"tests/models/vscode:/vscode.git/clone" did not exist on "0b9c93457570063907e2613f0c7a4084f6cf3945"
file_utils.py 46.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
Utilities for working with the local dataset cache. This file is adapted from the AllenNLP library at
https://github.com/allenai/allennlp Copyright by the AllenNLP authors.
thomwolf's avatar
thomwolf committed
4
"""
Aymeric Augustin's avatar
Aymeric Augustin committed
5

Aymeric Augustin's avatar
Aymeric Augustin committed
6
import fnmatch
Julien Chaumond's avatar
Julien Chaumond committed
7
import io
thomwolf's avatar
thomwolf committed
8
9
import json
import os
10
import re
11
import shutil
Aymeric Augustin's avatar
Aymeric Augustin committed
12
import sys
13
import tarfile
thomwolf's avatar
thomwolf committed
14
import tempfile
15
from collections import OrderedDict
Aymeric Augustin's avatar
Aymeric Augustin committed
16
from contextlib import contextmanager
17
from dataclasses import fields
18
from functools import partial, wraps
thomwolf's avatar
thomwolf committed
19
from hashlib import sha256
20
from pathlib import Path
Julien Chaumond's avatar
Julien Chaumond committed
21
from typing import Any, BinaryIO, Dict, Optional, Tuple, Union
Aymeric Augustin's avatar
Aymeric Augustin committed
22
from urllib.parse import urlparse
23
from zipfile import ZipFile, is_zipfile
thomwolf's avatar
thomwolf committed
24

25
import numpy as np
26
27
from tqdm.auto import tqdm

Aymeric Augustin's avatar
Aymeric Augustin committed
28
29
30
import requests
from filelock import FileLock

31
from . import __version__
Lysandre Debut's avatar
Lysandre Debut committed
32
from .utils import logging
thomwolf's avatar
thomwolf committed
33

Lysandre's avatar
Lysandre committed
34

Lysandre Debut's avatar
Lysandre Debut committed
35
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
thomwolf's avatar
thomwolf committed
36

37
38
39
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})

thomwolf's avatar
thomwolf committed
40
try:
41
42
    USE_TF = os.environ.get("USE_TF", "AUTO").upper()
    USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
43
    if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
44
        import torch
45

46
47
        _torch_available = True  # pylint: disable=invalid-name
        logger.info("PyTorch version {} available.".format(torch.__version__))
48
    else:
49
        logger.info("Disabling PyTorch because USE_TF is set")
50
        _torch_available = False
thomwolf's avatar
thomwolf committed
51
52
53
except ImportError:
    _torch_available = False  # pylint: disable=invalid-name

Lysandre's avatar
Lysandre committed
54
try:
55
56
57
    USE_TF = os.environ.get("USE_TF", "AUTO").upper()
    USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()

58
    if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
thomwolf's avatar
thomwolf committed
59
        import tensorflow as tf
60
61

        assert hasattr(tf, "__version__") and int(tf.__version__[0]) >= 2
thomwolf's avatar
thomwolf committed
62
63
64
        _tf_available = True  # pylint: disable=invalid-name
        logger.info("TensorFlow version {} available.".format(tf.__version__))
    else:
65
        logger.info("Disabling Tensorflow because USE_TORCH is set")
thomwolf's avatar
thomwolf committed
66
        _tf_available = False
Lysandre's avatar
Lysandre committed
67
68
except (ImportError, AssertionError):
    _tf_available = False  # pylint: disable=invalid-name
thomwolf's avatar
thomwolf committed
69

70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
try:
    USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()

    if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
        import flax
        import jax

        logger.info("JAX version {}, Flax: available".format(jax.__version__))
        logger.info("Flax available: {}".format(flax))
        _flax_available = True
    else:
        _flax_available = False
except ImportError:
    _flax_available = False  # pylint: disable=invalid-name


87
try:
88
    import datasets  # noqa: F401
89

90
91
92
    # Check we're not importing a "datasets" directory somewhere
    _datasets_available = hasattr(datasets, "__version__") and hasattr(datasets, "load_dataset")
    if _datasets_available:
93
        logger.debug(f"Successfully imported datasets version {datasets.__version__}")
94
95
    else:
        logger.debug("Imported a datasets object but this doesn't seem to be the 🤗 datasets library.")
96
97

except ImportError:
98
    _datasets_available = False
99

100
101
try:
    from torch.hub import _get_torch_home
102

103
104
105
    torch_cache_home = _get_torch_home()
except ImportError:
    torch_cache_home = os.path.expanduser(
106
107
        os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
    )
108
109
110


try:
111
    import torch_xla.core.xla_model as xm  # noqa: F401
112
113
114
115
116
117
118
119
120

    if _torch_available:
        _torch_tpu_available = True  # pylint: disable=
    else:
        _torch_tpu_available = False
except ImportError:
    _torch_tpu_available = False


Patrick von Platen's avatar
Patrick von Platen committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
try:
    import psutil  # noqa: F401

    _psutil_available = True

except ImportError:
    _psutil_available = False


try:
    import py3nvml  # noqa: F401

    _py3nvml_available = True

except ImportError:
    _py3nvml_available = False


try:
    from apex import amp  # noqa: F401

    _has_apex = True
except ImportError:
    _has_apex = False

Ola Piktus's avatar
Ola Piktus committed
146
147
148
149
150

try:
    import faiss  # noqa: F401

    _faiss_available = True
151
    logger.debug(f"Successfully imported faiss version {faiss.__version__}")
Ola Piktus's avatar
Ola Piktus committed
152
153
154
except ImportError:
    _faiss_available = False

155
156
157
158
159
160
161
162
163
try:
    import sklearn.metrics  # noqa: F401

    import scipy.stats  # noqa: F401

    _has_sklearn = True
except (AttributeError, ImportError):
    _has_sklearn = False

164
165
166
167
168
169
170
171
172
173
174
try:
    # Test copied from tqdm.autonotebook: https://github.com/tqdm/tqdm/blob/master/tqdm/autonotebook.py
    get_ipython = sys.modules["IPython"].get_ipython
    if "IPKernelApp" not in get_ipython().config:
        raise ImportError("console")
    if "VSCODE_PID" in os.environ:
        raise ImportError("vscode")

    import IPython  # noqa: F401

    _in_notebook = True
175
except (AttributeError, ImportError, KeyError):
176
177
    _in_notebook = False

Ola Piktus's avatar
Ola Piktus committed
178

179
180
181
182
183
184
185
186
187
try:
    import sentencepiece  # noqa: F401

    _sentencepiece_available = True

except ImportError:
    _sentencepiece_available = False


188
189
190
191
192
193
194
195
196
try:
    import google.protobuf  # noqa: F401

    _protobuf_available = True

except ImportError:
    _protobuf_available = False


197
198
199
200
201
202
203
204
205
try:
    import tokenizers  # noqa: F401

    _tokenizers_available = True

except ImportError:
    _tokenizers_available = False


206
default_cache_path = os.path.join(torch_cache_home, "transformers")
207

208

209
210
211
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
thomwolf's avatar
thomwolf committed
212

213
WEIGHTS_NAME = "pytorch_model.bin"
214
215
TF2_WEIGHTS_NAME = "tf_model.h5"
TF_WEIGHTS_NAME = "model.ckpt"
216
CONFIG_NAME = "config.json"
217
MODEL_CARD_NAME = "modelcard.json"
Thomas Wolf's avatar
Thomas Wolf committed
218

219
220
SENTENCEPIECE_UNDERLINE = "▁"
SPIECE_UNDERLINE = SENTENCEPIECE_UNDERLINE  # Kept for backward compatibility
Lysandre's avatar
Lysandre committed
221

222
223
224
MULTIPLE_CHOICE_DUMMY_INPUTS = [
    [[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2  # Needs to have 0s and 1s only since XLM uses it for langs too.
225
226
227
DUMMY_INPUTS = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
DUMMY_MASK = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]

228
S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert"
Julien Chaumond's avatar
Julien Chaumond committed
229
CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co"
Julien Chaumond's avatar
Julien Chaumond committed
230
231
HUGGINGFACE_CO_PREFIX = "https://huggingface.co/{model_id}/resolve/{revision}/{filename}"

232
233
234
235
PRESET_MIRROR_DICT = {
    "tuna": "https://mirrors.tuna.tsinghua.edu.cn/hugging-face-models",
    "bfsu": "https://mirrors.bfsu.edu.cn/hugging-face-models",
}
236

Thomas Wolf's avatar
Thomas Wolf committed
237

thomwolf's avatar
thomwolf committed
238
239
240
def is_torch_available():
    return _torch_available

241

thomwolf's avatar
thomwolf committed
242
243
244
def is_tf_available():
    return _tf_available

245

246
247
248
249
def is_flax_available():
    return _flax_available


250
251
252
253
def is_torch_tpu_available():
    return _torch_tpu_available


254
255
def is_datasets_available():
    return _datasets_available
256
257


Patrick von Platen's avatar
Patrick von Platen committed
258
259
260
261
262
263
264
265
266
267
268
269
def is_psutil_available():
    return _psutil_available


def is_py3nvml_available():
    return _py3nvml_available


def is_apex_available():
    return _has_apex


Ola Piktus's avatar
Ola Piktus committed
270
271
272
273
def is_faiss_available():
    return _faiss_available


274
275
276
277
278
279
280
281
def is_sklearn_available():
    return _has_sklearn


def is_sentencepiece_available():
    return _sentencepiece_available


282
283
284
285
def is_protobuf_available():
    return _protobuf_available


286
287
288
289
def is_tokenizers_available():
    return _tokenizers_available


290
291
292
293
def is_in_notebook():
    return _in_notebook


294
295
296
297
298
299
300
301
302
303
304
305
306
def torch_only_method(fn):
    def wrapper(*args, **kwargs):
        if not _torch_available:
            raise ImportError(
                "You need to install pytorch to use this method or class, "
                "or activate it with environment variables USE_TORCH=1 and USE_TF=0."
            )
        else:
            return fn(*args, **kwargs)

    return wrapper


307
# docstyle-ignore
308
DATASETS_IMPORT_ERROR = """
309
{0} requires the 🤗 Datasets library but it was not found in your environment. You can install it with:
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
```
pip install datasets
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install datasets
```
then restarting your kernel.

Note that if you have a local folder named `datasets` or a local python file named `datasets.py` in your current
working directory, python may try to import this instead of the 🤗 Datasets library. You should rename this folder or
that python file if that's the case.
"""


325
# docstyle-ignore
326
TOKENIZERS_IMPORT_ERROR = """
327
{0} requires the 🤗 Tokenizers library but it was not found in your environment. You can install it with:
328
329
330
331
332
333
334
335
336
337
```
pip install tokenizers
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install tokenizers
```
"""


338
# docstyle-ignore
339
SENTENCEPIECE_IMPORT_ERROR = """
340
{0} requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the
341
installation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones
342
that match your environment.
343
344
345
"""


346
347
348
349
350
351
352
353
# docstyle-ignore
PROTOBUF_IMPORT_ERROR = """
{0} requires the protobuf library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/protocolbuffers/protobuf/tree/master/python#installation and follow the ones
that match your environment.
"""


354
# docstyle-ignore
355
FAISS_IMPORT_ERROR = """
356
{0} requires the faiss library but it was not found in your environment. Checkout the instructions on the
357
installation page of its repo: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md and follow the ones
358
that match your environment.
359
360
361
"""


362
# docstyle-ignore
363
PYTORCH_IMPORT_ERROR = """
364
365
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
366
367
368
"""


369
# docstyle-ignore
370
SKLEARN_IMPORT_ERROR = """
371
{0} requires the scikit-learn library but it was not found in your environment. You can install it with:
372
373
374
375
376
377
378
379
380
381
```
pip install -U scikit-learn
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install -U scikit-learn
```
"""


382
# docstyle-ignore
383
TENSORFLOW_IMPORT_ERROR = """
384
385
{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the
installation page: https://www.tensorflow.org/install and follow the ones that match your environment.
386
387
388
"""


389
# docstyle-ignore
390
FLAX_IMPORT_ERROR = """
391
392
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/google/flax and follow the ones that match your environment.
393
394
395
"""


