test_deepspeed.py 42.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import dataclasses
16
import io
17
import itertools
18
import json
19
20
import os
import unittest
21
from copy import deepcopy
22

23
from parameterized import parameterized
Stas Bekman's avatar
Stas Bekman committed
24
from tests.trainer.test_trainer import TrainerIntegrationCommon  # noqa
25
from transformers import AutoModel, TrainingArguments, is_torch_available, logging
26
from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_available
27
from transformers.file_utils import WEIGHTS_NAME, is_torch_bf16_available
28
from transformers.testing_utils import (
29
    CaptureLogger,
30
    CaptureStd,
31
    CaptureStderr,
32
    LoggingLevel,
33
34
35
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
36
    mockenv_context,
37
    require_deepspeed,
38
39
40
41
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)
42
from transformers.trainer_utils import get_last_checkpoint, set_seed
43

44

45
if is_torch_available():
Stas Bekman's avatar
Stas Bekman committed
46
47
48
49
50
    from tests.trainer.test_trainer import (  # noqa
        RegressionModelConfig,
        RegressionPreTrainedModel,
        get_regression_trainer,
    )
51
52


53
set_seed(42)
54

55
56
57
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"

58
T5_SMALL = "t5-small"
59
T5_TINY = "patrickvonplaten/t5-tiny-random"
60
GPT2_TINY = "sshleifer/tiny-gpt2"
61
62


63
64
65
66
67
def load_json(path):
    with open(path) as f:
        return json.load(f)


Stas Bekman's avatar
Stas Bekman committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def get_master_port(real_launcher=False):
    """
    When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
    the issue is that once the port is tied it can't be used anywhere else outside of this process,
    since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
    able to run both emulated launcher and normal launcher tests we need 2 distinct ports.

    This function will give the right port in the right context. For real launcher it'll give the
    base port, for emulated launcher it'll give the base port + 1. In both cases a string is
    returned.

    Args:
        `real_launcher`: whether a real launcher is going to be used, or the emulated one

    """

    master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    if not real_launcher:
        master_port_base = str(int(master_port_base) + 1)
    return master_port_base


90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
def require_deepspeed_aio(test_case):
    """
    Decorator marking a test that requires deepspeed aio (nvme)
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)

    import deepspeed
    from deepspeed.ops.aio import AsyncIOBuilder

    if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]:
        return unittest.skip("test requires deepspeed async-io")(test_case)
    else:
        return test_case


106
107
if is_deepspeed_available():
    from deepspeed.utils import logger as deepspeed_logger  # noqa
108
    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
109
    from transformers.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled  # noqa
110

111
112
113
114
115
116
117

def get_launcher(distributed=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
    num_gpus = min(2, get_gpu_count()) if distributed else 1
Stas Bekman's avatar
Stas Bekman committed
118
    master_port = get_master_port(real_launcher=True)
119
    return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
120
121


122
123
ZERO2 = "zero2"
ZERO3 = "zero3"
124
125
126
127

FP16 = "fp16"
BF16 = "bf16"

128
stages = [ZERO2, ZERO3]
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
if is_torch_bf16_available():
    dtypes = [FP16, BF16]
else:
    dtypes = [FP16]


def parameterized_custom_name_func(func, param_num, param):
    # customize the test name generator function as we want both params to appear in the sub-test
    # name, as by default it shows only the first param
    param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
    return f"{func.__name__}_{param_based_name}"


# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, dtypes))
144
145


146
147
148
149
150
151
152
153
154
155
@require_deepspeed
@require_torch_gpu
class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """
    Testing non-Trainer DeepSpeed integration
    """

    def setUp(self):
        super().setUp()

Stas Bekman's avatar
Stas Bekman committed
156
        master_port = get_master_port(real_launcher=False)
157
        self.dist_env_1_gpu = dict(
158
            MASTER_ADDR="localhost", MASTER_PORT=master_port, RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
159
160
        )

161
162
    def test_init_zero3_fp16(self):
        # test that zero.Init() works correctly under zero3/fp16
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        # now remove zero optimization
        del ds_config["zero_optimization"]
        dschf = HfDeepSpeedConfig(ds_config)

        self.assertFalse(dschf.is_zero3())
        self.assertFalse(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)


197
@require_deepspeed
198
@require_torch_gpu
199
200
201
202
203
class TrainerIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """

    This class is for testing directly via get_regression_trainer

204
205
206
207
208
209
210
211
212
213
214
215
216
    It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
    which we can re-use here.

