run_xnli.py 16.9 KB
Newer Older
1
#!/usr/bin/env python
VictorSanh's avatar
VictorSanh committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
17
""" Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM).
18
    Adapted from `examples/text-classification/run_glue.py`"""
VictorSanh's avatar
VictorSanh committed
19
20
21
22

import logging
import os
import random
23
24
25
import sys
from dataclasses import dataclass, field
from typing import Optional
VictorSanh's avatar
VictorSanh committed
26

27
import datasets
VictorSanh's avatar
VictorSanh committed
28
import numpy as np
29
from datasets import load_dataset, load_metric
VictorSanh's avatar
VictorSanh committed
30

31
import transformers
32
from transformers import (
33
34
35
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
36
37
38
39
40
41
42
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
43
)
44
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version
46
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
47

VictorSanh's avatar
VictorSanh committed
48

49
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre Debut's avatar
Lysandre Debut committed
50
check_min_version("4.20.0.dev0")
Lysandre's avatar
Lysandre committed
51

52
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
53

VictorSanh's avatar
VictorSanh committed
54
55
56
logger = logging.getLogger(__name__)


57
58
59
60
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
VictorSanh's avatar
VictorSanh committed
61

62
63
64
65
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """
VictorSanh's avatar
VictorSanh committed
66

67
68
69
    max_seq_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
70
71
72
73
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
74
75
        },
    )
76
77
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
78
    )
79
80
81
    pad_to_max_length: bool = field(
        default=True,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
82
83
84
85
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
86
        },
87
    )
88
89
90
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
91
92
93
94
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
95
96
        },
    )
97
    max_eval_samples: Optional[int] = field(
98
99
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
100
101
102
103
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
104
105
        },
    )
106
    max_predict_samples: Optional[int] = field(
107
108
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
109
110
111
112
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
113
114
        },
    )
115
116
    server_ip: Optional[str] = field(default=None, metadata={"help": "For distant debugging."})
    server_port: Optional[str] = field(default=None, metadata={"help": "For distant debugging."})
VictorSanh's avatar
VictorSanh committed
117
118


119
120
121
122
123
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
VictorSanh's avatar
VictorSanh committed
124

125
126
    model_name_or_path: str = field(
        default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
127
    )
128
129
    language: str = field(
        default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."}
130
    )
131
132
    train_language: Optional[str] = field(
        default=None, metadata={"help": "Train language if it is different from the evaluation language."}
133
    )
134
135
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
136
    )
137
138
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
139
    )
140
    cache_dir: Optional[str] = field(
141
        default=None,
142
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
143
    )
144
145
146
    do_lower_case: Optional[bool] = field(
        default=False,
        metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"},
147
    )
148
149
150
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
151
    )
152
153
154
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
155
    )
156
157
158
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
159
160
161
162
            "help": (
                "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            )
163
        },
164
165
    )

166
167
168
169
170
171
172
173
174

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

VictorSanh's avatar
VictorSanh committed
175
    # Setup distant debugging if needed
176
    if data_args.server_ip and data_args.server_port:
VictorSanh's avatar
VictorSanh committed
177
178
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
179

VictorSanh's avatar
VictorSanh committed
180
        print("Waiting for debugger attach")
181
        ptvsd.enable_attach(address=(data_args.server_ip, data_args.server_port), redirect_output=True)
VictorSanh's avatar
VictorSanh committed
182
183
184
        ptvsd.wait_for_attach()

    # Setup logging
185
    logging.basicConfig(
186
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
187
        datefmt="%m/%d/%Y %H:%M:%S",
188
        handlers=[logging.StreamHandler(sys.stdout)],
189
    )
190
191
192
193
194
195
196

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
197
198

    # Log on each process the small summary:
199
    logger.warning(
200
201
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
202
    )
203
204
    logger.info(f"Training/evaluation parameters {training_args}")