396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
def requires_datasets(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_datasets_available():
        raise ImportError(DATASETS_IMPORT_ERROR.format(name))


def requires_faiss(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_faiss_available():
        raise ImportError(FAISS_IMPORT_ERROR.format(name))


def requires_pytorch(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_torch_available():
        raise ImportError(PYTORCH_IMPORT_ERROR.format(name))


def requires_sklearn(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_sklearn_available():
        raise ImportError(SKLEARN_IMPORT_ERROR.format(name))


def requires_tf(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_tf_available():
        raise ImportError(TENSORFLOW_IMPORT_ERROR.format(name))
424
425


426
427
428
429
430
431
def requires_flax(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_flax_available():
        raise ImportError(FLAX_IMPORT_ERROR.format(name))


432
433
434
435
436
437
438
439
440
441
def requires_tokenizers(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_tokenizers_available():
        raise ImportError(TOKENIZERS_IMPORT_ERROR.format(name))


def requires_sentencepiece(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_sentencepiece_available():
        raise ImportError(SENTENCEPIECE_IMPORT_ERROR.format(name))
442
443


444
445
446
447
448
449
def requires_protobuf(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_protobuf_available():
        raise ImportError(PROTOBUF_IMPORT_ERROR.format(name))


Aymeric Augustin's avatar
Aymeric Augustin committed
450
451
def add_start_docstrings(*docstr):
    def docstring_decorator(fn):
452
453
454
455
456
457
        fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
        return fn

    return docstring_decorator


458
def add_start_docstrings_to_model_forward(*docstr):
459
460
461
    def docstring_decorator(fn):
        class_name = ":class:`~transformers.{}`".format(fn.__qualname__.split(".")[0])
        intro = "   The {} forward method, overrides the :func:`__call__` special method.".format(class_name)
Lysandre's avatar
Lysandre committed
462
463
        note = r"""

464
    .. note::
Sylvain Gugger's avatar
Sylvain Gugger committed
465
466
467
        Although the recipe for forward pass needs to be defined within this function, one should call the
        :class:`Module` instance afterwards instead of this since the former takes care of running the pre and post
        processing steps while the latter silently ignores them.
468
469
        """
        fn.__doc__ = intro + note + "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
Aymeric Augustin's avatar
Aymeric Augustin committed
470
        return fn
471

Aymeric Augustin's avatar
Aymeric Augustin committed
472
    return docstring_decorator
473

474

Aymeric Augustin's avatar
Aymeric Augustin committed
475
476
477
478
def add_end_docstrings(*docstr):
    def docstring_decorator(fn):
        fn.__doc__ = fn.__doc__ + "".join(docstr)
        return fn
479

Aymeric Augustin's avatar
Aymeric Augustin committed
480
    return docstring_decorator
thomwolf's avatar
thomwolf committed
481

482

Sylvain Gugger's avatar
Sylvain Gugger committed
483
PT_RETURN_INTRODUCTION = r"""
484
    Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
485
486
487
        :class:`~{full_output_type}` or :obj:`tuple(torch.FloatTensor)`: A :class:`~{full_output_type}` (if
        ``return_dict=True`` is passed or when ``config.return_dict=True``) or a tuple of :obj:`torch.FloatTensor`
        comprising various elements depending on the configuration (:class:`~transformers.{config_class}`) and inputs.
488

489
490
491
"""


Sylvain Gugger's avatar
Sylvain Gugger committed
492
493
TF_RETURN_INTRODUCTION = r"""
    Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
494
495
496
        :class:`~{full_output_type}` or :obj:`tuple(tf.Tensor)`: A :class:`~{full_output_type}` (if
        ``return_dict=True`` is passed or when ``config.return_dict=True``) or a tuple of :obj:`tf.Tensor` comprising
        various elements depending on the configuration (:class:`~transformers.{config_class}`) and inputs.
Sylvain Gugger's avatar
Sylvain Gugger committed
497
498
499
500

"""


501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
def _get_indent(t):
    """Returns the indentation in the first line of t"""
    search = re.search(r"^(\s*)\S", t)
    return "" if search is None else search.groups()[0]


def _convert_output_args_doc(output_args_doc):
    """Convert output_args_doc to display properly."""
    # Split output_arg_doc in blocks argument/description
    indent = _get_indent(output_args_doc)
    blocks = []
    current_block = ""
    for line in output_args_doc.split("\n"):
        # If the indent is the same as the beginning, the line is the name of new arg.
        if _get_indent(line) == indent:
            if len(current_block) > 0:
                blocks.append(current_block[:-1])
            current_block = f"{line}\n"
        else:
            # Otherwise it's part of the description of the current arg.
            # We need to remove 2 spaces to the indentation.
            current_block += f"{line[2:]}\n"
    blocks.append(current_block[:-1])

    # Format each block for proper rendering
    for i in range(len(blocks)):
        blocks[i] = re.sub(r"^(\s+)(\S+)(\s+)", r"\1- **\2**\3", blocks[i])
        blocks[i] = re.sub(r":\s*\n\s*(\S)", r" -- \1", blocks[i])

    return "\n".join(blocks)


533
534
535
536
537
538
539
540
541
542
543
544
545
def _prepare_output_docstrings(output_type, config_class):
    """
    Prepares the return part of the docstring using `output_type`.
    """
    docstrings = output_type.__doc__

    # Remove the head of the docstring to keep the list of args only
    lines = docstrings.split("\n")
    i = 0
    while i < len(lines) and re.search(r"^\s*(Args|Parameters):\s*$", lines[i]) is None:
        i += 1
    if i < len(lines):
        docstrings = "\n".join(lines[(i + 1) :])
546
        docstrings = _convert_output_args_doc(docstrings)
547
548

    # Add the return introduction
549
    full_output_type = f"{output_type.__module__}.{output_type.__name__}"
Sylvain Gugger's avatar
Sylvain Gugger committed
550
551
    intro = TF_RETURN_INTRODUCTION if output_type.__name__.startswith("TF") else PT_RETURN_INTRODUCTION
    intro = intro.format(full_output_type=full_output_type, config_class=config_class)
552
553
554
    return intro + docstrings


555
556
557
558
559
560
561
PT_TOKEN_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
562
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
563
564
565
566
567

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0)  # Batch size 1

        >>> outputs = model(**inputs, labels=labels)
568
569
        >>> loss = outputs.loss
        >>> logits = outputs.logits
570
571
572
573
574
575
576
577
578
"""

