gpt2.py
View file @
378142af
...
@@ -30,7 +30,7 @@ from .file_utils import (
...
@@ -30,7 +30,7 @@ from .file_utils import (
ModelOutput
,
ModelOutput
,
add_code_sample_docstrings
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
replace_return_docstrings
,
)
)
from
.modeling_outputs
import
BaseModelOutputWithPast
,
CausalLMOutputWithPast
,
SequenceClassifierOutputWithPast
from
.modeling_outputs
import
BaseModelOutputWithPast
,
CausalLMOutputWithPast
,
SequenceClassifierOutputWithPast
...
@@ -502,7 +502,7 @@ class GPT2Model(GPT2PreTrainedModel):
...
@@ -502,7 +502,7 @@ class GPT2Model(GPT2PreTrainedModel):
for
layer
,
heads
in
heads_to_prune
.
items
():
for
layer
,
heads
in
heads_to_prune
.
items
():
self
.
h
[
layer
].
attn
.
prune_heads
(
heads
)
self
.
h
[
layer
].
attn
.
prune_heads
(
heads
)
@
add_start_docstrings_to_
callable
(
GPT2_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
GPT2_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"gpt2"
,
checkpoint
=
"gpt2"
,
...
@@ -723,7 +723,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
...
@@ -723,7 +723,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
"attention_mask"
:
attention_mask
,
"attention_mask"
:
attention_mask
,
}
}
@
add_start_docstrings_to_
callable
(
GPT2_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
GPT2_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"gpt2"
,
checkpoint
=
"gpt2"
,
...
@@ -837,7 +837,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
...
@@ -837,7 +837,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
"use_cache"
:
kwargs
.
get
(
"use_cache"
),
"use_cache"
:
kwargs
.
get
(
"use_cache"
),
}
}
@
add_start_docstrings_to_
callable
(
GPT2_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
GPT2_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
GPT2DoubleHeadsModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
GPT2DoubleHeadsModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
...
@@ -987,7 +987,7 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
...
@@ -987,7 +987,7 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
self
.
init_weights
()
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
GPT2_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
GPT2_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"microsoft/dialogrpt"
,
checkpoint
=
"microsoft/dialogrpt"
,
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment