file_utils.py 55 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2020 The HuggingFace Team, the AllenNLP library authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
14
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
15
16
Utilities for working with the local dataset cache. Parts of this file is adapted from the AllenNLP library at
https://github.com/allenai/allennlp.
thomwolf's avatar
thomwolf committed
17
"""
Aymeric Augustin's avatar
Aymeric Augustin committed
18

19
import copy
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import fnmatch
21
import importlib.util
Julien Chaumond's avatar
Julien Chaumond committed
22
import io
thomwolf's avatar
thomwolf committed
23
24
import json
import os
25
import re
26
import shutil
Aymeric Augustin's avatar
Aymeric Augustin committed
27
import sys
28
import tarfile
thomwolf's avatar
thomwolf committed
29
import tempfile
30
from collections import OrderedDict
Aymeric Augustin's avatar
Aymeric Augustin committed
31
from contextlib import contextmanager
32
from dataclasses import fields
33
from functools import partial, wraps
thomwolf's avatar
thomwolf committed
34
from hashlib import sha256
35
from pathlib import Path
36
from types import ModuleType
37
from typing import Any, BinaryIO, Dict, List, Optional, Tuple, Union
Aymeric Augustin's avatar
Aymeric Augustin committed
38
from urllib.parse import urlparse
39
from zipfile import ZipFile, is_zipfile
thomwolf's avatar
thomwolf committed
40

41
import numpy as np
42
from packaging import version
43
44
from tqdm.auto import tqdm

Aymeric Augustin's avatar
Aymeric Augustin committed
45
46
47
import requests
from filelock import FileLock

48
from . import __version__
49
from .hf_api import HfFolder
Lysandre Debut's avatar
Lysandre Debut committed
50
from .utils import logging
thomwolf's avatar
thomwolf committed
51

Lysandre's avatar
Lysandre committed
52

53
# The package importlib_metadata is in a different place, depending on the python version.
Sylvain Gugger's avatar
Sylvain Gugger committed
54
if sys.version_info < (3, 8):
55
56
57
58
59
    import importlib_metadata
else:
    import importlib.metadata as importlib_metadata


Lysandre Debut's avatar
Lysandre Debut committed
60
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
thomwolf's avatar
thomwolf committed
61

62
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
63
64
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})

65
66
67
USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()
68

69
70
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
    _torch_available = importlib.util.find_spec("torch") is not None
71
    if _torch_available:
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        try:
            _torch_version = importlib_metadata.version("torch")
            logger.info(f"PyTorch version {_torch_version} available.")
        except importlib_metadata.PackageNotFoundError:
            _torch_available = False
else:
    logger.info("Disabling PyTorch because USE_TF is set")
    _torch_available = False


if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
    _tf_available = importlib.util.find_spec("tensorflow") is not None
    if _tf_available:
        # For the metadata, we have to look for both tensorflow and tensorflow-cpu
        try:
            _tf_version = importlib_metadata.version("tensorflow")
        except importlib_metadata.PackageNotFoundError:
            try:
                _tf_version = importlib_metadata.version("tensorflow-cpu")
            except importlib_metadata.PackageNotFoundError:
92
93
94
95
96
97
98
99
100
101
102
103
104
105
                try:
                    _tf_version = importlib_metadata.version("tensorflow-gpu")
                except importlib_metadata.PackageNotFoundError:
                    try:
                        _tf_version = importlib_metadata.version("tf-nightly")
                    except importlib_metadata.PackageNotFoundError:
                        try:
                            _tf_version = importlib_metadata.version("tf-nightly-cpu")
                        except importlib_metadata.PackageNotFoundError:
                            try:
                                _tf_version = importlib_metadata.version("tf-nightly-gpu")
                            except importlib_metadata.PackageNotFoundError:
                                _tf_version = None
                                _tf_available = False
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    if _tf_available:
        if version.parse(_tf_version) < version.parse("2"):
            logger.info(f"TensorFlow found but with version {_tf_version}. Transformers requires version 2 minimum.")
            _tf_available = False
        else:
            logger.info(f"TensorFlow version {_tf_version} available.")
else:
    logger.info("Disabling Tensorflow because USE_TORCH is set")
    _tf_available = False


if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
    _flax_available = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("flax") is not None
    if _flax_available:
        try:
            _jax_version = importlib_metadata.version("jax")
            _flax_version = importlib_metadata.version("flax")
            logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
        except importlib_metadata.PackageNotFoundError:
            _flax_available = False
else:
    _flax_available = False


_datasets_available = importlib.util.find_spec("datasets") is not None
Patrick von Platen's avatar
Patrick von Platen committed
131
try:
132
133
134
135
136
137
138
139
    # Check we're not importing a "datasets" directory somewhere but the actual library by trying to grab the version
    # AND checking it has an author field in the metadata that is HuggingFace.
    _ = importlib_metadata.version("datasets")
    _datasets_metadata = importlib_metadata.metadata("datasets")
    if _datasets_metadata.get("author", "") != "HuggingFace Inc.":
        _datasets_available = False
except importlib_metadata.PackageNotFoundError:
    _datasets_available = False
Patrick von Platen's avatar
Patrick von Platen committed
140

Ola Piktus's avatar
Ola Piktus committed
141

142
_faiss_available = importlib.util.find_spec("faiss") is not None
Ola Piktus's avatar
Ola Piktus committed
143
try:
144
145
146
    _faiss_version = importlib_metadata.version("faiss")
    logger.debug(f"Successfully imported faiss version {_faiss_version}")
except importlib_metadata.PackageNotFoundError:
Ola Piktus's avatar
Ola Piktus committed
147
148
    _faiss_available = False

149

150
_scatter_available = importlib.util.find_spec("torch_scatter") is not None
151
try:
152
    _scatter_version = importlib_metadata.version("torch_scatter")
153
154
    logger.debug(f"Successfully imported torch-scatter version {_scatter_version}")
except importlib_metadata.PackageNotFoundError:
NielsRogge's avatar
NielsRogge committed
155
156
157
    _scatter_available = False


158
torch_cache_home = os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
159
160
161
162
163
164
165
166
167
168
old_default_cache_path = os.path.join(torch_cache_home, "transformers")
# New default cache, shared with the Datasets library
hf_cache_home = os.path.expanduser(
    os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
)
default_cache_path = os.path.join(hf_cache_home, "transformers")

# Onetime move from the old location to the new one if no ENV variable has been set.
if (
    os.path.isdir(old_default_cache_path)
169
    and not os.path.isdir(default_cache_path)
170
171
172
173
174
175
176
177
178
179
180
181
    and "PYTORCH_PRETRAINED_BERT_CACHE" not in os.environ
    and "PYTORCH_TRANSFORMERS_CACHE" not in os.environ
    and "TRANSFORMERS_CACHE" not in os.environ
):
    logger.warn(
        "In Transformers v4.0.0, the default path to cache downloaded models changed from "
        "'~/.cache/torch/transformers' to '~/.cache/huggingface/transformers'. Since you don't seem to have overridden "
        "and '~/.cache/torch/transformers' is a directory that exists, we're moving it to "
        "'~/.cache/huggingface/transformers' to avoid redownloading models you have already in the cache. You should "
        "only see this message once."
    )
    shutil.move(old_default_cache_path, default_cache_path)
182

183
184
185
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
thomwolf's avatar
thomwolf committed
186

187
WEIGHTS_NAME = "pytorch_model.bin"
188
189
TF2_WEIGHTS_NAME = "tf_model.h5"
TF_WEIGHTS_NAME = "model.ckpt"
190
FLAX_WEIGHTS_NAME = "flax_model.msgpack"
191
CONFIG_NAME = "config.json"
192
MODEL_CARD_NAME = "modelcard.json"
Thomas Wolf's avatar
Thomas Wolf committed
193

194
195
SENTENCEPIECE_UNDERLINE = "▁"
SPIECE_UNDERLINE = SENTENCEPIECE_UNDERLINE  # Kept for backward compatibility
Lysandre's avatar
Lysandre committed
196

197
198
199
MULTIPLE_CHOICE_DUMMY_INPUTS = [
    [[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2  # Needs to have 0s and 1s only since XLM uses it for langs too.
200
201
202
DUMMY_INPUTS = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
DUMMY_MASK = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]

203
S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert"
Julien Chaumond's avatar
Julien Chaumond committed
204
CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co"
Julien Chaumond's avatar
Julien Chaumond committed
205
206
HUGGINGFACE_CO_PREFIX = "https://huggingface.co/{model_id}/resolve/{revision}/{filename}"

207
208
209
210
PRESET_MIRROR_DICT = {
    "tuna": "https://mirrors.tuna.tsinghua.edu.cn/hugging-face-models",
    "bfsu": "https://mirrors.bfsu.edu.cn/hugging-face-models",
}
211

Thomas Wolf's avatar
Thomas Wolf committed
212

thomwolf's avatar
thomwolf committed
213
214
215
def is_torch_available():
    return _torch_available

216

thomwolf's avatar
thomwolf committed
217
218
219
def is_tf_available():
    return _tf_available

220

221
222
223
224
def is_flax_available():
    return _flax_available


225
def is_torch_tpu_available():
226
227
228
229
230
231
232
233
    if not _torch_available:
        return False
    # This test is probably enough, but just in case, we unpack a bit.
    if importlib.util.find_spec("torch_xla") is None:
        return False
    if importlib.util.find_spec("torch_xla.core") is None:
        return False
    return importlib.util.find_spec("torch_xla.core.xla_model") is not None
234
235


236
237
def is_datasets_available():
    return _datasets_available
238
239


Patrick von Platen's avatar
Patrick von Platen committed
240
def is_psutil_available():
241
    return importlib.util.find_spec("psutil") is not None
Patrick von Platen's avatar
Patrick von Platen committed
242
243
244


def is_py3nvml_available():
245
    return importlib.util.find_spec("py3nvml") is not None
Patrick von Platen's avatar
Patrick von Platen committed
246
247
248


def is_apex_available():
249
    return importlib.util.find_spec("apex") is not None
Patrick von Platen's avatar
Patrick von Platen committed
250
251


Ola Piktus's avatar
Ola Piktus committed
252
253
254
255
def is_faiss_available():
    return _faiss_available


256
def is_sklearn_available():
257
258
259
260
261
    if importlib.util.find_spec("sklearn") is None:
        return False
    if importlib.util.find_spec("scipy") is None:
        return False
    return importlib.util.find_spec("sklearn.metrics") and importlib.util.find_spec("scipy.stats")
262
263
264


def is_sentencepiece_available():
265
    return importlib.util.find_spec("sentencepiece") is not None
266
267


268
def is_protobuf_available():
269
270
271
    if importlib.util.find_spec("google") is None:
        return False
    return importlib.util.find_spec("google.protobuf") is not None
272
273


274
def is_tokenizers_available():
275
    return importlib.util.find_spec("tokenizers") is not None
276
277


278
def is_in_notebook():
279
280
281
282
283
284
285
286
287
288
289
    try:
        # Test adapted from tqdm.autonotebook: https://github.com/tqdm/tqdm/blob/master/tqdm/autonotebook.py
        get_ipython = sys.modules["IPython"].get_ipython
        if "IPKernelApp" not in get_ipython().config:
            raise ImportError("console")
        if "VSCODE_PID" in os.environ:
            raise ImportError("vscode")

        return importlib.util.find_spec("IPython") is not None
    except (AttributeError, ImportError, KeyError):
        return False
290
291


NielsRogge's avatar
NielsRogge committed
292
293
294
295
296
def is_scatter_available():
    return _scatter_available


def is_pandas_available():
297
    return importlib.util.find_spec("pandas") is not None
NielsRogge's avatar
NielsRogge committed
298
299


Sylvain Gugger's avatar
Sylvain Gugger committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
def is_sagemaker_distributed_available():
    # Get the sagemaker specific env variable.
    sagemaker_params = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        sagemaker_params = json.loads(sagemaker_params)
        if not sagemaker_params.get("sagemaker_distributed_dataparallel_enabled", False):
            return False
    except json.JSONDecodeError:
        return False
    # Lastly, check if the `smdistributed` module is present.
    return importlib.util.find_spec("smdistributed") is not None


314
315
316
317
318
319
320
321
322
323
324
325
326
def torch_only_method(fn):
    def wrapper(*args, **kwargs):
        if not _torch_available:
            raise ImportError(
                "You need to install pytorch to use this method or class, "
                "or activate it with environment variables USE_TORCH=1 and USE_TF=0."
            )
        else:
            return fn(*args, **kwargs)

    return wrapper


327
# docstyle-ignore
328
DATASETS_IMPORT_ERROR = """
329
{0} requires the 🤗 Datasets library but it was not found in your environment. You can install it with:
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
```
pip install datasets
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install datasets
```
then restarting your kernel.

Note that if you have a local folder named `datasets` or a local python file named `datasets.py` in your current
working directory, python may try to import this instead of the 🤗 Datasets library. You should rename this folder or
that python file if that's the case.
"""


345
# docstyle-ignore
346
TOKENIZERS_IMPORT_ERROR = """
347
{0} requires the 🤗 Tokenizers library but it was not found in your environment. You can install it with:
348
349
350
351
352
353
354
355
356
357
```
pip install tokenizers
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install tokenizers
```
"""


358
# docstyle-ignore
359
SENTENCEPIECE_IMPORT_ERROR = """
360
{0} requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the
361
installation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones
362
that match your environment.
363
364
365
"""


366
367
368
369
370
371
372
373
# docstyle-ignore
PROTOBUF_IMPORT_ERROR = """
{0} requires the protobuf library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/protocolbuffers/protobuf/tree/master/python#installation and follow the ones
that match your environment.
"""


374
# docstyle-ignore
375
FAISS_IMPORT_ERROR = """
376
{0} requires the faiss library but it was not found in your environment. Checkout the instructions on the
377
installation page of its repo: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md and follow the ones
378
that match your environment.
379
380
381
"""


382
# docstyle-ignore
383
PYTORCH_IMPORT_ERROR = """
384
385
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
386
387
388
"""