PT_QUESTION_ANSWERING_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
579
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
580

581
582
        >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        >>> inputs = tokenizer(question, text, return_tensors='pt')
583
584
585
586
        >>> start_positions = torch.tensor([1])
        >>> end_positions = torch.tensor([3])

        >>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
587
        >>> loss = outputs.loss
588
589
        >>> start_scores = outputs.start_logits
        >>> end_scores = outputs.end_logits
590
591
592
593
594
595
596
597
598
"""

PT_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
599
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
600
601
602
603

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        >>> outputs = model(**inputs, labels=labels)
604
605
        >>> loss = outputs.loss
        >>> logits = outputs.logits
606
607
608
609
610
611
612
613
614
"""

PT_MASKED_LM_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
615
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
616

Sylvain Gugger's avatar
Sylvain Gugger committed
617
618
        >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt")
        >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
619

Sylvain Gugger's avatar
Sylvain Gugger committed
620
        >>> outputs = model(**inputs, labels=labels)
621
        >>> loss = outputs.loss
Sylvain Gugger's avatar
Sylvain Gugger committed
622
        >>> logits = outputs.logits
623
624
625
626
627
628
629
630
631
"""

PT_BASE_MODEL_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
632
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
633
634
635
636

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs)

637
        >>> last_hidden_states = outputs.last_hidden_state
638
639
640
641
642
643
644
645
646
"""

PT_MULTIPLE_CHOICE_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
647
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
648
649
650
651
652
653

        >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
        >>> choice0 = "It is eaten with a fork and a knife."
        >>> choice1 = "It is eaten while held in the hand."
        >>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

654
        >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True)
655
656
657
        >>> outputs = model(**{{k: v.unsqueeze(0) for k,v in encoding.items()}}, labels=labels)  # batch size is 1

        >>> # the linear classifier still needs to be trained
658
659
        >>> loss = outputs.loss
        >>> logits = outputs.logits
660
661
662
663
664
665
666
667
668
"""

PT_CAUSAL_LM_SAMPLE = r"""
    Example::

        >>> import torch
        >>> from transformers import {tokenizer_class}, {model_class}

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
669
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
670
671
672

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs, labels=inputs["input_ids"])
673
674
        >>> loss = outputs.loss
        >>> logits = outputs.logits
675
676
677
678
679
680
681
682
683
"""

TF_TOKEN_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
Chengxi Guo's avatar
Chengxi Guo committed
684
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
685
686
687
688
689
690

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> input_ids = inputs["input_ids"]
        >>> inputs["labels"] = tf.reshape(tf.constant([1] * tf.size(input_ids).numpy()), (-1, tf.size(input_ids))) # Batch size 1

        >>> outputs = model(inputs)
Sylvain Gugger's avatar
Sylvain Gugger committed
691
692
        >>> loss = outputs.loss
        >>> logits = outputs.logits
693
694
695
696
697
698
699
700
701
"""

TF_QUESTION_ANSWERING_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
Chengxi Guo's avatar
Chengxi Guo committed
702
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
703
704
705

        >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        >>> input_dict = tokenizer(question, text, return_tensors='tf')
Sylvain Gugger's avatar
Sylvain Gugger committed
706
707
708
        >>> outputs = model(input_dict)
        >>> start_logits = outputs.start_logits
        >>> end_logits = outputs.end_logits
709
710

        >>> all_tokens = tokenizer.convert_ids_to_tokens(input_dict["input_ids"].numpy()[0])
Sylvain Gugger's avatar
Sylvain Gugger committed
711
        >>> answer = ' '.join(all_tokens[tf.math.argmax(start_logits, 1)[0] : tf.math.argmax(end_logits, 1)[0]+1])
712
713
714
715
716
717
718
719
720
"""

TF_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
Chengxi Guo's avatar
Chengxi Guo committed
721
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
722
723
724
725
726

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1

        >>> outputs = model(inputs)
Sylvain Gugger's avatar
Sylvain Gugger committed
727
728
        >>> loss = outputs.loss
        >>> logits = outputs.logits
729
730
731
732
"""

TF_MASKED_LM_SAMPLE = r"""
    Example::
Sylvain Gugger's avatar
Sylvain Gugger committed
733

734
735
736
737
        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
Chengxi Guo's avatar
Chengxi Guo committed
738
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
739

Sylvain Gugger's avatar
Sylvain Gugger committed
740
741
        >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="tf")
        >>> inputs["labels"] = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
742

Sylvain Gugger's avatar
Sylvain Gugger committed
743
744
745
        >>> outputs = model(inputs)
        >>> loss = outputs.loss
        >>> logits = outputs.logits
746
747
748
749
750
751
752
753
754
"""

TF_BASE_MODEL_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
Chengxi Guo's avatar
Chengxi Guo committed
755
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
756
757
758
759

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> outputs = model(inputs)

Sylvain Gugger's avatar
Sylvain Gugger committed
760
        >>> last_hidden_states = outputs.last_hidden_states
761
762
763
764
765
766
767
768
769
"""

TF_MULTIPLE_CHOICE_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
Chengxi Guo's avatar
Chengxi Guo committed
770
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
771
772
773
774
775

        >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
        >>> choice0 = "It is eaten with a fork and a knife."
        >>> choice1 = "It is eaten while held in the hand."

