test_deepspeed.py 45.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import dataclasses
16
import io
17
import itertools
18
import json
19
20
import os
import unittest
21
from copy import deepcopy
22

23
24
import datasets

25
from parameterized import parameterized
Stas Bekman's avatar
Stas Bekman committed
26
from tests.trainer.test_trainer import TrainerIntegrationCommon  # noqa
27
from transformers import AutoModel, TrainingArguments, is_torch_available, logging
28
from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_available
29
from transformers.testing_utils import (
30
    CaptureLogger,
31
    CaptureStd,
32
    CaptureStderr,
33
    LoggingLevel,
34
35
36
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
37
    mockenv_context,
38
    require_deepspeed,
39
    require_optuna,
40
41
42
43
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)
44
from transformers.trainer_utils import get_last_checkpoint, set_seed
45
from transformers.utils import WEIGHTS_NAME, is_torch_bf16_available
46

47

48
if is_torch_available():
Stas Bekman's avatar
Stas Bekman committed
49
50
51
52
53
    from tests.trainer.test_trainer import (  # noqa
        RegressionModelConfig,
        RegressionPreTrainedModel,
        get_regression_trainer,
    )
54
55


56
set_seed(42)
57

58
59
60
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"

61
T5_SMALL = "t5-small"
62
T5_TINY = "patrickvonplaten/t5-tiny-random"
63
GPT2_TINY = "sshleifer/tiny-gpt2"
64
65


66
67
68
69
70
def load_json(path):
    with open(path) as f:
        return json.load(f)


Stas Bekman's avatar
Stas Bekman committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
def get_master_port(real_launcher=False):
    """
    When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
    the issue is that once the port is tied it can't be used anywhere else outside of this process,
    since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
    able to run both emulated launcher and normal launcher tests we need 2 distinct ports.

    This function will give the right port in the right context. For real launcher it'll give the
    base port, for emulated launcher it'll give the base port + 1. In both cases a string is
    returned.

    Args:
        `real_launcher`: whether a real launcher is going to be used, or the emulated one

    """

    master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    if not real_launcher:
        master_port_base = str(int(master_port_base) + 1)
    return master_port_base


93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def require_deepspeed_aio(test_case):
    """
    Decorator marking a test that requires deepspeed aio (nvme)
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)

    import deepspeed
    from deepspeed.ops.aio import AsyncIOBuilder

    if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]:
        return unittest.skip("test requires deepspeed async-io")(test_case)
    else:
        return test_case


109
110
if is_deepspeed_available():
    from deepspeed.utils import logger as deepspeed_logger  # noqa
111
    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
112
    from transformers.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled  # noqa
113

114
115
116
117
118
119
120

def get_launcher(distributed=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
    num_gpus = min(2, get_gpu_count()) if distributed else 1
Stas Bekman's avatar
Stas Bekman committed
121
    master_port = get_master_port(real_launcher=True)
122
    return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
123
124


125
126
ZERO2 = "zero2"
ZERO3 = "zero3"
127
128
129
130

FP16 = "fp16"
BF16 = "bf16"

131
stages = [ZERO2, ZERO3]
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
if is_torch_bf16_available():
    dtypes = [FP16, BF16]
else:
    dtypes = [FP16]


def parameterized_custom_name_func(func, param_num, param):
    # customize the test name generator function as we want both params to appear in the sub-test
    # name, as by default it shows only the first param
    param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
    return f"{func.__name__}_{param_based_name}"


# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, dtypes))
147
148


149
150
151
152
153
154
155
156
157
158
@require_deepspeed
@require_torch_gpu
class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """
    Testing non-Trainer DeepSpeed integration
    """

    def setUp(self):
        super().setUp()

Stas Bekman's avatar
Stas Bekman committed
159
        master_port = get_master_port(real_launcher=False)
160
        self.dist_env_1_gpu = dict(
161
            MASTER_ADDR="localhost", MASTER_PORT=master_port, RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
162
163
        )

164
165
    def test_init_zero3_fp16(self):
        # test that zero.Init() works correctly under zero3/fp16
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        # now remove zero optimization
        del ds_config["zero_optimization"]
        dschf = HfDeepSpeedConfig(ds_config)

        self.assertFalse(dschf.is_zero3())
        self.assertFalse(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)


200
class TrainerIntegrationDeepSpeedWithCustomConfig(TestCasePlus):
201
202
    def setUp(self):
        super().setUp()
203
204
205
206
207

        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

Stas Bekman's avatar
Stas Bekman committed
208
        master_port = get_master_port(real_launcher=False)
209
        self.dist_env_1_gpu = dict(
210
            MASTER_ADDR="localhost", MASTER_PORT=master_port, RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
211
        )
212

213
214
215
216
        self.ds_config_file = dict(
            zero2=f"{self.test_file_dir_str}/ds_config_zero2.json",
            zero3=f"{self.test_file_dir_str}/ds_config_zero3.json",
        )
217
218
219

        # use self.get_config_dict(stage) to use these to ensure the original is not modified
        with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
220
            config_zero2 = json.load(f)
221
        with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
222
            config_zero3 = json.load(f)
223
            # The following setting slows things down, so don't enable it by default unless needed by a test.
224
            # It's in the file as a demo for users since we want everything to work out of the box even if slower.
225
226
            config_zero3["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = False

227
228
229
230
231
232
233
234
        self.ds_config_dict = dict(
            zero2=config_zero2,
            zero3=config_zero3,
        )

    def get_config_dict(self, stage):
        # As some tests modify the dict, always make a copy
        return deepcopy(self.ds_config_dict[stage])
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

@require_deepspeed
@require_torch_gpu
class TrainerIntegrationDeepSpeed(TrainerIntegrationDeepSpeedWithCustomConfig, TrainerIntegrationCommon):
    """

    This class is for testing directly via get_regression_trainer

    It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
    which we can re-use here.

    Important: this class' setup can only work with a single gpu because it runs within the current
    pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.

    Note: if any of the tests of this class get run there will be at least one gpu occupied by them
    until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
    won't be released until this pytest worker exits.

    This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
    processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
    is not a bug.
    """

259
    # --- These tests are enough to run on one of zero stages --- #
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    def test_hf_ds_config_mismatch(self):

        ds_config = self.get_config_dict(ZERO2)

        # Purposefully configure these values to mismatch TrainingArguments values.
        # This currently doesn't cover all keys (but it could)
        per_device_train_batch_size = 2
        ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2

        ds_config["train_batch_size"] = 1000

        gradient_accumulation_steps = 2
        ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2

        max_grad_norm = 1.0
        ds_config["gradient_clipping"] = max_grad_norm + 0.1

        adam_beta1, adam_beta2 = 0.9, 0.99
        ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1]

        fp16 = True
        ds_config["fp16"]["enabled"] = not fp16

        keys = [
            "per_device_train_batch_size",
            "train_batch_size",
            "gradient_accumulation_steps",
            "max_grad_norm",
            "betas",
            "fp16",
        ]

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                local_rank=0,
                fp16=fp16,
                deepspeed=ds_config,
                per_device_train_batch_size=per_device_train_batch_size,
                gradient_accumulation_steps=gradient_accumulation_steps,
                max_grad_norm=max_grad_norm,
                adam_beta1=adam_beta1,
                adam_beta2=adam_beta2,
            )
            with self.assertRaises(Exception) as context:
                trainer.train()

        for key in keys:
            self.assertTrue(
                key in str(context.exception),
                f"{key} is not in the exception message:\n{context.exception}",
            )

313
314
315
316
317
318
319
320
321
    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
322
323
324
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
325
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
326
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
327
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
328
329
330
331
332
333
334
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
335
336
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
337
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
338
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
339
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
340
341
342
343
344
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
345
        a = 0
346
        with mockenv_context(**self.dist_env_1_gpu):
347
348
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
349
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
350
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
351
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
352
353
354
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)
355

356
    @require_deepspeed_aio
357
358
359
360
361
362
363
364
365
    def test_stage3_nvme_offload(self):
        with mockenv_context(**self.dist_env_1_gpu):
            # this actually doesn't have to be on NVMe, any storage will do since this test only
            # runs a simple check that we can use some directory as if it were NVMe
            nvme_path = self.get_auto_remove_tmp_dir()
            nvme_config = dict(device="nvme", nvme_path=nvme_path)
            ds_config_zero3_dict = self.get_config_dict(ZERO3)
            ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config
            ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config
366
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict)
367
            with CaptureLogger(deepspeed_logger) as cl:
368
                trainer.train()
369
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
370

