run_xnli.py 17.6 KB
Newer Older
1
#!/usr/bin/env python
VictorSanh's avatar
VictorSanh committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
17
18
"""Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM).
Adapted from `examples/text-classification/run_glue.py`"""
VictorSanh's avatar
VictorSanh committed
19
20
21
22

import logging
import os
import random
23
24
25
import sys
from dataclasses import dataclass, field
from typing import Optional
VictorSanh's avatar
VictorSanh committed
26

27
import datasets
28
import evaluate
VictorSanh's avatar
VictorSanh committed
29
import numpy as np
30
from datasets import load_dataset
VictorSanh's avatar
VictorSanh committed
31

32
import transformers
33
from transformers import (
34
35
36
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
37
38
39
40
41
42
43
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
44
)
45
from transformers.trainer_utils import get_last_checkpoint
46
from transformers.utils import check_min_version, send_example_telemetry
47
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
48

VictorSanh's avatar
VictorSanh committed
49

50
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Arthur Zucker's avatar
Arthur Zucker committed
51
check_min_version("4.45.0.dev0")
Lysandre's avatar
Lysandre committed
52

53
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
54

VictorSanh's avatar
VictorSanh committed
55
56
57
logger = logging.getLogger(__name__)


58
59
60
61
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
VictorSanh's avatar
VictorSanh committed
62

63
64
65
66
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """
VictorSanh's avatar
VictorSanh committed
67

68
69
70
    max_seq_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
71
72
73
74
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
75
76
        },
    )
77
78
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
79
    )
80
81
82
    pad_to_max_length: bool = field(
        default=True,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
83
84
85
86
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
87
        },
88
    )
89
90
91
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
92
93
94
95
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
96
97
        },
    )
98
    max_eval_samples: Optional[int] = field(
99
100
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
101
102
103
104
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
105
106
        },
    )
107
    max_predict_samples: Optional[int] = field(
108
109
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
110
111
112
113
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
114
115
        },
    )
VictorSanh's avatar
VictorSanh committed
116
117


118
119
120
121
122
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
VictorSanh's avatar
VictorSanh committed
123

124
125
    model_name_or_path: str = field(
        default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
126
    )
127
128
    language: str = field(
        default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."}
129
    )
130
131
    train_language: Optional[str] = field(
        default=None, metadata={"help": "Train language if it is different from the evaluation language."}
132
    )
133
134
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
135
    )
136
137
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
138
    )
139
    cache_dir: Optional[str] = field(
140
        default=None,
141
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
142
    )
143
144
145
    do_lower_case: Optional[bool] = field(
        default=False,
        metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"},
146
    )
147
148
149
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
150
    )
151
152
153
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
154
    )
155
156
    token: str = field(
        default=None,
157
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
158
            "help": (
159
160
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
161
            )
162
        },
163
    )
164
165
166
167
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
168
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
169
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
170
171
172
173
                "execute code present on the Hub on your local machine."
            )
        },
    )
174
175
176
177
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
178

179
180
181
182
183
184
185
186
187

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

188
189
190
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_xnli", model_args)
VictorSanh's avatar
VictorSanh committed
191
192

    # Setup logging
193
    logging.basicConfig(
194
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
195
        datefmt="%m/%d/%Y %H:%M:%S",
196
        handlers=[logging.StreamHandler(sys.stdout)],
197
    )
198

199
200
201
202
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

203
204
205
206
207
208
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
209
210

    # Log on each process the small summary:
211
    logger.warning(
212
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
213
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
214
    )
215
216
    logger.info(f"Training/evaluation parameters {training_args}")