776
        >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='tf', padding=True)
777
778
779
780
        >>> inputs = {{k: tf.expand_dims(v, 0) for k, v in encoding.items()}}
        >>> outputs = model(inputs)  # batch size is 1

        >>> # the linear classifier still needs to be trained
Sylvain Gugger's avatar
Sylvain Gugger committed
781
        >>> logits = outputs.logits
782
783
784
785
786
787
788
789
790
"""

TF_CAUSAL_LM_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
Chengxi Guo's avatar
Chengxi Guo committed
791
        >>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)
792
793
794

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> outputs = model(inputs)
Sylvain Gugger's avatar
Sylvain Gugger committed
795
        >>> logits = outputs.logits
796
797
798
"""


Sylvain Gugger's avatar
Sylvain Gugger committed
799
800
801
def add_code_sample_docstrings(
    *docstr, tokenizer_class=None, checkpoint=None, output_type=None, config_class=None, mask=None
):
802
803
804
    def docstring_decorator(fn):
        model_class = fn.__qualname__.split(".")[0]
        is_tf_class = model_class[:2] == "TF"
Sylvain Gugger's avatar
Sylvain Gugger committed
805
        doc_kwargs = dict(model_class=model_class, tokenizer_class=tokenizer_class, checkpoint=checkpoint)
806
807
808
809
810
811
812
813
814

        if "SequenceClassification" in model_class:
            code_sample = TF_SEQUENCE_CLASSIFICATION_SAMPLE if is_tf_class else PT_SEQUENCE_CLASSIFICATION_SAMPLE
        elif "QuestionAnswering" in model_class:
            code_sample = TF_QUESTION_ANSWERING_SAMPLE if is_tf_class else PT_QUESTION_ANSWERING_SAMPLE
        elif "TokenClassification" in model_class:
            code_sample = TF_TOKEN_CLASSIFICATION_SAMPLE if is_tf_class else PT_TOKEN_CLASSIFICATION_SAMPLE
        elif "MultipleChoice" in model_class:
            code_sample = TF_MULTIPLE_CHOICE_SAMPLE if is_tf_class else PT_MULTIPLE_CHOICE_SAMPLE
Sylvain Gugger's avatar
Sylvain Gugger committed
815
816
        elif "MaskedLM" in model_class or model_class in ["FlaubertWithLMHeadModel", "XLMWithLMHeadModel"]:
            doc_kwargs["mask"] = "[MASK]" if mask is None else mask
817
818
819
            code_sample = TF_MASKED_LM_SAMPLE if is_tf_class else PT_MASKED_LM_SAMPLE
        elif "LMHead" in model_class:
            code_sample = TF_CAUSAL_LM_SAMPLE if is_tf_class else PT_CAUSAL_LM_SAMPLE
820
        elif "Model" in model_class or "Encoder" in model_class:
821
822
823
824
            code_sample = TF_BASE_MODEL_SAMPLE if is_tf_class else PT_BASE_MODEL_SAMPLE
        else:
            raise ValueError(f"Docstring can't be built for model {model_class}")

825
        output_doc = _prepare_output_docstrings(output_type, config_class) if output_type is not None else ""
Sylvain Gugger's avatar
Sylvain Gugger committed
826
        built_doc = code_sample.format(**doc_kwargs)
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
        fn.__doc__ = (fn.__doc__ or "") + "".join(docstr) + output_doc + built_doc
        return fn

    return docstring_decorator


def replace_return_docstrings(output_type=None, config_class=None):
    def docstring_decorator(fn):
        docstrings = fn.__doc__
        lines = docstrings.split("\n")
        i = 0
        while i < len(lines) and re.search(r"^\s*Returns?:\s*$", lines[i]) is None:
            i += 1
        if i < len(lines):
            lines[i] = _prepare_output_docstrings(output_type, config_class)
            docstrings = "\n".join(lines)
        else:
            raise ValueError(
                f"The function {fn} should have an empty 'Return:' or 'Returns:' in its docstring as placeholder, current docstring is:\n{docstrings}"
            )
        fn.__doc__ = docstrings
848
849
850
851
852
        return fn

    return docstring_decorator


853
854
def is_remote_url(url_or_filename):
    parsed = urlparse(url_or_filename)
Julien Chaumond's avatar
Julien Chaumond committed
855
    return parsed.scheme in ("http", "https")
856

857

Julien Chaumond's avatar
Julien Chaumond committed
858
def hf_bucket_url(model_id: str, filename: str, revision: Optional[str] = None, mirror=None) -> str:
Julien Chaumond's avatar
Julien Chaumond committed
859
    """
Julien Chaumond's avatar
Julien Chaumond committed
860
861
    Resolve a model identifier, a file name, and an optional revision id, to a huggingface.co-hosted url, redirecting
    to Cloudfront (a Content Delivery Network, or CDN) for large files.
Sylvain Gugger's avatar
Sylvain Gugger committed
862
863

    Cloudfront is replicated over the globe so downloads are way faster for the end user (and it also lowers our
Julien Chaumond's avatar
Julien Chaumond committed
864
865
866
867
868
869
    bandwidth costs).

    Cloudfront aggressively caches files by default (default TTL is 24 hours), however this is not an issue here
    because we migrated to a git-based versioning system on huggingface.co, so we now store the files on S3/Cloudfront
    in a content-addressable way (i.e., the file name is its hash). Using content-addressable filenames means cache
    can't ever be stale.
Sylvain Gugger's avatar
Sylvain Gugger committed
870

Julien Chaumond's avatar
Julien Chaumond committed
871
872
873
    In terms of client-side caching from this library, we base our caching on the objects' ETag. An object' ETag is:
    its sha1 if stored in git, or its sha256 if stored in git-lfs. Files cached locally from transformers before v3.5.0
    are not shared with those new files, because the cached file's name contains a hash of the url (which changed).
Julien Chaumond's avatar
Julien Chaumond committed
874
    """
Julien Chaumond's avatar
Julien Chaumond committed
875
876
877
878
879
880
881
882
883
884
885
    if mirror:
        endpoint = PRESET_MIRROR_DICT.get(mirror, mirror)
        legacy_format = "/" not in model_id
        if legacy_format:
            return f"{endpoint}/{model_id}-{filename}"
        else:
            return f"{endpoint}/{model_id}/{filename}"

    if revision is None:
        revision = "main"
    return HUGGINGFACE_CO_PREFIX.format(model_id=model_id, revision=revision, filename=filename)
886
887


Julien Chaumond's avatar
Julien Chaumond committed
888
def url_to_filename(url: str, etag: Optional[str] = None) -> str:
thomwolf's avatar
thomwolf committed
889
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
890
891
892
893
    Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the url's,
    delimited by a period. If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name so that TF 2.0 can
    identify it as a HDF5 file (see
    https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380)
thomwolf's avatar
thomwolf committed
894
    """
895
    url_bytes = url.encode("utf-8")
Julien Chaumond's avatar
Julien Chaumond committed
896
    filename = sha256(url_bytes).hexdigest()
thomwolf's avatar
thomwolf committed
897
898

    if etag:
899
        etag_bytes = etag.encode("utf-8")
Julien Chaumond's avatar
Julien Chaumond committed
900
        filename += "." + sha256(etag_bytes).hexdigest()
thomwolf's avatar
thomwolf committed
901