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    @require_optuna
    def test_hyperparameter_search(self):
        with mockenv_context(**self.dist_env_1_gpu):

            ds_config_zero3_dict = self.get_config_dict(ZERO3)

            # hyperparameter_search requires model_init() to recreate the model for each trial
            def model_init():
                config = RegressionModelConfig(a=0, b=0, double_output=False)
                model = RegressionPreTrainedModel(config)
                return model

            trainer = get_regression_trainer(
                local_rank=0,
                fp16=True,
                model_init=model_init,
                deepspeed=ds_config_zero3_dict,
            )

            n_trials = 3
            with CaptureLogger(deepspeed_logger) as cl:
                with CaptureStd() as cs:
                    trainer.hyperparameter_search(direction="maximize", n_trials=n_trials)
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
            self.assertIn(f"Trial {n_trials-1} finished with value", cs.err, "expected hyperparameter_search output")
            self.assertIn("Best is trial", cs.err, "expected hyperparameter_search output")

398
399
    # --- These tests need to run on both zero stages --- #

400
401
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_hf_optimizer_with_offload(self, stage, dtype):
402
        # non-DS optimizers can be used with ZERO-offload (as long as they have both CPU and GPU implementation (except LAMB))
403
404
405
        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
        # force cpu offload
406
        ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
407
        with mockenv_context(**self.dist_env_1_gpu):
408
409
410
            kwargs = dict(local_rank=0, deepspeed=ds_config_dict)
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
411
            with CaptureLogger(deepspeed_logger) as cl:
412
                trainer.train()
413
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
414

415
416
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fake_notebook_no_launcher(self, stage, dtype):
417
418
419
420
421
        # this setup emulates a notebook where a launcher needs to be emulated by hand

        # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
        # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
        # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
422
423
        # to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger.
        with mockenv_context(**self.dist_env_1_gpu):
424
425
426
427
            kwargs = dict(local_rank=0, deepspeed=self.get_config_dict(stage))
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

428
            with CaptureLogger(deepspeed_logger) as cl:
429
                trainer.train()
430
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
431

432
433
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_early_get_last_lr(self, stage, dtype):
434
435
436
437
438
439
440
441
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
442
            kwargs = dict(
443
444
445
446
                a=a,
                b=b,
                local_rank=0,
                train_len=8,
447
                deepspeed=self.get_config_dict(stage),
448
449
450
                per_device_train_batch_size=8,
                logging_steps=1,
            )
451
452
453
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

454
            trainer.train()
455
456
            post_train_a = trainer.model.a.item()

457
458
            # XXX: for some reason the following check fails with zero3/fp16 and any/bf16 - not a
            # broken but a different qualitative outcome - as if optimizer did run
459
460
461
462
            # oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere
            # print(trainer.model.a.item())
            # print(trainer.model.b.item())
            # need to investigate at some point
463
            if (stage == ZERO3 and dtype == FP16) or (dtype == BF16):
464
                return
465
466
467

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
468
            self.assertEqual(post_train_a, a)
469

470
471
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_gradient_accumulation(self, stage, dtype):
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

487
488
489
490
491
492
493
        kwargs = dict(
            a=a,
            b=b,
            local_rank=0,
            train_len=train_len,
            deepspeed=self.get_config_dict(stage),
        )
494
        kwargs[dtype] = True
495

496
497
        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
498
499
                **kwargs,
                per_device_train_batch_size=16,
500
501
502
503
504
505
506
507
508
509
510
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
511
                **kwargs,
512
                per_device_train_batch_size=4,
513
                gradient_accumulation_steps=4,
514
515
516
517
518
519
520
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

521
522
523
524
        # training with half the batch size but accumulation steps as 2 should give the same
        # weights, but sometimes get a slight difference still of 1e-6
        self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5)
        self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5)
525
526

        # see the note above how to get identical loss on a small bs
527
        self.assertAlmostEqual(no_grad_accum_loss, yes_grad_accum_loss, places=2)
528