389
# docstyle-ignore
390
SKLEARN_IMPORT_ERROR = """
391
{0} requires the scikit-learn library but it was not found in your environment. You can install it with:
392
393
394
395
396
397
398
399
400
401
```
pip install -U scikit-learn
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install -U scikit-learn
```
"""


402
# docstyle-ignore
403
TENSORFLOW_IMPORT_ERROR = """
404
405
{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the
installation page: https://www.tensorflow.org/install and follow the ones that match your environment.
406
407
408
"""


409
# docstyle-ignore
410
FLAX_IMPORT_ERROR = """
411
412
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/google/flax and follow the ones that match your environment.
413
414
415
"""


NielsRogge's avatar
NielsRogge committed
416
417
418
419
420
421
422
# docstyle-ignore
SCATTER_IMPORT_ERROR = """
{0} requires the torch-scatter library but it was not found in your environment. You can install it with pip as
explained here: https://github.com/rusty1s/pytorch_scatter.
"""


423
424
425
426
427
428
429
# docstyle-ignore
PANDAS_IMPORT_ERROR = """
{0} requires the pandas library but it was not found in your environment. You can install it with pip as
explained here: https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html.
"""


430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
def requires_datasets(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_datasets_available():
        raise ImportError(DATASETS_IMPORT_ERROR.format(name))


def requires_faiss(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_faiss_available():
        raise ImportError(FAISS_IMPORT_ERROR.format(name))


def requires_pytorch(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_torch_available():
        raise ImportError(PYTORCH_IMPORT_ERROR.format(name))


def requires_sklearn(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_sklearn_available():
        raise ImportError(SKLEARN_IMPORT_ERROR.format(name))


def requires_tf(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_tf_available():
        raise ImportError(TENSORFLOW_IMPORT_ERROR.format(name))
458
459


460
461
462
463
464
465
def requires_flax(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_flax_available():
        raise ImportError(FLAX_IMPORT_ERROR.format(name))


466
467
468
469
470
471
472
473
474
475
def requires_tokenizers(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_tokenizers_available():
        raise ImportError(TOKENIZERS_IMPORT_ERROR.format(name))


def requires_sentencepiece(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_sentencepiece_available():
        raise ImportError(SENTENCEPIECE_IMPORT_ERROR.format(name))
476
477


478
479
480
481
482
483
def requires_protobuf(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_protobuf_available():
        raise ImportError(PROTOBUF_IMPORT_ERROR.format(name))


484
485
486
487
488
489
def requires_pandas(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_pandas_available():
        raise ImportError(PANDAS_IMPORT_ERROR.format(name))


NielsRogge's avatar
NielsRogge committed
490
491
492
493
494
495
def requires_scatter(obj):
    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    if not is_scatter_available():
        raise ImportError(SCATTER_IMPORT_ERROR.format(name))


Aymeric Augustin's avatar
Aymeric Augustin committed
496
497
def add_start_docstrings(*docstr):
    def docstring_decorator(fn):
498
499
500
501
502
503
        fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
        return fn

    return docstring_decorator


504
def add_start_docstrings_to_model_forward(*docstr):
505
506
507
    def docstring_decorator(fn):
        class_name = ":class:`~transformers.{}`".format(fn.__qualname__.split(".")[0])
        intro = "   The {} forward method, overrides the :func:`__call__` special method.".format(class_name)
Lysandre's avatar
Lysandre committed
508
509
        note = r"""

510
    .. note::
Sylvain Gugger's avatar
Sylvain Gugger committed
511
512
513
        Although the recipe for forward pass needs to be defined within this function, one should call the
        :class:`Module` instance afterwards instead of this since the former takes care of running the pre and post
        processing steps while the latter silently ignores them.
514
515
        """
        fn.__doc__ = intro + note + "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
Aymeric Augustin's avatar
Aymeric Augustin committed
516
        return fn
517

Aymeric Augustin's avatar
Aymeric Augustin committed
518
    return docstring_decorator
519

520

Aymeric Augustin's avatar
Aymeric Augustin committed
521
522
523
524
def add_end_docstrings(*docstr):
    def docstring_decorator(fn):
        fn.__doc__ = fn.__doc__ + "".join(docstr)
        return fn
525

Aymeric Augustin's avatar
Aymeric Augustin committed
526
    return docstring_decorator
thomwolf's avatar
thomwolf committed
527

528

Sylvain Gugger's avatar
Sylvain Gugger committed
529
PT_RETURN_INTRODUCTION = r"""
530
    Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
531
532
533
        :class:`~{full_output_type}` or :obj:`tuple(torch.FloatTensor)`: A :class:`~{full_output_type}` (if
        ``return_dict=True`` is passed or when ``config.return_dict=True``) or a tuple of :obj:`torch.FloatTensor`
        comprising various elements depending on the configuration (:class:`~transformers.{config_class}`) and inputs.
534

535
536
537
"""


Sylvain Gugger's avatar
Sylvain Gugger committed
538
539
TF_RETURN_INTRODUCTION = r"""
    Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
540
541
542
        :class:`~{full_output_type}` or :obj:`tuple(tf.Tensor)`: A :class:`~{full_output_type}` (if
        ``return_dict=True`` is passed or when ``config.return_dict=True``) or a tuple of :obj:`tf.Tensor` comprising
        various elements depending on the configuration (:class:`~transformers.{config_class}`) and inputs.
Sylvain Gugger's avatar
Sylvain Gugger committed
543
544
545
546

"""


547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
def _get_indent(t):
    """Returns the indentation in the first line of t"""
    search = re.search(r"^(\s*)\S", t)
    return "" if search is None else search.groups()[0]


def _convert_output_args_doc(output_args_doc):
    """Convert output_args_doc to display properly."""
    # Split output_arg_doc in blocks argument/description
    indent = _get_indent(output_args_doc)
    blocks = []
    current_block = ""
    for line in output_args_doc.split("\n"):
        # If the indent is the same as the beginning, the line is the name of new arg.
        if _get_indent(line) == indent:
            if len(current_block) > 0:
                blocks.append(current_block[:-1])
            current_block = f"{line}\n"
        else:
            # Otherwise it's part of the description of the current arg.
            # We need to remove 2 spaces to the indentation.
            current_block += f"{line[2:]}\n"
    blocks.append(current_block[:-1])

    # Format each block for proper rendering
    for i in range(len(blocks)):
        blocks[i] = re.sub(r"^(\s+)(\S+)(\s+)", r"\1- **\2**\3", blocks[i])
        blocks[i] = re.sub(r":\s*\n\s*(\S)", r" -- \1", blocks[i])

    return "\n".join(blocks)


579
580
581
582
583
584
585
586
587
588
589
590
591
def _prepare_output_docstrings(output_type, config_class):
    """
    Prepares the return part of the docstring using `output_type`.
    """
    docstrings = output_type.__doc__

    # Remove the head of the docstring to keep the list of args only
    lines = docstrings.split("\n")
    i = 0
    while i < len(lines) and re.search(r"^\s*(Args|Parameters):\s*$", lines[i]) is None:
        i += 1
    if i < len(lines):
        docstrings = "\n".join(lines[(i + 1) :])
592
        docstrings = _convert_output_args_doc(docstrings)
593
594