902
903
    if url.endswith(".h5"):
        filename += ".h5"
thomwolf's avatar
thomwolf committed
904

thomwolf's avatar
thomwolf committed
905
906
907
    return filename


thomwolf's avatar
thomwolf committed
908
def filename_to_url(filename, cache_dir=None):
thomwolf's avatar
thomwolf committed
909
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
910
911
    Return the url and etag (which may be ``None``) stored for `filename`. Raise ``EnvironmentError`` if `filename` or
    its stored metadata do not exist.
thomwolf's avatar
thomwolf committed
912
913
    """
    if cache_dir is None:
914
        cache_dir = TRANSFORMERS_CACHE
915
    if isinstance(cache_dir, Path):
916
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
917
918
919

    cache_path = os.path.join(cache_dir, filename)
    if not os.path.exists(cache_path):
thomwolf's avatar
thomwolf committed
920
        raise EnvironmentError("file {} not found".format(cache_path))
thomwolf's avatar
thomwolf committed
921

922
    meta_path = cache_path + ".json"
thomwolf's avatar
thomwolf committed
923
    if not os.path.exists(meta_path):
thomwolf's avatar
thomwolf committed
924
        raise EnvironmentError("file {} not found".format(meta_path))
thomwolf's avatar
thomwolf committed
925

thomwolf's avatar
thomwolf committed
926
    with open(meta_path, encoding="utf-8") as meta_file:
thomwolf's avatar
thomwolf committed
927
        metadata = json.load(meta_file)
928
929
    url = metadata["url"]
    etag = metadata["etag"]
thomwolf's avatar
thomwolf committed
930
931
932
933

    return url, etag


934
def cached_path(
935
936
937
938
939
    url_or_filename,
    cache_dir=None,
    force_download=False,
    proxies=None,
    resume_download=False,
Julien Chaumond's avatar
Julien Chaumond committed
940
    user_agent: Union[Dict, str, None] = None,
941
942
    extract_compressed_file=False,
    force_extract=False,
943
    local_files_only=False,
944
) -> Optional[str]:
thomwolf's avatar
thomwolf committed
945
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
946
947
948
949
    Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file
    and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and
    then return the path

950
951
    Args:
        cache_dir: specify a cache directory to save the file to (overwrite the default cache dir).
952
953
        force_download: if True, re-download the file even if it's already cached in the cache dir.
        resume_download: if True, resume the download if incompletely received file is found.
954
        user_agent: Optional string or dict that will be appended to the user-agent on remote requests.
955
956
957
        extract_compressed_file: if True and the path point to a zip or tar file, extract the compressed
            file in a folder along the archive.
        force_extract: if True when extract_compressed_file is True and the archive was already extracted,
958
            re-extract the archive and override the folder where it was extracted.
959
960

    Return:
Julien Chaumond's avatar
Julien Chaumond committed
961
962
963
964
        Local path (string) of file or if networking is off, last version of file cached on disk.

    Raises:
        In case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
thomwolf's avatar
thomwolf committed
965
966
    """
    if cache_dir is None:
967
        cache_dir = TRANSFORMERS_CACHE
968
    if isinstance(url_or_filename, Path):
969
        url_or_filename = str(url_or_filename)
970
    if isinstance(cache_dir, Path):
971
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
972

973
    if is_remote_url(url_or_filename):
thomwolf's avatar
thomwolf committed
974
        # URL, so get it from the cache (downloading if necessary)
975
        output_path = get_from_cache(
976
977
978
979
980
981
            url_or_filename,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            resume_download=resume_download,
            user_agent=user_agent,
982
            local_files_only=local_files_only,
983
        )
thomwolf's avatar
thomwolf committed
984
985
    elif os.path.exists(url_or_filename):
        # File, and it exists.
986
        output_path = url_or_filename
987
    elif urlparse(url_or_filename).scheme == "":
thomwolf's avatar
thomwolf committed
988
        # File, but it doesn't exist.
thomwolf's avatar
thomwolf committed
989
        raise EnvironmentError("file {} not found".format(url_or_filename))
thomwolf's avatar
thomwolf committed
990
991
992
993
    else:
        # Something unknown
        raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
    if extract_compressed_file:
        if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path):
            return output_path

        # Path where we extract compressed archives
        # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
        output_dir, output_file = os.path.split(output_path)
        output_extract_dir_name = output_file.replace(".", "-") + "-extracted"
        output_path_extracted = os.path.join(output_dir, output_extract_dir_name)

        if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract:
            return output_path_extracted

        # Prevent parallel extractions
        lock_path = output_path + ".lock"
        with FileLock(lock_path):
            shutil.rmtree(output_path_extracted, ignore_errors=True)
            os.makedirs(output_path_extracted)
            if is_zipfile(output_path):
                with ZipFile(output_path, "r") as zip_file:
                    zip_file.extractall(output_path_extracted)
                    zip_file.close()
            elif tarfile.is_tarfile(output_path):
                tar_file = tarfile.open(output_path)
                tar_file.extractall(output_path_extracted)
                tar_file.close()
thomwolf's avatar
cleanup  
thomwolf committed
1020
1021
            else:
                raise EnvironmentError("Archive format of {} could not be identified".format(output_path))
1022
1023
1024
1025
1026

        return output_path_extracted

    return output_path

thomwolf's avatar
thomwolf committed
1027

Julien Chaumond's avatar
Julien Chaumond committed
1028
1029
1030
1031
def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
    """
    Formats a user-agent string with basic info about a request.
    """
1032
    ua = "transformers/{}; python/{}".format(__version__, sys.version.split()[0])
1033
1034
1035
1036
    if is_torch_available():
        ua += "; torch/{}".format(torch.__version__)
    if is_tf_available():
        ua += "; tensorflow/{}".format(tf.__version__)
1037
    if isinstance(user_agent, dict):
1038
        ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items())
Aymeric Augustin's avatar
Aymeric Augustin committed
1039
    elif isinstance(user_agent, str):
1040
        ua += "; " + user_agent
Julien Chaumond's avatar
Julien Chaumond committed
1041
1042
1043
1044
1045
1046
1047
1048
    return ua