529
    def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage, dtype):
530
531
532
        # adapted from TrainerIntegrationCommon.check_saved_checkpoints

        file_list = [WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]
533
534
535
536
537
538
539
540

        if stage == ZERO2:
            ds_file_list = ["mp_rank_00_model_states.pt"]
        elif stage == ZERO3:
            ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
        else:
            raise ValueError(f"unknown stage {stage}")

541
542
        if dtype == "bf16":
            ds_file_list.append("bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt")
543
544
545

        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
546
            self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
547
548
549

            # common files
            for filename in file_list:
550
551
                path = os.path.join(checkpoint, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
552
553
554
555
556
557

            # ds files
            ds_path = os.path.join(checkpoint, f"global_step{step}")
            for filename in ds_file_list:
                # filename = os.path.join(path, filename)
                # print(filename)
558
559
                path = os.path.join(ds_path, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
560

561
562
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_save_checkpoints(self, stage, dtype):
563
564
        # adapted from  TrainerIntegrationTest.test_save_checkpoints

565
        freq = 5
566
        output_dir = self.get_auto_remove_tmp_dir()
567
        ds_config_dict = self.get_config_dict(stage)
568
569
570
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
571
        if stage == ZERO3:
572
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
573
574
575

        # save checkpoints
        with mockenv_context(**self.dist_env_1_gpu):
576
            kwargs = dict(
577
578
579
580
                output_dir=output_dir,
                save_steps=freq,
                deepspeed=ds_config_dict,
            )
581
582
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
583
584
585
            trainer.train()

        total = int(self.n_epochs * 64 / self.batch_size)
586
        self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage, dtype)
587

588
589
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_can_resume_training_errors(self, stage, dtype):
590
591
592
593

        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = self.get_config_dict(stage)
            output_dir = self.get_auto_remove_tmp_dir()
594
595
596
            kwargs = dict(output_dir=output_dir, deepspeed=ds_config_dict)
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
597
598
599
600
601
602
603
604

            # 1. fail to find any checkpoint - due a fresh output_dir
            with self.assertRaises(Exception) as context:
                trainer.train(resume_from_checkpoint=True)
            self.assertTrue(
                "No valid checkpoint found in output directory" in str(context.exception),
                f"got exception: {context.exception}",
            )
605

606
607
608
609
610
611
612
613
            # 2. fail to find a bogus checkpoint
            with self.assertRaises(Exception) as context:
                checkpoint = os.path.join(output_dir, "checkpoint-5")
                trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
            self.assertTrue(
                "Can't find a valid checkpoint at" in str(context.exception), f"got exception: {context.exception}"
            )

614
615
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_can_resume_training_normal(self, stage, dtype):
616
617
        # adapted from TrainerIntegrationTest.test_can_resume_training
        # test normal resume for each stage separately, error-handling is tested in a different test
618
        output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
619
        ds_config_dict = self.get_config_dict(stage)
620
621
622
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
623
        if stage == ZERO3:
624
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
625

626
627
        kwargs = dict(output_dir=output_dir, train_len=128, save_steps=5, learning_rate=0.1, deepspeed=ds_config_dict)
        kwargs[dtype] = True
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(output_dir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(output_dir, "checkpoint-15")

            # Reinitialize trainer and load model
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

660
661
662
663
664
            # Finally, should be able to resume with the same trainer/same deepspeed engine instance
            # XXX: but currently this not possible due DS bug: https://github.com/microsoft/DeepSpeed/issues/1612
            # trainer.train(resume_from_checkpoint=checkpoint)
            # a workaround needs to be used that re-creates the deepspeed engine

665
666
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_state_dict_from_zero_checkpoint(self, stage, dtype):
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
        # test that we can load fp32 weights directly from the zero checkpoint into the current model

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)

        kwargs = dict(
            output_dir=output_dir,
            train_len=4,
            per_device_train_batch_size=4,
            num_train_epochs=1,
            save_strategy="steps",
            save_steps=1,
            learning_rate=0.1,
            deepspeed=ds_config_dict,
        )
683
        kwargs[dtype] = True
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint_dir = get_last_checkpoint(output_dir)
            model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)

            (a1, b1) = model.a.item(), model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