    Important: this class' setup can only work with a single gpu because it runs within the current
    pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.

    Note: if any of the tests of this class get run there will be at least one gpu occupied by them
    until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
    won't be released until this pytest worker exits.

    This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
    processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
    is not a bug.
217
    """
218
219
220

    def setUp(self):
        super().setUp()
221
222
223
224
225

        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

Stas Bekman's avatar
Stas Bekman committed
226
        master_port = get_master_port(real_launcher=False)
227
        self.dist_env_1_gpu = dict(
228
            MASTER_ADDR="localhost", MASTER_PORT=master_port, RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
229
        )
230

231
232
233
234
        self.ds_config_file = dict(
            zero2=f"{self.test_file_dir_str}/ds_config_zero2.json",
            zero3=f"{self.test_file_dir_str}/ds_config_zero3.json",
        )
235
236
237

        # use self.get_config_dict(stage) to use these to ensure the original is not modified
        with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
238
            config_zero2 = json.load(f)
239
        with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
240
            config_zero3 = json.load(f)
241
            # The following setting slows things down, so don't enable it by default unless needed by a test.
242
            # It's in the file as a demo for users since we want everything to work out of the box even if slower.
243
244
            config_zero3["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = False

245
246
247
248
249
250
251
252
        self.ds_config_dict = dict(
            zero2=config_zero2,
            zero3=config_zero3,
        )

    def get_config_dict(self, stage):
        # As some tests modify the dict, always make a copy
        return deepcopy(self.ds_config_dict[stage])
253
254

    # --- These tests are enough to run on one of zero stages --- #
255

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    def test_hf_ds_config_mismatch(self):

        ds_config = self.get_config_dict(ZERO2)

        # Purposefully configure these values to mismatch TrainingArguments values.
        # This currently doesn't cover all keys (but it could)
        per_device_train_batch_size = 2
        ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2

        ds_config["train_batch_size"] = 1000

        gradient_accumulation_steps = 2
        ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2

        max_grad_norm = 1.0
        ds_config["gradient_clipping"] = max_grad_norm + 0.1

        adam_beta1, adam_beta2 = 0.9, 0.99
        ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1]

        fp16 = True
        ds_config["fp16"]["enabled"] = not fp16

        keys = [
            "per_device_train_batch_size",
            "train_batch_size",
            "gradient_accumulation_steps",
            "max_grad_norm",
            "betas",
            "fp16",
        ]

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                local_rank=0,
                fp16=fp16,
                deepspeed=ds_config,
                per_device_train_batch_size=per_device_train_batch_size,
                gradient_accumulation_steps=gradient_accumulation_steps,
                max_grad_norm=max_grad_norm,
                adam_beta1=adam_beta1,
                adam_beta2=adam_beta2,
            )
            with self.assertRaises(Exception) as context:
                trainer.train()

        for key in keys:
            self.assertTrue(
                key in str(context.exception),
                f"{key} is not in the exception message:\n{context.exception}",
            )

308
309
310
311
312
313
314
315
316
    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
317
318
319
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
320
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
321
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
322
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
323
324
325
326
327
328
329
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
330
331
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
332
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
333
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
334
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
335
336
337
338
339
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
340
        a = 0
341
        with mockenv_context(**self.dist_env_1_gpu):
342
343
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
344
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
345
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
346
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
347
348
349
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)
350

351
    @require_deepspeed_aio
352
353
354
355
356
357
358
359
360
    def test_stage3_nvme_offload(self):
        with mockenv_context(**self.dist_env_1_gpu):
            # this actually doesn't have to be on NVMe, any storage will do since this test only
            # runs a simple check that we can use some directory as if it were NVMe
            nvme_path = self.get_auto_remove_tmp_dir()
            nvme_config = dict(device="nvme", nvme_path=nvme_path)
            ds_config_zero3_dict = self.get_config_dict(ZERO3)
            ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config
            ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config
361
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict)
362
            with CaptureLogger(deepspeed_logger) as cl:
363
                trainer.train()
364
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
365
366
367