def http_get(url: str, temp_file: BinaryIO, proxies=None, resume_size=0, user_agent: Union[Dict, str, None] = None):
    """
    Donwload remote file. Do not gobble up errors.
    """
    headers = {"user-agent": http_user_agent(user_agent)}
1049
    if resume_size > 0:
1050
        headers["Range"] = "bytes=%d-" % (resume_size,)
Julien Chaumond's avatar
Julien Chaumond committed
1051
1052
1053
    r = requests.get(url, stream=True, proxies=proxies, headers=headers)
    r.raise_for_status()
    content_length = r.headers.get("Content-Length")
1054
    total = resume_size + int(content_length) if content_length is not None else None
1055
1056
1057
1058
1059
1060
    progress = tqdm(
        unit="B",
        unit_scale=True,
        total=total,
        initial=resume_size,
        desc="Downloading",
Lysandre's avatar
Lysandre committed
1061
        disable=bool(logging.get_verbosity() == logging.NOTSET),
1062
    )
Julien Chaumond's avatar
Julien Chaumond committed
1063
    for chunk in r.iter_content(chunk_size=1024):
1064
        if chunk:  # filter out keep-alive new chunks
thomwolf's avatar
thomwolf committed
1065
1066
1067
1068
1069
            progress.update(len(chunk))
            temp_file.write(chunk)
    progress.close()


1070
def get_from_cache(
Julien Chaumond's avatar
Julien Chaumond committed
1071
    url: str,
1072
1073
1074
1075
1076
    cache_dir=None,
    force_download=False,
    proxies=None,
    etag_timeout=10,
    resume_download=False,
Julien Chaumond's avatar
Julien Chaumond committed
1077
    user_agent: Union[Dict, str, None] = None,
1078
    local_files_only=False,
1079
) -> Optional[str]:
thomwolf's avatar
thomwolf committed
1080
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1081
1082
    Given a URL, look for the corresponding file in the local cache. If it's not there, download it. Then return the
    path to the cached file.
1083
1084

    Return:
Julien Chaumond's avatar
Julien Chaumond committed
1085
1086
1087
1088
        Local path (string) of file or if networking is off, last version of file cached on disk.

    Raises:
        In case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
thomwolf's avatar
thomwolf committed
1089
1090
    """
    if cache_dir is None:
1091
        cache_dir = TRANSFORMERS_CACHE
1092
    if isinstance(cache_dir, Path):
1093
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
1094

1095
    os.makedirs(cache_dir, exist_ok=True)
thomwolf's avatar
thomwolf committed
1096

Julien Chaumond's avatar
Julien Chaumond committed
1097
    url_to_download = url
1098
1099
    etag = None
    if not local_files_only:
Julien Chaumond's avatar
Julien Chaumond committed
1100
        try:
Julien Chaumond's avatar
Julien Chaumond committed
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
            headers = {"user-agent": http_user_agent(user_agent)}
            r = requests.head(url, headers=headers, allow_redirects=False, proxies=proxies, timeout=etag_timeout)
            r.raise_for_status()
            etag = r.headers.get("X-Linked-Etag") or r.headers.get("ETag")
            # We favor a custom header indicating the etag of the linked resource, and
            # we fallback to the regular etag header.
            # If we don't have any of those, raise an error.
            if etag is None:
                raise OSError(
                    "Distant resource does not have an ETag, we won't be able to reliably ensure reproducibility."
                )
            # In case of a redirect,
            # save an extra redirect on the request.get call,
            # and ensure we download the exact atomic version even if it changed
            # between the HEAD and the GET (unlikely, but hey).
            if 300 <= r.status_code <= 399:
                url_to_download = r.headers["Location"]
        except (requests.exceptions.ConnectionError, requests.exceptions.Timeout):
Julien Chaumond's avatar
Julien Chaumond committed
1119
1120
            # etag is already None
            pass
thomwolf's avatar
thomwolf committed
1121
1122
1123
1124
1125
1126

    filename = url_to_filename(url, etag)

    # get cache path to put the file
    cache_path = os.path.join(cache_dir, filename)

Julien Chaumond's avatar
Julien Chaumond committed
1127
    # etag is None == we don't have a connection or we passed local_files_only.
1128
    # try to get the last downloaded one
1129
1130
1131
1132
1133
1134
    if etag is None:
        if os.path.exists(cache_path):
            return cache_path
        else:
            matching_files = [
                file
1135
                for file in fnmatch.filter(os.listdir(cache_dir), filename.split(".")[0] + ".*")
1136
1137
1138
1139
1140
                if not file.endswith(".json") and not file.endswith(".lock")
            ]
            if len(matching_files) > 0:
                return os.path.join(cache_dir, matching_files[-1])
            else:
1141
1142
1143
1144
1145
1146
1147
1148
1149
                # If files cannot be found and local_files_only=True,
                # the models might've been found if local_files_only=False
                # Notify the user about that
                if local_files_only:
                    raise ValueError(
                        "Cannot find the requested files in the cached path and outgoing traffic has been"
                        " disabled. To enable model look-ups and downloads online, set 'local_files_only'"
                        " to False."
                    )
Julien Chaumond's avatar
Julien Chaumond committed
1150
1151
1152
1153
1154
                else:
                    raise ValueError(
                        "Connection error, and we cannot find the requested files in the cached path."
                        " Please try again or make sure your Internet connection is on."
                    )
1155
1156
1157
1158

    # From now on, etag is not None.
    if os.path.exists(cache_path) and not force_download:
        return cache_path
1159

1160
    # Prevent parallel downloads of the same file with a lock.
1161
    lock_path = cache_path + ".lock"
1162
1163
    with FileLock(lock_path):

Julien Chaumond's avatar
Julien Chaumond committed
1164
1165
1166
1167
1168
        # If the download just completed while the lock was activated.
        if os.path.exists(cache_path) and not force_download:
            # Even if returning early like here, the lock will be released.
            return cache_path

1169
        if resume_download:
1170
1171
            incomplete_path = cache_path + ".incomplete"