700
701
702
703
    def test_config_object(self):
        # test that we can switch from zero2 to zero3 in the same process for example
        # test is_zero, etc.
        output_dir = self.get_auto_remove_tmp_dir()
704
        kwargs = dict(output_dir=output_dir, train_len=8, fp16=True)
705

706
707
        ds_config_zero3_dict = self.get_config_dict(ZERO3)
        ds_config_zero2_dict = self.get_config_dict(ZERO2)
708

709
        with mockenv_context(**self.dist_env_1_gpu):
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test we can repeat that and with train this time
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            trainer.train()
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test zero3 is disabled
            trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs)
            self.assertFalse(is_deepspeed_zero3_enabled())

            # check config obj
            config = deepspeed_config()
            self.assertTrue(bool(config), "Deepspeed config should be accessible")

            del trainer
            # now weakref should gc the global and we shouldn't get anything here
            config = deepspeed_config()
            self.assertFalse(is_deepspeed_zero3_enabled())
            self.assertFalse(bool(config), "Deepspeed config should not be accessible")

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_best_model(self, stage, dtype):
        # Test that forced deepspeed reinit doesn't break the model. the forced re-init after
        # loading the best model in Trainer is there to workaround this bug in Deepspeed
        # https://github.com/microsoft/DeepSpeed/issues/1612
        #
        # The test is derived from a repro script submitted in this Issue:
        # https://github.com/huggingface/transformers/issues/17114
        #
        # One additional feature of this test is that we use a non-AdamW optimizer to test that
        # deepspeed doesn't fallback to AdamW, which would prevent the optimizer states from loading
        # correctly

        from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer  # noqa

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # will use HF Trainer optimizer
        del ds_config_dict["scheduler"]  # will use HF Trainer scheduler
        # must use this setting to get the reload path exercised
        ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True

755
        with mockenv_context(**self.dist_env_1_gpu):
756

757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
            tokenizer = T5Tokenizer.from_pretrained(T5_TINY)
            model = T5ForConditionalGeneration.from_pretrained(T5_TINY)

            def _add_eos_to_examples(example):
                example["input_text"] = f"question: {example['question']}  context: {example['context']}"
                example["target_text"] = example["answers"]["text"][0] if len(example["answers"]["text"]) > 0 else ""
                return example

            def _convert_to_features(example_batch):
                input_encodings = tokenizer.batch_encode_plus(
                    example_batch["input_text"], pad_to_max_length=True, max_length=512, truncation=True
                )
                target_encodings = tokenizer.batch_encode_plus(
                    example_batch["target_text"], pad_to_max_length=True, max_length=16, truncation=True
                )

                encodings = {
                    "input_ids": input_encodings["input_ids"],
                    "attention_mask": input_encodings["attention_mask"],
                    "labels": target_encodings["input_ids"],
                }

                return encodings

            def get_dataset():
                data_file = str(self.tests_dir / "fixtures/tests_samples/SQUAD/sample.json")
                data_files = dict(train=data_file, validation=data_file)
                raw_datasets = datasets.load_dataset("json", data_files=data_files, field="data")
                train_dataset = raw_datasets["train"].map(_add_eos_to_examples).map(_convert_to_features, batched=True)
                valid_dataset = deepcopy(train_dataset)
                return train_dataset, valid_dataset

            train_dataset, eval_dataset = get_dataset()

            args_dict = {
                "per_gpu_train_batch_size": 1,
                "per_gpu_eval_batch_size": 1,
                "gradient_accumulation_steps": 1,
                "learning_rate": 1e-4,
                "num_train_epochs": 1,
                "do_train": True,
                "do_eval": True,
                "optim": "adafactor",
                "evaluation_strategy": "steps",
                "eval_steps": 1,
                "save_strategy": "steps",
                "save_steps": 1,
                "load_best_model_at_end": True,
                "max_steps": 1,
                "deepspeed": ds_config_dict,
807
808
809
810
811
812
813
814
815
816
817
818
819
820
            }

            training_args = TrainingArguments(output_dir, **args_dict)

            trainer = Trainer(
                model=model,
                tokenizer=tokenizer,
                args=training_args,
                train_dataset=train_dataset,
                eval_dataset=eval_dataset,
            )
            trainer.train()  # crash 1 was here
            trainer.evaluate()  # crash 2 was here