    # --- These tests need to run on both zero stages --- #

368
369
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_hf_optimizer_with_offload(self, stage, dtype):
370
        # non-DS optimizers can be used with ZERO-offload (as long as they have both CPU and GPU implementation (except LAMB))
371
372
373
        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
        # force cpu offload
374
        ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
375
        with mockenv_context(**self.dist_env_1_gpu):
376
377
378
            kwargs = dict(local_rank=0, deepspeed=ds_config_dict)
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
379
            with CaptureLogger(deepspeed_logger) as cl:
380
                trainer.train()
381
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
382

383
384
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fake_notebook_no_launcher(self, stage, dtype):
385
386
387
388
389
        # this setup emulates a notebook where a launcher needs to be emulated by hand

        # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
        # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
        # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
390
391
        # to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger.
        with mockenv_context(**self.dist_env_1_gpu):
392
393
394
395
            kwargs = dict(local_rank=0, deepspeed=self.get_config_dict(stage))
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

396
            with CaptureLogger(deepspeed_logger) as cl:
397
                trainer.train()
398
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
399

400
401
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_early_get_last_lr(self, stage, dtype):
402
403
404
405
406
407
408
409
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
410
            kwargs = dict(
411
412
413
414
                a=a,
                b=b,
                local_rank=0,
                train_len=8,
415
                deepspeed=self.get_config_dict(stage),
416
417
418
                per_device_train_batch_size=8,
                logging_steps=1,
            )
419
420
421
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

422
            trainer.train()
423
424
            post_train_a = trainer.model.a.item()

425
426
            # XXX: for some reason the following check fails with zero3/fp16 and any/bf16 - not a
            # broken but a different qualitative outcome - as if optimizer did run
427
428
429
430
            # oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere
            # print(trainer.model.a.item())
            # print(trainer.model.b.item())
            # need to investigate at some point
431
            if (stage == ZERO3 and dtype == FP16) or (dtype == BF16):
432
                return
433
434
435

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
436
            self.assertEqual(post_train_a, a)
437

438
439
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_gradient_accumulation(self, stage, dtype):
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

455
456
457
458
459
460
461
        kwargs = dict(
            a=a,
            b=b,
            local_rank=0,
            train_len=train_len,
            deepspeed=self.get_config_dict(stage),
        )
462
        kwargs[dtype] = True
463

464
465
        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
466
467
                **kwargs,
                per_device_train_batch_size=16,
468
469
470
471
472
473
474
475
476
477
478
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
479
                **kwargs,
480
                per_device_train_batch_size=4,
481
                gradient_accumulation_steps=4,
482
483
484
485
486
487
488
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

489
490
491
492
        # training with half the batch size but accumulation steps as 2 should give the same
        # weights, but sometimes get a slight difference still of 1e-6
        self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5)
        self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5)
493
494

        # see the note above how to get identical loss on a small bs
495
        self.assertAlmostEqual(no_grad_accum_loss, yes_grad_accum_loss, places=2)
496

497
    def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage):
498
499
500
        # adapted from TrainerIntegrationCommon.check_saved_checkpoints

        file_list = [WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]
501
502
503
504
505
506
507
508

        if stage == ZERO2:
            ds_file_list = ["mp_rank_00_model_states.pt"]
        elif stage == ZERO3:
            ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
        else:
            raise ValueError(f"unknown stage {stage}")

509
        ds_file_list.append("zero_pp_rank_0_mp_rank_00_optim_states.pt")
510
511
512

        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
513
            self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
514
515
516

            # common files
            for filename in file_list:
517
518
                path = os.path.join(checkpoint, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
519
520
521
522
523
524

            # ds files
            ds_path = os.path.join(checkpoint, f"global_step{step}")
            for filename in ds_file_list:
                # filename = os.path.join(path, filename)
                # print(filename)
525
526
                path = os.path.join(ds_path, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
527

528
529
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_save_checkpoints(self, stage, dtype):
530
531
        # adapted from  TrainerIntegrationTest.test_save_checkpoints

532
        freq = 5
533
        output_dir = self.get_auto_remove_tmp_dir()
534
        ds_config_dict = self.get_config_dict(stage)
535
536
537
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
538
        if stage == ZERO3:
539
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
540
541
542

        # save checkpoints
        with mockenv_context(**self.dist_env_1_gpu):
543
            kwargs = dict(
544
545
546
547
                output_dir=output_dir,
                save_steps=freq,
                deepspeed=ds_config_dict,
            )
548
549
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
550
551
552
            trainer.train()

        total = int(self.n_epochs * 64 / self.batch_size)
553
        self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage)
554