    # Add the return introduction
595
    full_output_type = f"{output_type.__module__}.{output_type.__name__}"
Sylvain Gugger's avatar
Sylvain Gugger committed
596
597
    intro = TF_RETURN_INTRODUCTION if output_type.__name__.startswith("TF") else PT_RETURN_INTRODUCTION
    intro = intro.format(full_output_type=full_output_type, config_class=config_class)
598
599
600
    return intro + docstrings


601
602
603
604
605
606
607
PT_TOKEN_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
608
        >>> model = {model_class}.from_pretrained('{checkpoint}')
609
610
611
612
613

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0)  # Batch size 1

        >>> outputs = model(**inputs, labels=labels)
614
615
        >>> loss = outputs.loss
        >>> logits = outputs.logits
616
617
618
619
620
621
622
623
624
"""

PT_QUESTION_ANSWERING_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
625
        >>> model = {model_class}.from_pretrained('{checkpoint}')
626

627
628
        >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        >>> inputs = tokenizer(question, text, return_tensors='pt')
629
630
631
632
        >>> start_positions = torch.tensor([1])
        >>> end_positions = torch.tensor([3])

        >>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
633
        >>> loss = outputs.loss
634
635
        >>> start_scores = outputs.start_logits
        >>> end_scores = outputs.end_logits
636
637
638
639
640
641
642
643
644
"""

PT_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
645
        >>> model = {model_class}.from_pretrained('{checkpoint}')
646
647
648
649

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        >>> outputs = model(**inputs, labels=labels)
650
651
        >>> loss = outputs.loss
        >>> logits = outputs.logits
652
653
654
655
656
657
658
659
660
"""

PT_MASKED_LM_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
661
        >>> model = {model_class}.from_pretrained('{checkpoint}')
662

Sylvain Gugger's avatar
Sylvain Gugger committed
663
664
        >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt")
        >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
665

Sylvain Gugger's avatar
Sylvain Gugger committed
666
        >>> outputs = model(**inputs, labels=labels)
667
        >>> loss = outputs.loss
Sylvain Gugger's avatar
Sylvain Gugger committed
668
        >>> logits = outputs.logits
669
670
671
672
673
674
675
676
677
"""

PT_BASE_MODEL_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
678
        >>> model = {model_class}.from_pretrained('{checkpoint}')
679
680
681
682

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs)

683
        >>> last_hidden_states = outputs.last_hidden_state
684
685
686
687
688
689
690
691
692
"""

PT_MULTIPLE_CHOICE_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import torch

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
693
        >>> model = {model_class}.from_pretrained('{checkpoint}')
694
695
696
697
698
699

        >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
        >>> choice0 = "It is eaten with a fork and a knife."
        >>> choice1 = "It is eaten while held in the hand."
        >>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

700
        >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True)
701
702
703
        >>> outputs = model(**{{k: v.unsqueeze(0) for k,v in encoding.items()}}, labels=labels)  # batch size is 1

        >>> # the linear classifier still needs to be trained
704
705
        >>> loss = outputs.loss
        >>> logits = outputs.logits
706
707
708
709
710
711
712
713
714
"""

PT_CAUSAL_LM_SAMPLE = r"""
    Example::

        >>> import torch
        >>> from transformers import {tokenizer_class}, {model_class}

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
Jungwhan's avatar
Jungwhan committed
715
        >>> model = {model_class}.from_pretrained('{checkpoint}')
716
717
718

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs, labels=inputs["input_ids"])
719
720
        >>> loss = outputs.loss
        >>> logits = outputs.logits
721
722
723
724
725
726
727
728
729
"""

TF_TOKEN_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
730
        >>> model = {model_class}.from_pretrained('{checkpoint}')
731
732
733
734
735
736

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> input_ids = inputs["input_ids"]
        >>> inputs["labels"] = tf.reshape(tf.constant([1] * tf.size(input_ids).numpy()), (-1, tf.size(input_ids))) # Batch size 1

        >>> outputs = model(inputs)
Sylvain Gugger's avatar
Sylvain Gugger committed
737
738
        >>> loss = outputs.loss
        >>> logits = outputs.logits
739
740
741
742
743
744
745
746
747
"""

TF_QUESTION_ANSWERING_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
748
        >>> model = {model_class}.from_pretrained('{checkpoint}')
749
750
751

        >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        >>> input_dict = tokenizer(question, text, return_tensors='tf')
Sylvain Gugger's avatar
Sylvain Gugger committed
752
753
754
        >>> outputs = model(input_dict)
        >>> start_logits = outputs.start_logits
        >>> end_logits = outputs.end_logits
755
756

        >>> all_tokens = tokenizer.convert_ids_to_tokens(input_dict["input_ids"].numpy()[0])
Sylvain Gugger's avatar
Sylvain Gugger committed
757
        >>> answer = ' '.join(all_tokens[tf.math.argmax(start_logits, 1)[0] : tf.math.argmax(end_logits, 1)[0]+1])
758
759
760
761
762
763
764
765
766
"""

TF_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
767
        >>> model = {model_class}.from_pretrained('{checkpoint}')
768
769
770
771
772

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1

        >>> outputs = model(inputs)
Sylvain Gugger's avatar
Sylvain Gugger committed
773
774
        >>> loss = outputs.loss
        >>> logits = outputs.logits
775
776
777
778
"""

TF_MASKED_LM_SAMPLE = r"""
    Example::
Sylvain Gugger's avatar
Sylvain Gugger committed
779

780
781
782
783
        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
784
        >>> model = {model_class}.from_pretrained('{checkpoint}')
785

Sylvain Gugger's avatar
Sylvain Gugger committed
786
787
        >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="tf")
        >>> inputs["labels"] = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
788

Sylvain Gugger's avatar
Sylvain Gugger committed
789
790
791
        >>> outputs = model(inputs)
        >>> loss = outputs.loss
        >>> logits = outputs.logits
792
793
794
795
796
797
798
799
800
"""

TF_BASE_MODEL_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
801
        >>> model = {model_class}.from_pretrained('{checkpoint}')
802
803
804
805

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> outputs = model(inputs)

806
        >>> last_hidden_states = outputs.last_hidden_state
807
808
809
810
811
812
813
814
815
"""

TF_MULTIPLE_CHOICE_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
816
        >>> model = {model_class}.from_pretrained('{checkpoint}')
817
818
819
820
821

        >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
        >>> choice0 = "It is eaten with a fork and a knife."
        >>> choice1 = "It is eaten while held in the hand."