1172
            @contextmanager
Julien Chaumond's avatar
Julien Chaumond committed
1173
1174
            def _resumable_file_manager() -> "io.BufferedWriter":
                with open(incomplete_path, "ab") as f:
1175
                    yield f
1176

1177
1178
1179
1180
1181
            temp_file_manager = _resumable_file_manager
            if os.path.exists(incomplete_path):
                resume_size = os.stat(incomplete_path).st_size
            else:
                resume_size = 0
1182
        else:
Julien Chaumond's avatar
Julien Chaumond committed
1183
            temp_file_manager = partial(tempfile.NamedTemporaryFile, mode="wb", dir=cache_dir, delete=False)
1184
            resume_size = 0
1185

1186
1187
1188
1189
1190
        # Download to temporary file, then copy to cache dir once finished.
        # Otherwise you get corrupt cache entries if the download gets interrupted.
        with temp_file_manager() as temp_file:
            logger.info("%s not found in cache or force_download set to True, downloading to %s", url, temp_file.name)

Julien Chaumond's avatar
Julien Chaumond committed
1191
            http_get(url_to_download, temp_file, proxies=proxies, resume_size=resume_size, user_agent=user_agent)
1192
1193

        logger.info("storing %s in cache at %s", url, cache_path)
1194
        os.replace(temp_file.name, cache_path)
1195
1196
1197
1198
1199
1200

        logger.info("creating metadata file for %s", cache_path)
        meta = {"url": url, "etag": etag}
        meta_path = cache_path + ".json"
        with open(meta_path, "w") as meta_file:
            json.dump(meta, meta_file)
thomwolf's avatar
thomwolf committed
1201
1202

    return cache_path
Julien Chaumond's avatar
Julien Chaumond committed
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249


class cached_property(property):
    """
    Descriptor that mimics @property but caches output in member variable.

    From tensorflow_datasets

    Built-in in functools from Python 3.8.
    """

    def __get__(self, obj, objtype=None):
        # See docs.python.org/3/howto/descriptor.html#properties
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError("unreadable attribute")
        attr = "__cached_" + self.fget.__name__
        cached = getattr(obj, attr, None)
        if cached is None:
            cached = self.fget(obj)
            setattr(obj, attr, cached)
        return cached


def torch_required(func):
    # Chose a different decorator name than in tests so it's clear they are not the same.
    @wraps(func)
    def wrapper(*args, **kwargs):
        if is_torch_available():
            return func(*args, **kwargs)
        else:
            raise ImportError(f"Method `{func.__name__}` requires PyTorch.")

    return wrapper


def tf_required(func):
    # Chose a different decorator name than in tests so it's clear they are not the same.
    @wraps(func)
    def wrapper(*args, **kwargs):
        if is_tf_available():
            return func(*args, **kwargs)
        else:
            raise ImportError(f"Method `{func.__name__}` requires TF.")

    return wrapper
1250
1251


1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
def is_tensor(x):
    """ Tests if ``x`` is a :obj:`torch.Tensor`, :obj:`tf.Tensor` or :obj:`np.ndarray`. """
    if is_torch_available():
        import torch

        if isinstance(x, torch.Tensor):
            return True
    if is_tf_available():
        import tensorflow as tf

        if isinstance(x, tf.Tensor):
            return True
    return isinstance(x, np.ndarray)


class ModelOutput(OrderedDict):
1268
    """
1269
    Base class for all model outputs as dataclass. Has a ``__getitem__`` that allows indexing by integer or slice (like
Sylvain Gugger's avatar
Sylvain Gugger committed
1270
1271
    a tuple) or strings (like a dictionary) that will ignore the ``None`` attributes. Otherwise behaves like a regular
    python dictionary.
1272
1273
1274
1275

    .. warning::
        You can't unpack a :obj:`ModelOutput` directly. Use the :meth:`~transformers.file_utils.ModelOutput.to_tuple`
        method to convert it to a tuple before.
1276
1277
    """

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
    def __post_init__(self):
        class_fields = fields(self)

        # Safety and consistency checks
        assert len(class_fields), f"{self.__class__.__name__} has no fields."
        assert all(
            field.default is None for field in class_fields[1:]
        ), f"{self.__class__.__name__} should not have more than one required field."

        first_field = getattr(self, class_fields[0].name)
        other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:])

        if other_fields_are_none and not is_tensor(first_field):
            try:
                iterator = iter(first_field)
                first_field_iterator = True
            except TypeError:
                first_field_iterator = False

            # if we provided an iterator as first field and the iterator is a (key, value) iterator
            # set the associated fields
            if first_field_iterator:
                for element in iterator:
                    if (
                        not isinstance(element, (list, tuple))
                        or not len(element) == 2
                        or not isinstance(element[0], str)
                    ):
                        break
                    setattr(self, element[0], element[1])
                    if element[1] is not None:
                        self[element[0]] = element[1]
1310
1311
            elif first_field is not None:
                self[class_fields[0].name] = first_field
1312
1313
1314
1315
1316
        else:
            for field in class_fields:
                v = getattr(self, field.name)
                if v is not None:
                    self[field.name] = v
1317

1318
1319
    def __delitem__(self, *args, **kwargs):
        raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
1320

1321
1322
    def setdefault(self, *args, **kwargs):
        raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
1323

1324
1325
1326
1327
1328
    def pop(self, *args, **kwargs):
        raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")

    def update(self, *args, **kwargs):
        raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
1329

1330
1331
1332
1333
1334
1335
    def __getitem__(self, k):
        if isinstance(k, str):
            inner_dict = {k: v for (k, v) in self.items()}
            return inner_dict[k]
        else:
            return self.to_tuple()[k]
1336

1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
    def __setattr__(self, name, value):
        if name in self.keys() and value is not None:
            # Don't call self.__setitem__ to avoid recursion errors
            super().__setitem__(name, value)
        super().__setattr__(name, value)

    def __setitem__(self, key, value):
        # Will raise a KeyException if needed
        super().__setitem__(key, value)
        # Don't call self.__setattr__ to avoid recursion errors
        super().__setattr__(key, value)

1349
1350
1351
1352
1353
    def to_tuple(self) -> Tuple[Any]:
        """
        Convert self to a tuple containing all the attributes/keys that are not ``None``.
        """
        return tuple(self[k] for k in self.keys())