555
556
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_can_resume_training_errors(self, stage, dtype):
557
558
559
560

        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = self.get_config_dict(stage)
            output_dir = self.get_auto_remove_tmp_dir()
561
562
563
            kwargs = dict(output_dir=output_dir, deepspeed=ds_config_dict)
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
564
565
566
567
568
569
570
571

            # 1. fail to find any checkpoint - due a fresh output_dir
            with self.assertRaises(Exception) as context:
                trainer.train(resume_from_checkpoint=True)
            self.assertTrue(
                "No valid checkpoint found in output directory" in str(context.exception),
                f"got exception: {context.exception}",
            )
572

573
574
575
576
577
578
579
580
            # 2. fail to find a bogus checkpoint
            with self.assertRaises(Exception) as context:
                checkpoint = os.path.join(output_dir, "checkpoint-5")
                trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
            self.assertTrue(
                "Can't find a valid checkpoint at" in str(context.exception), f"got exception: {context.exception}"
            )

581
582
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_can_resume_training_normal(self, stage, dtype):
583
584
        # adapted from TrainerIntegrationTest.test_can_resume_training
        # test normal resume for each stage separately, error-handling is tested in a different test
585
        output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
586
        ds_config_dict = self.get_config_dict(stage)
587
588
589
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
590
        if stage == ZERO3:
591
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
592

593
594
        kwargs = dict(output_dir=output_dir, train_len=128, save_steps=5, learning_rate=0.1, deepspeed=ds_config_dict)
        kwargs[dtype] = True
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(output_dir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(output_dir, "checkpoint-15")

            # Reinitialize trainer and load model
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

627
628
629
630
631
            # Finally, should be able to resume with the same trainer/same deepspeed engine instance
            # XXX: but currently this not possible due DS bug: https://github.com/microsoft/DeepSpeed/issues/1612
            # trainer.train(resume_from_checkpoint=checkpoint)
            # a workaround needs to be used that re-creates the deepspeed engine

632
633
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_state_dict_from_zero_checkpoint(self, stage, dtype):
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
        # test that we can load fp32 weights directly from the zero checkpoint into the current model

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)

        kwargs = dict(
            output_dir=output_dir,
            train_len=4,
            per_device_train_batch_size=4,
            num_train_epochs=1,
            save_strategy="steps",
            save_steps=1,
            learning_rate=0.1,
            deepspeed=ds_config_dict,
        )
650
        kwargs[dtype] = True
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint_dir = get_last_checkpoint(output_dir)
            model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)

            (a1, b1) = model.a.item(), model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

667
668
669
670
    def test_config_object(self):
        # test that we can switch from zero2 to zero3 in the same process for example
        # test is_zero, etc.
        output_dir = self.get_auto_remove_tmp_dir()
671
        kwargs = dict(output_dir=output_dir, train_len=8, fp16=True)
672

673
674
        ds_config_zero3_dict = self.get_config_dict(ZERO3)
        ds_config_zero2_dict = self.get_config_dict(ZERO2)
675

676
        with mockenv_context(**self.dist_env_1_gpu):
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test we can repeat that and with train this time
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            trainer.train()
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test zero3 is disabled
            trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs)
            self.assertFalse(is_deepspeed_zero3_enabled())

            # check config obj
            config = deepspeed_config()
            self.assertTrue(bool(config), "Deepspeed config should be accessible")

            del trainer
            # now weakref should gc the global and we shouldn't get anything here
            config = deepspeed_config()
            self.assertFalse(is_deepspeed_zero3_enabled())
            self.assertFalse(bool(config), "Deepspeed config should not be accessible")

699
700
701
702

@slow
@require_deepspeed
@require_torch_gpu
703
class TestDeepSpeedWithLauncher(TestCasePlus):
Patrick von Platen's avatar
Patrick von Platen committed
704
    """This class is for testing via an external script - can do multiple gpus"""
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

    # Tests to devise #
    #
    # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
    # the 2 gpus will generate prediction sequences that aren't of the same length - this is because
    # we had to code a special feature to sync the gpus when the predicted sequences aren't of the
    # same length. In general this will tested as a side-effect through a variety of other tests -
    # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
    # long as we have a few full tests running on zero3 + predict_with_generate this should be
    # mostly covered.
    #
    # but there are 5 variations on beam search in `generate`- with identical code branched with `if
    # synced_gpus`
    #
    # 2. most tests should probably be run on both: zero2 and zero3 configs
    #
721