822
        >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='tf', padding=True)
823
824
825
826
        >>> inputs = {{k: tf.expand_dims(v, 0) for k, v in encoding.items()}}
        >>> outputs = model(inputs)  # batch size is 1

        >>> # the linear classifier still needs to be trained
Sylvain Gugger's avatar
Sylvain Gugger committed
827
        >>> logits = outputs.logits
828
829
830
831
832
833
834
835
836
"""

TF_CAUSAL_LM_SAMPLE = r"""
    Example::

        >>> from transformers import {tokenizer_class}, {model_class}
        >>> import tensorflow as tf

        >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
837
        >>> model = {model_class}.from_pretrained('{checkpoint}')
838
839
840

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
        >>> outputs = model(inputs)
Sylvain Gugger's avatar
Sylvain Gugger committed
841
        >>> logits = outputs.logits
842
843
844
"""


Sylvain Gugger's avatar
Sylvain Gugger committed
845
846
847
def add_code_sample_docstrings(
    *docstr, tokenizer_class=None, checkpoint=None, output_type=None, config_class=None, mask=None
):
848
849
850
    def docstring_decorator(fn):
        model_class = fn.__qualname__.split(".")[0]
        is_tf_class = model_class[:2] == "TF"
Sylvain Gugger's avatar
Sylvain Gugger committed
851
        doc_kwargs = dict(model_class=model_class, tokenizer_class=tokenizer_class, checkpoint=checkpoint)
852
853
854
855
856
857
858
859
860

        if "SequenceClassification" in model_class:
            code_sample = TF_SEQUENCE_CLASSIFICATION_SAMPLE if is_tf_class else PT_SEQUENCE_CLASSIFICATION_SAMPLE
        elif "QuestionAnswering" in model_class:
            code_sample = TF_QUESTION_ANSWERING_SAMPLE if is_tf_class else PT_QUESTION_ANSWERING_SAMPLE
        elif "TokenClassification" in model_class:
            code_sample = TF_TOKEN_CLASSIFICATION_SAMPLE if is_tf_class else PT_TOKEN_CLASSIFICATION_SAMPLE
        elif "MultipleChoice" in model_class:
            code_sample = TF_MULTIPLE_CHOICE_SAMPLE if is_tf_class else PT_MULTIPLE_CHOICE_SAMPLE
Sylvain Gugger's avatar
Sylvain Gugger committed
861
862
        elif "MaskedLM" in model_class or model_class in ["FlaubertWithLMHeadModel", "XLMWithLMHeadModel"]:
            doc_kwargs["mask"] = "[MASK]" if mask is None else mask
863
            code_sample = TF_MASKED_LM_SAMPLE if is_tf_class else PT_MASKED_LM_SAMPLE
Lysandre Debut's avatar
Lysandre Debut committed
864
        elif "LMHead" in model_class or "CausalLM" in model_class:
865
            code_sample = TF_CAUSAL_LM_SAMPLE if is_tf_class else PT_CAUSAL_LM_SAMPLE
866
        elif "Model" in model_class or "Encoder" in model_class:
867
868
869
870
            code_sample = TF_BASE_MODEL_SAMPLE if is_tf_class else PT_BASE_MODEL_SAMPLE
        else:
            raise ValueError(f"Docstring can't be built for model {model_class}")

871
        output_doc = _prepare_output_docstrings(output_type, config_class) if output_type is not None else ""
Sylvain Gugger's avatar
Sylvain Gugger committed
872
        built_doc = code_sample.format(**doc_kwargs)
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
        fn.__doc__ = (fn.__doc__ or "") + "".join(docstr) + output_doc + built_doc
        return fn

    return docstring_decorator


def replace_return_docstrings(output_type=None, config_class=None):
    def docstring_decorator(fn):
        docstrings = fn.__doc__
        lines = docstrings.split("\n")
        i = 0
        while i < len(lines) and re.search(r"^\s*Returns?:\s*$", lines[i]) is None:
            i += 1
        if i < len(lines):
            lines[i] = _prepare_output_docstrings(output_type, config_class)
            docstrings = "\n".join(lines)
        else:
            raise ValueError(
                f"The function {fn} should have an empty 'Return:' or 'Returns:' in its docstring as placeholder, current docstring is:\n{docstrings}"
            )
        fn.__doc__ = docstrings
894
895
896
897
898
        return fn

    return docstring_decorator


899
900
def is_remote_url(url_or_filename):
    parsed = urlparse(url_or_filename)
Julien Chaumond's avatar
Julien Chaumond committed
901
    return parsed.scheme in ("http", "https")
902

903

904
905
906
def hf_bucket_url(
    model_id: str, filename: str, subfolder: Optional[str] = None, revision: Optional[str] = None, mirror=None
) -> str:
Julien Chaumond's avatar
Julien Chaumond committed
907
    """
Julien Chaumond's avatar
Julien Chaumond committed
908
909
    Resolve a model identifier, a file name, and an optional revision id, to a huggingface.co-hosted url, redirecting
    to Cloudfront (a Content Delivery Network, or CDN) for large files.
Sylvain Gugger's avatar
Sylvain Gugger committed
910
911

    Cloudfront is replicated over the globe so downloads are way faster for the end user (and it also lowers our
Julien Chaumond's avatar
Julien Chaumond committed
912
913
914
915
916
917
    bandwidth costs).

    Cloudfront aggressively caches files by default (default TTL is 24 hours), however this is not an issue here
    because we migrated to a git-based versioning system on huggingface.co, so we now store the files on S3/Cloudfront
    in a content-addressable way (i.e., the file name is its hash). Using content-addressable filenames means cache
    can't ever be stale.
Sylvain Gugger's avatar
Sylvain Gugger committed
918

Julien Chaumond's avatar
Julien Chaumond committed
919
920
921
    In terms of client-side caching from this library, we base our caching on the objects' ETag. An object' ETag is:
    its sha1 if stored in git, or its sha256 if stored in git-lfs. Files cached locally from transformers before v3.5.0
    are not shared with those new files, because the cached file's name contains a hash of the url (which changed).
Julien Chaumond's avatar
Julien Chaumond committed
922
    """
923
924
925
    if subfolder is not None:
        filename = f"{subfolder}/{filename}"

Julien Chaumond's avatar
Julien Chaumond committed
926
927
928
929
930
931
932
933
934
935
936
    if mirror:
        endpoint = PRESET_MIRROR_DICT.get(mirror, mirror)
        legacy_format = "/" not in model_id
        if legacy_format:
            return f"{endpoint}/{model_id}-{filename}"
        else:
            return f"{endpoint}/{model_id}/{filename}"

    if revision is None:
        revision = "main"
    return HUGGINGFACE_CO_PREFIX.format(model_id=model_id, revision=revision, filename=filename)
937
938


Julien Chaumond's avatar
Julien Chaumond committed
939
def url_to_filename(url: str, etag: Optional[str] = None) -> str:
thomwolf's avatar
thomwolf committed
940
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
941
942
943
944
    Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the url's,
    delimited by a period. If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name so that TF 2.0 can
    identify it as a HDF5 file (see
    https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380)
thomwolf's avatar
thomwolf committed
945
    """
946
    url_bytes = url.encode("utf-8")
Julien Chaumond's avatar
Julien Chaumond committed
947
    filename = sha256(url_bytes).hexdigest()
thomwolf's avatar
thomwolf committed
948
949

    if etag:
950
        etag_bytes = etag.encode("utf-8")
Julien Chaumond's avatar
Julien Chaumond committed
951
        filename += "." + sha256(etag_bytes).hexdigest()
thomwolf's avatar
thomwolf committed
952