821
822
823
824

@slow
@require_deepspeed
@require_torch_gpu
825
class TestDeepSpeedWithLauncher(TestCasePlus):
Patrick von Platen's avatar
Patrick von Platen committed
826
    """This class is for testing via an external script - can do multiple gpus"""
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842

    # Tests to devise #
    #
    # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
    # the 2 gpus will generate prediction sequences that aren't of the same length - this is because
    # we had to code a special feature to sync the gpus when the predicted sequences aren't of the
    # same length. In general this will tested as a side-effect through a variety of other tests -
    # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
    # long as we have a few full tests running on zero3 + predict_with_generate this should be
    # mostly covered.
    #
    # but there are 5 variations on beam search in `generate`- with identical code branched with `if
    # synced_gpus`
    #
    # 2. most tests should probably be run on both: zero2 and zero3 configs
    #
843

844
    @require_torch_multi_gpu
845
846
847
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_basic_distributed(self, stage, dtype):
        self.run_and_check(stage=stage, dtype=dtype, distributed=True)
848

849
850
    def test_do_eval_no_train(self):
        # testing only zero3 since zero2 makes no sense with inference
851
        self.run_and_check(
852
            stage=ZERO3,
853
            dtype=FP16,
854
855
            eval_steps=1,
            distributed=False,
856
857
            do_train=False,
            do_eval=True,
858
        )
859

860
861
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fp32_non_distributed(self, stage, dtype):
862
863
864
865
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
866
            dtype=dtype,
867
868
869
870
871
            model_name=T5_TINY,
            distributed=False,
            do_train=True,
            do_eval=True,
            quality_checks=False,
872
            fp32=True,
873
874
875
        )

    @require_torch_multi_gpu
876
877
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fp32_distributed(self, stage, dtype):
878
879
880
881
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
882
            dtype=dtype,
883
884
885
886
887
            model_name=T5_TINY,
            distributed=True,
            do_train=True,
            do_eval=True,
            quality_checks=False,
888
            fp32=True,
889
890
        )

891
892
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_resume_train_not_from_ds_checkpoint(self, stage, dtype):
893
894
895
896
897
        # do normal training and then resume not from the deepspeed checkpoint but explicitly from
        # the saved model dir

        do_train = True
        do_eval = False
898
        kwargs = dict(stage=stage, dtype=dtype, eval_steps=1, distributed=True, do_train=do_train, do_eval=do_eval)
899
900
901
902
903
904
905
906
907
908

        # 1. normal training
        output_dir = self.run_and_check(**kwargs)

        # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
        # - i.e. the same path the model was saved to in step 1
        output_dir = self.run_trainer(**kwargs, model_name=output_dir)

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

909
    @require_torch_multi_gpu
910
    @parameterized.expand(["bf16", "fp16", "fp32"])
911
    def test_inference(self, dtype):
912
913
914
        if dtype == "bf16" and not is_torch_bf16_available():
            self.skipTest("test requires bfloat16 hardware support")

915
916
        # this is just inference, so no optimizer should be loaded
        # it only works for z3 (makes no sense with z1-z2)
917
        fp32 = True if dtype == "fp32" else False
918
919
        self.run_and_check(
            stage=ZERO3,
920
            dtype=FP16,
921
922
923
924
925
            model_name=T5_TINY,
            distributed=True,
            do_train=False,
            do_eval=True,
            quality_checks=False,
926
            fp32=fp32,
927
928
        )

929
    def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True):
930
931
932
933

        if do_train:
            train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
            self.assertIn("train_samples_per_second", train_metrics)
934
935
            if quality_checks:
                self.assertGreater(train_metrics["train_samples_per_second"], 0.5)
936
937
938
939

        if do_eval:
            eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
            self.assertIn("eval_bleu", eval_metrics)
940
941
            if quality_checks:
                self.assertGreater(eval_metrics["eval_bleu"], 1)
942
943

    # XXX: need to do better validation beyond just that the run was successful
944
945
946
    def run_and_check(
        self,
        stage,
947
        dtype,
948
949
950
951
952
953
        model_name: str = T5_SMALL,
        eval_steps: int = 10,
        distributed: bool = True,
        do_train: bool = True,
        do_eval: bool = True,
        quality_checks: bool = True,
954
        fp32: bool = False,
955
956
        extra_args_str: str = None,
        remove_args_str: str = None,
957
958
959
    ):