722
    @require_torch_multi_gpu
723
724
725
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_basic_distributed(self, stage, dtype):
        self.run_and_check(stage=stage, dtype=dtype, distributed=True)
726

727
728
    def test_do_eval_no_train(self):
        # testing only zero3 since zero2 makes no sense with inference
729
        self.run_and_check(
730
            stage=ZERO3,
731
            dtype=FP16,
732
733
            eval_steps=1,
            distributed=False,
734
735
            do_train=False,
            do_eval=True,
736
        )
737

738
739
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fp32_non_distributed(self, stage, dtype):
740
741
742
743
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
744
            dtype=dtype,
745
746
747
748
749
            model_name=T5_TINY,
            distributed=False,
            do_train=True,
            do_eval=True,
            quality_checks=False,
750
            fp32=True,
751
752
753
        )

    @require_torch_multi_gpu
754
755
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fp32_distributed(self, stage, dtype):
756
757
758
759
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
760
            dtype=dtype,
761
762
763
764
765
            model_name=T5_TINY,
            distributed=True,
            do_train=True,
            do_eval=True,
            quality_checks=False,
766
            fp32=True,
767
768
        )

769
770
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_resume_train_not_from_ds_checkpoint(self, stage, dtype):
771
772
773
774
775
        # do normal training and then resume not from the deepspeed checkpoint but explicitly from
        # the saved model dir

        do_train = True
        do_eval = False
776
        kwargs = dict(stage=stage, dtype=dtype, eval_steps=1, distributed=True, do_train=do_train, do_eval=do_eval)
777
778
779
780
781
782
783
784
785
786

        # 1. normal training
        output_dir = self.run_and_check(**kwargs)

        # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
        # - i.e. the same path the model was saved to in step 1
        output_dir = self.run_trainer(**kwargs, model_name=output_dir)

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

787
    @require_torch_multi_gpu
788
    @parameterized.expand(["bf16", "fp16", "fp32"])
789
    def test_inference(self, dtype):
790
791
792
        if dtype == "bf16" and not is_torch_bf16_available():
            self.skipTest("test requires bfloat16 hardware support")

793
794
        # this is just inference, so no optimizer should be loaded
        # it only works for z3 (makes no sense with z1-z2)
795
        fp32 = True if dtype == "fp32" else False
796
797
        self.run_and_check(
            stage=ZERO3,
798
            dtype=FP16,
799
800
801
802
803
            model_name=T5_TINY,
            distributed=True,
            do_train=False,
            do_eval=True,
            quality_checks=False,
804
            fp32=fp32,
805
806
        )

807
    def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True):
808
809
810
811

        if do_train:
            train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
            self.assertIn("train_samples_per_second", train_metrics)
812
813
            if quality_checks:
                self.assertGreater(train_metrics["train_samples_per_second"], 0.5)
814
815
816
817

        if do_eval:
            eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
            self.assertIn("eval_bleu", eval_metrics)
818
819
            if quality_checks:
                self.assertGreater(eval_metrics["eval_bleu"], 1)
820
821

    # XXX: need to do better validation beyond just that the run was successful
822
823
824
    def run_and_check(
        self,
        stage,
825
        dtype,
826
827
828
829
830
831
        model_name: str = T5_SMALL,
        eval_steps: int = 10,
        distributed: bool = True,
        do_train: bool = True,
        do_eval: bool = True,
        quality_checks: bool = True,
832
        fp32: bool = False,
833
834
        extra_args_str: str = None,
        remove_args_str: str = None,
835
836
837
    ):

        # we are doing quality testing so using a small real model
838
        output_dir = self.run_trainer(
839
            stage=stage,
840
            dtype=dtype,
841
            model_name=model_name,
842
            eval_steps=eval_steps,
843
            num_train_epochs=1,
844
845
            do_train=do_train,
            do_eval=do_eval,
846
            distributed=distributed,
847
            fp32=fp32,
848
849
850
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
851