953
954
    if url.endswith(".h5"):
        filename += ".h5"
thomwolf's avatar
thomwolf committed
955

thomwolf's avatar
thomwolf committed
956
957
958
    return filename


thomwolf's avatar
thomwolf committed
959
def filename_to_url(filename, cache_dir=None):
thomwolf's avatar
thomwolf committed
960
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
961
962
    Return the url and etag (which may be ``None``) stored for `filename`. Raise ``EnvironmentError`` if `filename` or
    its stored metadata do not exist.
thomwolf's avatar
thomwolf committed
963
964
    """
    if cache_dir is None:
965
        cache_dir = TRANSFORMERS_CACHE
966
    if isinstance(cache_dir, Path):
967
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
968
969
970

    cache_path = os.path.join(cache_dir, filename)
    if not os.path.exists(cache_path):
thomwolf's avatar
thomwolf committed
971
        raise EnvironmentError("file {} not found".format(cache_path))
thomwolf's avatar
thomwolf committed
972

973
    meta_path = cache_path + ".json"
thomwolf's avatar
thomwolf committed
974
    if not os.path.exists(meta_path):
thomwolf's avatar
thomwolf committed
975
        raise EnvironmentError("file {} not found".format(meta_path))
thomwolf's avatar
thomwolf committed
976

thomwolf's avatar
thomwolf committed
977
    with open(meta_path, encoding="utf-8") as meta_file:
thomwolf's avatar
thomwolf committed
978
        metadata = json.load(meta_file)
979
980
    url = metadata["url"]
    etag = metadata["etag"]
thomwolf's avatar
thomwolf committed
981
982
983
984

    return url, etag


985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
def get_cached_models(cache_dir: Union[str, Path] = None) -> List[Tuple]:
    """
    Returns a list of tuples representing model binaries that are cached locally. Each tuple has shape
    :obj:`(model_url, etag, size_MB)`. Filenames in :obj:`cache_dir` are use to get the metadata for each model, only
    urls ending with `.bin` are added.

    Args:
        cache_dir (:obj:`Union[str, Path]`, `optional`):
            The cache directory to search for models within. Will default to the transformers cache if unset.

    Returns:
        List[Tuple]: List of tuples each with shape :obj:`(model_url, etag, size_MB)`
    """
    if cache_dir is None:
        cache_dir = TRANSFORMERS_CACHE
    elif isinstance(cache_dir, Path):
        cache_dir = str(cache_dir)

    cached_models = []
    for file in os.listdir(cache_dir):
        if file.endswith(".json"):
            meta_path = os.path.join(cache_dir, file)
            with open(meta_path, encoding="utf-8") as meta_file:
                metadata = json.load(meta_file)
                url = metadata["url"]
                etag = metadata["etag"]
                if url.endswith(".bin"):
                    size_MB = os.path.getsize(meta_path.strip(".json")) / 1e6
                    cached_models.append((url, etag, size_MB))

    return cached_models


1018
def cached_path(
1019
1020
1021
1022
1023
    url_or_filename,
    cache_dir=None,
    force_download=False,
    proxies=None,
    resume_download=False,
Julien Chaumond's avatar
Julien Chaumond committed
1024
    user_agent: Union[Dict, str, None] = None,
1025
1026
    extract_compressed_file=False,
    force_extract=False,
1027
    use_auth_token: Union[bool, str, None] = None,
1028
    local_files_only=False,
1029
) -> Optional[str]:
thomwolf's avatar
thomwolf committed
1030
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1031
1032
1033
1034
    Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file
    and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and
    then return the path

1035
1036
    Args:
        cache_dir: specify a cache directory to save the file to (overwrite the default cache dir).
1037
1038
        force_download: if True, re-download the file even if it's already cached in the cache dir.
        resume_download: if True, resume the download if incompletely received file is found.
1039
        user_agent: Optional string or dict that will be appended to the user-agent on remote requests.
1040
1041
        use_auth_token: Optional string or boolean to use as Bearer token for remote files. If True,
            will get token from ~/.huggingface.
1042
1043
1044
        extract_compressed_file: if True and the path point to a zip or tar file, extract the compressed
            file in a folder along the archive.
        force_extract: if True when extract_compressed_file is True and the archive was already extracted,
1045
            re-extract the archive and override the folder where it was extracted.
1046
1047

    Return:
Julien Chaumond's avatar
Julien Chaumond committed
1048
1049
1050
1051
        Local path (string) of file or if networking is off, last version of file cached on disk.

    Raises:
        In case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
thomwolf's avatar
thomwolf committed
1052
1053
    """
    if cache_dir is None:
1054
        cache_dir = TRANSFORMERS_CACHE
1055
    if isinstance(url_or_filename, Path):
1056
        url_or_filename = str(url_or_filename)
1057
    if isinstance(cache_dir, Path):
1058
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
1059

1060
    if is_remote_url(url_or_filename):
thomwolf's avatar
thomwolf committed
1061
        # URL, so get it from the cache (downloading if necessary)
1062
        output_path = get_from_cache(
1063
1064
1065
1066
1067
1068
            url_or_filename,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            resume_download=resume_download,
            user_agent=user_agent,
1069
            use_auth_token=use_auth_token,
1070
            local_files_only=local_files_only,
1071
        )
thomwolf's avatar
thomwolf committed
1072
1073
    elif os.path.exists(url_or_filename):
        # File, and it exists.
1074
        output_path = url_or_filename
1075
    elif urlparse(url_or_filename).scheme == "":
thomwolf's avatar
thomwolf committed
1076
        # File, but it doesn't exist.
thomwolf's avatar
thomwolf committed
1077
        raise EnvironmentError("file {} not found".format(url_or_filename))
thomwolf's avatar
thomwolf committed
1078
1079
1080
1081
    else:
        # Something unknown
        raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
    if extract_compressed_file:
        if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path):
            return output_path

        # Path where we extract compressed archives
        # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
        output_dir, output_file = os.path.split(output_path)
        output_extract_dir_name = output_file.replace(".", "-") + "-extracted"
        output_path_extracted = os.path.join(output_dir, output_extract_dir_name)

        if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract:
            return output_path_extracted

        # Prevent parallel extractions
        lock_path = output_path + ".lock"
        with FileLock(lock_path):
            shutil.rmtree(output_path_extracted, ignore_errors=True)
            os.makedirs(output_path_extracted)
            if is_zipfile(output_path):
                with ZipFile(output_path, "r") as zip_file:
                    zip_file.extractall(output_path_extracted)
                    zip_file.close()
            elif tarfile.is_tarfile(output_path):
                tar_file = tarfile.open(output_path)
                tar_file.extractall(output_path_extracted)
                tar_file.close()
thomwolf's avatar
cleanup  
thomwolf committed
1108
1109
            else:
                raise EnvironmentError("Archive format of {} could not be identified".format(output_path))
1110
1111
1112
1113
1114

        return output_path_extracted

    return output_path

thomwolf's avatar
thomwolf committed
1115

Julien Chaumond's avatar
Julien Chaumond committed
1116
1117
1118
1119
def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
    """
    Formats a user-agent string with basic info about a request.
    """
1120
    ua = "transformers/{}; python/{}".format(__version__, sys.version.split()[0])
1121
    if is_torch_available():
1122
        ua += f"; torch/{_torch_version}"
1123
    if is_tf_available():
1124
        ua += f"; tensorflow/{_tf_version}"
1125
    if isinstance(user_agent, dict):
1126
        ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items())
Aymeric Augustin's avatar
Aymeric Augustin committed
1127
    elif isinstance(user_agent, str):
1128
        ua += "; " + user_agent
Julien Chaumond's avatar
Julien Chaumond committed
1129
1130
1131
    return ua