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

232
233
234
235
236
237
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # Downloading and loading xnli dataset from the hub.
238
239
    if training_args.do_train:
        if model_args.train_language is None:
240
241
242
243
244
            train_dataset = load_dataset(
                "xnli",
                model_args.language,
                split="train",
                cache_dir=model_args.cache_dir,
245
                token=model_args.token,
246
            )
247
        else:
248
            train_dataset = load_dataset(
249
250
251
252
                "xnli",
                model_args.train_language,
                split="train",
                cache_dir=model_args.cache_dir,
253
                token=model_args.token,
254
            )
255
256
257
        label_list = train_dataset.features["label"].names

    if training_args.do_eval:
258
259
260
261
262
        eval_dataset = load_dataset(
            "xnli",
            model_args.language,
            split="validation",
            cache_dir=model_args.cache_dir,
263
            token=model_args.token,
264
        )
265
266
267
        label_list = eval_dataset.features["label"].names

    if training_args.do_predict:
268
269
270
271
272
        predict_dataset = load_dataset(
            "xnli",
            model_args.language,
            split="test",
            cache_dir=model_args.cache_dir,
273
            token=model_args.token,
274
        )
275
        label_list = predict_dataset.features["label"].names
276
277

    # Labels
VictorSanh's avatar
VictorSanh committed
278
279
280
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
281
282
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
283
    config = AutoConfig.from_pretrained(
284
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
285
        num_labels=num_labels,
286
287
        id2label={str(i): label for i, label in enumerate(label_list)},
        label2id={label: i for i, label in enumerate(label_list)},
288
289
290
        finetuning_task="xnli",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
291
        token=model_args.token,
292
        trust_remote_code=model_args.trust_remote_code,
293
    )
294
    tokenizer = AutoTokenizer.from_pretrained(
295
296
297
298
299
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        do_lower_case=model_args.do_lower_case,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
300
        token=model_args.token,
301
        trust_remote_code=model_args.trust_remote_code,
302
    )
303
    model = AutoModelForSequenceClassification.from_pretrained(
304
305
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
306
        config=config,
307
308
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
309
        token=model_args.token,
310
        trust_remote_code=model_args.trust_remote_code,
311
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
312
    )
VictorSanh's avatar
VictorSanh committed
313

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    # Preprocessing the datasets
    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    def preprocess_function(examples):
        # Tokenize the texts
        return tokenizer(
            examples["premise"],
            examples["hypothesis"],
            padding=padding,
            max_length=data_args.max_seq_length,
            truncation=True,
        )
VictorSanh's avatar
VictorSanh committed
331

332
333
    if training_args.do_train:
        if data_args.max_train_samples is not None:
334
335
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
336
337
338
339
340
341
342
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
343
344
345
        # Log a few random samples from the training set:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
346
347

    if training_args.do_eval:
348
        if data_args.max_eval_samples is not None:
349
350
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
351
352
353
354
355
356
357
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
VictorSanh's avatar
VictorSanh committed
358

359
    if training_args.do_predict:
360
        if data_args.max_predict_samples is not None:
361
362
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
363
364
365
366
367
368
369
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
370
371

    # Get the metric function
372
    metric = evaluate.load("xnli", cache_dir=model_args.cache_dir)
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.argmax(preds, axis=1)
        return metric.compute(predictions=preds, references=p.label_ids)

    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
393
        train_dataset=train_dataset if training_args.do_train else None,
394
395
396
397
398
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )
VictorSanh's avatar
VictorSanh committed
399
400

    # Training
401
    if training_args.do_train:
402
        checkpoint = None
403
404
405
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
406
407
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
408
        metrics = train_result.metrics
409
410
411
412
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
VictorSanh's avatar
VictorSanh committed
413

414
        trainer.save_model()  # Saves the tokenizer too for easy upload
415

416
417
418
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
VictorSanh's avatar
VictorSanh committed
419

420
421
422
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
423
424
        metrics = trainer.evaluate(eval_dataset=eval_dataset)

425
426
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
427

428
429
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
VictorSanh's avatar
VictorSanh committed
430

431
432
433
    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
434
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
435

436
437
438
439
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
440

441
442
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
443
444

        predictions = np.argmax(predictions, axis=1)
445
        output_predict_file = os.path.join(training_args.output_dir, "predictions.txt")
446
        if trainer.is_world_process_zero():
447
            with open(output_predict_file, "w") as writer:
448
449
450
451
452
                writer.write("index\tprediction\n")
                for index, item in enumerate(predictions):
                    item = label_list[item]
                    writer.write(f"{index}\t{item}\n")

VictorSanh's avatar
VictorSanh committed
453
454
455

if __name__ == "__main__":
    main()