852
        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks)
853
854

        return output_dir
855
856
857

    def run_trainer(
        self,
858
        stage: str,
859
        dtype: str,
860
        model_name: str,
861
862
863
864
        eval_steps: int = 10,
        num_train_epochs: int = 1,
        do_train: bool = False,
        do_eval: bool = True,
865
        distributed: bool = True,
866
        fp32: bool = False,
867
868
869
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
870
        max_len = 32
Sylvain Gugger's avatar
Sylvain Gugger committed
871
        data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
872
873
874
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
875
876
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
877
878
879
880
881
882
883
            --output_dir {output_dir}
            --overwrite_output_dir
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --warmup_steps 8
            --predict_with_generate
884
885
            --save_steps 0
            --eval_steps {eval_steps}
886
887
            --group_by_length
            --label_smoothing_factor 0.1
888
889
            --source_lang en
            --target_lang ro
890
            --report_to none
891
        """.split()
892
893
        args.extend(["--source_prefix", '"translate English to Romanian: "'])

894
895
        if not fp32:
            args.extend([f"--{dtype}"])
896

897
898
899
900
901
902
903
        actions = 0
        if do_train:
            actions += 1
            args.extend(
                f"""
            --do_train
            --num_train_epochs {str(num_train_epochs)}
904
            --max_train_samples 16
905
906
907
908
909
910
911
912
913
914
            --per_device_train_batch_size 2
            --learning_rate 3e-3
            """.split()
            )

        if do_eval:
            actions += 1
            args.extend(
                """
            --do_eval
915
            --max_eval_samples 16
916
917
918
919
920
            --per_device_eval_batch_size 2
            """.split()
            )

        assert actions > 0, "need at least do_train or do_eval for the test to run"
921
922
923
924

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

925
        # currently only works for bool args
926
927
928
929
        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

930
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
931
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
932
        launcher = get_launcher(distributed)
933
934

        cmd = launcher + script + args + ds_args
935
        # keep for quick debug
936
937
938
939
940
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir

941
942
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_clm(self, stage, dtype):
943
944
945
946
947
948
        # this test exercises model.resize_token_embeddings() which requires param gathering outside
        # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
949
            --model_name_or_path {GPT2_TINY}
950
951
952
953
954
955
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
956
957
958
959
            --max_train_samples 16
            --max_eval_samples 16
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
960
961
            --num_train_epochs 1
            --warmup_steps 8
962
            --block_size 64
963
            --report_to none
964
965
            """.split()

966
967
        args.extend([f"--{dtype}"])

968
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
969
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
970
        launcher = get_launcher(distributed=True)
971
972
973
974

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
975
976
        execute_subprocess_async(cmd, env=self.get_env())

977
    def test_clm_from_config_zero3_fp16(self):
978
979
980
981
982
983
        # this test exercises AutoModel.from_config(config) - to ensure zero.Init is called

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_type gpt2
984
            --tokenizer_name {GPT2_TINY}
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --max_train_samples 4
            --per_device_train_batch_size 2
            --num_train_epochs 1
            --warmup_steps 8
            --block_size 8
            --fp16
            --report_to none
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split()
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
1001
        launcher = get_launcher(distributed=True)
1002
1003
1004
1005
1006
1007

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        with CaptureStderr() as cs:
            execute_subprocess_async(cmd, env=self.get_env())
1008
        self.assertIn("Detected DeepSpeed ZeRO-3", cs.err)
1009

1010
1011
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_best_model(self, stage, dtype):
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
        # this test exercises --load_best_model_at_end - the key is being able to resume after some training

        data_dir = self.tests_dir / "fixtures/tests_samples/wmt_en_ro"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {T5_TINY}
            --tokenizer_name {T5_TINY}
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
            --output_dir {output_dir}
            --overwrite_output_dir
            --source_lang en
            --target_lang ro
            --do_train
            --max_train_samples 3
            --do_eval
            --max_eval_samples 1
            --logging_strategy steps
            --logging_steps 1
            --evaluation_strategy steps
            --eval_steps 1
            --save_strategy steps
            --save_steps 1
            --load_best_model_at_end
            --per_device_train_batch_size 1
            --per_device_eval_batch_size 1
            --num_train_epochs 1
            --report_to none
            """.split()
        args.extend(["--source_prefix", "translate English to Romanian: "])

1043
1044
        args.extend([f"--{dtype}"])

1045
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
1046
1047
1048
1049
1050
1051
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
        launcher = get_launcher(distributed=False)

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
1052
        with CaptureStd() as cs:
1053
1054
            execute_subprocess_async(cmd, env=self.get_env())
        # enough to test it didn't fail
1055
        self.assertIn("DeepSpeed info", cs.out)