1132
def http_get(url: str, temp_file: BinaryIO, proxies=None, resume_size=0, headers: Optional[Dict[str, str]] = None):
Julien Chaumond's avatar
Julien Chaumond committed
1133
1134
1135
    """
    Donwload remote file. Do not gobble up errors.
    """
1136
    headers = copy.deepcopy(headers)
1137
    if resume_size > 0:
1138
        headers["Range"] = "bytes=%d-" % (resume_size,)
Julien Chaumond's avatar
Julien Chaumond committed
1139
1140
1141
    r = requests.get(url, stream=True, proxies=proxies, headers=headers)
    r.raise_for_status()
    content_length = r.headers.get("Content-Length")
1142
    total = resume_size + int(content_length) if content_length is not None else None
1143
1144
1145
1146
1147
1148
    progress = tqdm(
        unit="B",
        unit_scale=True,
        total=total,
        initial=resume_size,
        desc="Downloading",
Lysandre's avatar
Lysandre committed
1149
        disable=bool(logging.get_verbosity() == logging.NOTSET),
1150
    )
Julien Chaumond's avatar
Julien Chaumond committed
1151
    for chunk in r.iter_content(chunk_size=1024):
1152
        if chunk:  # filter out keep-alive new chunks
thomwolf's avatar
thomwolf committed
1153
1154
1155
1156
1157
            progress.update(len(chunk))
            temp_file.write(chunk)
    progress.close()


1158
def get_from_cache(
Julien Chaumond's avatar
Julien Chaumond committed
1159
    url: str,
1160
1161
1162
1163
1164
    cache_dir=None,
    force_download=False,
    proxies=None,
    etag_timeout=10,
    resume_download=False,
Julien Chaumond's avatar
Julien Chaumond committed
1165
    user_agent: Union[Dict, str, None] = None,
1166
    use_auth_token: Union[bool, str, None] = None,
1167
    local_files_only=False,
1168
) -> Optional[str]:
thomwolf's avatar
thomwolf committed
1169
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1170
1171
    Given a URL, look for the corresponding file in the local cache. If it's not there, download it. Then return the
    path to the cached file.
1172
1173

    Return:
Julien Chaumond's avatar
Julien Chaumond committed
1174
1175
1176
1177
        Local path (string) of file or if networking is off, last version of file cached on disk.

    Raises:
        In case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
thomwolf's avatar
thomwolf committed
1178
1179
    """
    if cache_dir is None:
1180
        cache_dir = TRANSFORMERS_CACHE
1181
    if isinstance(cache_dir, Path):
1182
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
1183

1184
    os.makedirs(cache_dir, exist_ok=True)
thomwolf's avatar
thomwolf committed
1185

1186
1187
1188
1189
1190
1191
1192
1193
1194
    headers = {"user-agent": http_user_agent(user_agent)}
    if isinstance(use_auth_token, str):
        headers["authorization"] = "Bearer {}".format(use_auth_token)
    elif use_auth_token:
        token = HfFolder.get_token()
        if token is None:
            raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.")
        headers["authorization"] = "Bearer {}".format(token)

Julien Chaumond's avatar
Julien Chaumond committed
1195
    url_to_download = url
1196
1197
    etag = None
    if not local_files_only:
Julien Chaumond's avatar
Julien Chaumond committed
1198
        try:
Julien Chaumond's avatar
Julien Chaumond committed
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
            r = requests.head(url, headers=headers, allow_redirects=False, proxies=proxies, timeout=etag_timeout)
            r.raise_for_status()
            etag = r.headers.get("X-Linked-Etag") or r.headers.get("ETag")
            # We favor a custom header indicating the etag of the linked resource, and
            # we fallback to the regular etag header.
            # If we don't have any of those, raise an error.
            if etag is None:
                raise OSError(
                    "Distant resource does not have an ETag, we won't be able to reliably ensure reproducibility."
                )
            # In case of a redirect,
            # save an extra redirect on the request.get call,
            # and ensure we download the exact atomic version even if it changed
            # between the HEAD and the GET (unlikely, but hey).
            if 300 <= r.status_code <= 399:
                url_to_download = r.headers["Location"]
        except (requests.exceptions.ConnectionError, requests.exceptions.Timeout):
Julien Chaumond's avatar
Julien Chaumond committed
1216
1217
            # etag is already None
            pass
thomwolf's avatar
thomwolf committed
1218
1219
1220
1221
1222
1223

    filename = url_to_filename(url, etag)

    # get cache path to put the file
    cache_path = os.path.join(cache_dir, filename)

Julien Chaumond's avatar
Julien Chaumond committed
1224
    # etag is None == we don't have a connection or we passed local_files_only.
1225
    # try to get the last downloaded one
1226
1227
1228
1229
1230
1231
    if etag is None:
        if os.path.exists(cache_path):
            return cache_path
        else:
            matching_files = [
                file
1232
                for file in fnmatch.filter(os.listdir(cache_dir), filename.split(".")[0] + ".*")
1233
1234
1235
1236
1237
                if not file.endswith(".json") and not file.endswith(".lock")
            ]
            if len(matching_files) > 0:
                return os.path.join(cache_dir, matching_files[-1])
            else:
1238
1239
1240
1241
                # If files cannot be found and local_files_only=True,
                # the models might've been found if local_files_only=False
                # Notify the user about that
                if local_files_only:
1242
                    raise FileNotFoundError(
1243
1244
1245
1246
                        "Cannot find the requested files in the cached path and outgoing traffic has been"
                        " disabled. To enable model look-ups and downloads online, set 'local_files_only'"
                        " to False."
                    )
Julien Chaumond's avatar
Julien Chaumond committed
1247
1248
1249
1250
1251
                else:
                    raise ValueError(
                        "Connection error, and we cannot find the requested files in the cached path."
                        " Please try again or make sure your Internet connection is on."
                    )
1252
1253
1254
1255

    # From now on, etag is not None.
    if os.path.exists(cache_path) and not force_download:
        return cache_path
1256

1257
    # Prevent parallel downloads of the same file with a lock.
1258
    lock_path = cache_path + ".lock"
1259
1260
    with FileLock(lock_path):

Julien Chaumond's avatar
Julien Chaumond committed
1261
1262
1263
1264
1265
        # If the download just completed while the lock was activated.
        if os.path.exists(cache_path) and not force_download:
            # Even if returning early like here, the lock will be released.
            return cache_path

1266
        if resume_download:
1267
1268
            incomplete_path = cache_path + ".incomplete"

1269
            @contextmanager
Julien Chaumond's avatar
Julien Chaumond committed
1270
1271
            def _resumable_file_manager() -> "io.BufferedWriter":
                with open(incomplete_path, "ab") as f:
1272
                    yield f
1273