        # we are doing quality testing so using a small real model
960
        output_dir = self.run_trainer(
961
            stage=stage,
962
            dtype=dtype,
963
            model_name=model_name,
964
            eval_steps=eval_steps,
965
            num_train_epochs=1,
966
967
            do_train=do_train,
            do_eval=do_eval,
968
            distributed=distributed,
969
            fp32=fp32,
970
971
972
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
973

974
        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks)
975
976

        return output_dir
977
978
979

    def run_trainer(
        self,
980
        stage: str,
981
        dtype: str,
982
        model_name: str,
983
984
985
986
        eval_steps: int = 10,
        num_train_epochs: int = 1,
        do_train: bool = False,
        do_eval: bool = True,
987
        distributed: bool = True,
988
        fp32: bool = False,
989
990
991
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
992
        max_len = 32
Sylvain Gugger's avatar
Sylvain Gugger committed
993
        data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
994
995
996
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
997
998
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
999
1000
1001
1002
1003
1004
1005
            --output_dir {output_dir}
            --overwrite_output_dir
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --warmup_steps 8
            --predict_with_generate
1006
1007
            --save_steps 0
            --eval_steps {eval_steps}
1008
1009
            --group_by_length
            --label_smoothing_factor 0.1
1010
1011
            --source_lang en
            --target_lang ro
1012
            --report_to none
1013
        """.split()
1014
1015
        args.extend(["--source_prefix", '"translate English to Romanian: "'])

1016
1017
        if not fp32:
            args.extend([f"--{dtype}"])
1018

1019
1020
1021
1022
1023
1024
1025
        actions = 0
        if do_train:
            actions += 1
            args.extend(
                f"""
            --do_train
            --num_train_epochs {str(num_train_epochs)}
1026
            --max_train_samples 16
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
            --per_device_train_batch_size 2
            --learning_rate 3e-3
            """.split()
            )

        if do_eval:
            actions += 1
            args.extend(
                """
            --do_eval
1037
            --max_eval_samples 16
1038
1039
1040
1041
1042
            --per_device_eval_batch_size 2
            """.split()
            )

        assert actions > 0, "need at least do_train or do_eval for the test to run"
1043
1044
1045
1046

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

1047
        # currently only works for bool args
1048
1049
1050
1051
        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

1052
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
1053
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
1054
        launcher = get_launcher(distributed)
1055
1056

        cmd = launcher + script + args + ds_args
1057
        # keep for quick debug
1058
1059
1060
1061
1062
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir

1063
1064
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_clm(self, stage, dtype):
1065
1066
1067
1068
1069
1070
        # this test exercises model.resize_token_embeddings() which requires param gathering outside
        # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
1071
            --model_name_or_path {GPT2_TINY}
1072
1073
1074
1075
1076
1077
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
1078
1079
1080
1081
            --max_train_samples 16
            --max_eval_samples 16
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
1082
1083
            --num_train_epochs 1
            --warmup_steps 8
1084
            --block_size 64
1085
            --report_to none
1086
1087
            """.split()

1088
1089
        args.extend([f"--{dtype}"])

1090
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
1091
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
1092
        launcher = get_launcher(distributed=True)
1093
1094
1095
1096

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
1097
1098
        execute_subprocess_async(cmd, env=self.get_env())

1099
    def test_clm_from_config_zero3_fp16(self):
1100
1101
1102
1103
1104
1105
        # this test exercises AutoModel.from_config(config) - to ensure zero.Init is called

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_type gpt2
1106
            --tokenizer_name {GPT2_TINY}
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --max_train_samples 4
            --per_device_train_batch_size 2
            --num_train_epochs 1
            --warmup_steps 8
            --block_size 8
            --fp16
            --report_to none
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split()
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
1123
        launcher = get_launcher(distributed=True)
1124
1125
1126
1127
1128
1129

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        with CaptureStderr() as cs:
            execute_subprocess_async(cmd, env=self.get_env())
1130
        self.assertIn("Detected DeepSpeed ZeRO-3", cs.err)