1274
1275
1276
1277
1278
            temp_file_manager = _resumable_file_manager
            if os.path.exists(incomplete_path):
                resume_size = os.stat(incomplete_path).st_size
            else:
                resume_size = 0
1279
        else:
Julien Chaumond's avatar
Julien Chaumond committed
1280
            temp_file_manager = partial(tempfile.NamedTemporaryFile, mode="wb", dir=cache_dir, delete=False)
1281
            resume_size = 0
1282

1283
1284
1285
1286
1287
        # Download to temporary file, then copy to cache dir once finished.
        # Otherwise you get corrupt cache entries if the download gets interrupted.
        with temp_file_manager() as temp_file:
            logger.info("%s not found in cache or force_download set to True, downloading to %s", url, temp_file.name)

1288
            http_get(url_to_download, temp_file, proxies=proxies, resume_size=resume_size, headers=headers)
1289
1290

        logger.info("storing %s in cache at %s", url, cache_path)
1291
        os.replace(temp_file.name, cache_path)
1292
1293
1294
1295
1296
1297

        logger.info("creating metadata file for %s", cache_path)
        meta = {"url": url, "etag": etag}
        meta_path = cache_path + ".json"
        with open(meta_path, "w") as meta_file:
            json.dump(meta, meta_file)
thomwolf's avatar
thomwolf committed
1298
1299

    return cache_path
Julien Chaumond's avatar
Julien Chaumond committed
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346


class cached_property(property):
    """
    Descriptor that mimics @property but caches output in member variable.

    From tensorflow_datasets

    Built-in in functools from Python 3.8.
    """

    def __get__(self, obj, objtype=None):
        # See docs.python.org/3/howto/descriptor.html#properties
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError("unreadable attribute")
        attr = "__cached_" + self.fget.__name__
        cached = getattr(obj, attr, None)
        if cached is None:
            cached = self.fget(obj)
            setattr(obj, attr, cached)
        return cached


def torch_required(func):
    # Chose a different decorator name than in tests so it's clear they are not the same.
    @wraps(func)
    def wrapper(*args, **kwargs):
        if is_torch_available():
            return func(*args, **kwargs)
        else:
            raise ImportError(f"Method `{func.__name__}` requires PyTorch.")

    return wrapper


def tf_required(func):
    # Chose a different decorator name than in tests so it's clear they are not the same.
    @wraps(func)
    def wrapper(*args, **kwargs):
        if is_tf_available():
            return func(*args, **kwargs)
        else:
            raise ImportError(f"Method `{func.__name__}` requires TF.")

    return wrapper
1347
1348


1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
def is_tensor(x):
    """ Tests if ``x`` is a :obj:`torch.Tensor`, :obj:`tf.Tensor` or :obj:`np.ndarray`. """
    if is_torch_available():
        import torch

        if isinstance(x, torch.Tensor):
            return True
    if is_tf_available():
        import tensorflow as tf

        if isinstance(x, tf.Tensor):
            return True
    return isinstance(x, np.ndarray)


class ModelOutput(OrderedDict):
1365
    """
1366
    Base class for all model outputs as dataclass. Has a ``__getitem__`` that allows indexing by integer or slice (like
Sylvain Gugger's avatar
Sylvain Gugger committed
1367
1368
    a tuple) or strings (like a dictionary) that will ignore the ``None`` attributes. Otherwise behaves like a regular
    python dictionary.
1369
1370
1371
1372

    .. warning::
        You can't unpack a :obj:`ModelOutput` directly. Use the :meth:`~transformers.file_utils.ModelOutput.to_tuple`
        method to convert it to a tuple before.
1373
1374
    """

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
    def __post_init__(self):
        class_fields = fields(self)

        # Safety and consistency checks
        assert len(class_fields), f"{self.__class__.__name__} has no fields."
        assert all(
            field.default is None for field in class_fields[1:]
        ), f"{self.__class__.__name__} should not have more than one required field."

        first_field = getattr(self, class_fields[0].name)
        other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:])

        if other_fields_are_none and not is_tensor(first_field):
            try:
                iterator = iter(first_field)
                first_field_iterator = True
            except TypeError:
                first_field_iterator = False

            # if we provided an iterator as first field and the iterator is a (key, value) iterator
            # set the associated fields
            if first_field_iterator:
                for element in iterator:
                    if (
                        not isinstance(element, (list, tuple))
                        or not len(element) == 2
                        or not isinstance(element[0], str)
                    ):
                        break
                    setattr(self, element[0], element[1])
                    if element[1] is not None:
                        self[element[0]] = element[1]
1407
1408
            elif first_field is not None:
                self[class_fields[0].name] = first_field
1409
1410
1411
1412
1413
        else:
            for field in class_fields:
                v = getattr(self, field.name)
                if v is not None:
                    self[field.name] = v
1414

1415
1416
    def __delitem__(self, *args, **kwargs):
        raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
1417

1418
1419
    def setdefault(self, *args, **kwargs):
        raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
1420

1421
1422
1423
1424
1425
    def pop(self, *args, **kwargs):
        raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")

    def update(self, *args, **kwargs):
        raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
1426

1427
1428
1429
1430
1431
1432
    def __getitem__(self, k):
        if isinstance(k, str):
            inner_dict = {k: v for (k, v) in self.items()}
            return inner_dict[k]
        else:
            return self.to_tuple()[k]
1433

1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
    def __setattr__(self, name, value):
        if name in self.keys() and value is not None:
            # Don't call self.__setitem__ to avoid recursion errors
            super().__setitem__(name, value)
        super().__setattr__(name, value)

    def __setitem__(self, key, value):
        # Will raise a KeyException if needed
        super().__setitem__(key, value)
        # Don't call self.__setattr__ to avoid recursion errors
        super().__setattr__(key, value)

1446
1447
1448
1449
1450
    def to_tuple(self) -> Tuple[Any]:
        """
        Convert self to a tuple containing all the attributes/keys that are not ``None``.
        """
        return tuple(self[k] for k in self.keys())
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487


class _BaseLazyModule(ModuleType):
    """
    Module class that surfaces all objects but only performs associated imports when the objects are requested.
    """

    # Very heavily inspired by optuna.integration._IntegrationModule
    # https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
    def __init__(self, name, import_structure):
        super().__init__(name)
        self._modules = set(import_structure.keys())
        self._class_to_module = {}
        for key, values in import_structure.items():
            for value in values:
                self._class_to_module[value] = key
        # Needed for autocompletion in an IDE
        self.__all__ = list(import_structure.keys()) + sum(import_structure.values(), [])

    # Needed for autocompletion in an IDE
    def __dir__(self):
        return super().__dir__() + self.__all__

    def __getattr__(self, name: str) -> Any:
        if name in self._modules:
            value = self._get_module(name)
        elif name in self._class_to_module.keys():
            module = self._get_module(self._class_to_module[name])
            value = getattr(module, name)
        else:
            raise AttributeError(f"module {self.__name__} has no attribute {name}")

        setattr(self, name, value)
        return value

    def _get_module(self, module_name: str) -> ModuleType:
        raise NotImplementedError