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

220
221
222
223
224
225
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # Downloading and loading xnli dataset from the hub.
226
227
    if training_args.do_train:
        if model_args.train_language is None:
228
229
230
231
232
233
234
            train_dataset = load_dataset(
                "xnli",
                model_args.language,
                split="train",
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
235
        else:
236
            train_dataset = load_dataset(
237
238
239
240
241
                "xnli",
                model_args.train_language,
                split="train",
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
242
            )
243
244
245
        label_list = train_dataset.features["label"].names

    if training_args.do_eval:
246
247
248
249
250
251
252
        eval_dataset = load_dataset(
            "xnli",
            model_args.language,
            split="validation",
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
253
254
255
        label_list = eval_dataset.features["label"].names

    if training_args.do_predict:
256
257
258
259
260
261
262
        predict_dataset = load_dataset(
            "xnli",
            model_args.language,
            split="test",
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
263
        label_list = predict_dataset.features["label"].names
264
265

    # Labels
VictorSanh's avatar
VictorSanh committed
266
267
268
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
269
270
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
271
    config = AutoConfig.from_pretrained(
272
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
273
        num_labels=num_labels,
274
275
276
277
        finetuning_task="xnli",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
278
    )
279
    tokenizer = AutoTokenizer.from_pretrained(
280
281
282
283
284
285
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        do_lower_case=model_args.do_lower_case,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
286
    )
287
    model = AutoModelForSequenceClassification.from_pretrained(
288
289
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
290
        config=config,
291
292
293
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
294
    )
VictorSanh's avatar
VictorSanh committed
295

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    # Preprocessing the datasets
    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    def preprocess_function(examples):
        # Tokenize the texts
        return tokenizer(
            examples["premise"],
            examples["hypothesis"],
            padding=padding,
            max_length=data_args.max_seq_length,
            truncation=True,
        )
VictorSanh's avatar
VictorSanh committed
313

314
315
    if training_args.do_train:
        if data_args.max_train_samples is not None:
316
317
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
318
319
320
321
322
323
324
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
325
326
327
        # Log a few random samples from the training set:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
328
329

    if training_args.do_eval:
330
        if data_args.max_eval_samples is not None:
331
332
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
333
334
335
336
337
338
339
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
VictorSanh's avatar
VictorSanh committed
340

341
    if training_args.do_predict:
342
        if data_args.max_predict_samples is not None:
343
344
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
345
346
347
348
349
350
351
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

    # Get the metric function
    metric = load_metric("xnli")

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.argmax(preds, axis=1)
        return metric.compute(predictions=preds, references=p.label_ids)

    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
375
        train_dataset=train_dataset if training_args.do_train else None,
376
377
378
379
380
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )
VictorSanh's avatar
VictorSanh committed
381
382

    # Training
383
    if training_args.do_train:
384
        checkpoint = None
385
386
387
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
388
389
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
390
        metrics = train_result.metrics
391
392
393
394
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
VictorSanh's avatar
VictorSanh committed
395

396
        trainer.save_model()  # Saves the tokenizer too for easy upload
397

398
399
400
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
VictorSanh's avatar
VictorSanh committed
401

402
403
404
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
405
406
        metrics = trainer.evaluate(eval_dataset=eval_dataset)

407
408
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
409

410
411
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
VictorSanh's avatar
VictorSanh committed
412

413
414
415
    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
416
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
417

418
419
420
421
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
422

423
424
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
425
426

        predictions = np.argmax(predictions, axis=1)
427
        output_predict_file = os.path.join(training_args.output_dir, "predictions.txt")
428
        if trainer.is_world_process_zero():
429
            with open(output_predict_file, "w") as writer:
430
431
432
433
434
                writer.write("index\tprediction\n")
                for index, item in enumerate(predictions):
                    item = label_list[item]
                    writer.write(f"{index}\t{item}\n")

VictorSanh's avatar
VictorSanh committed
435
436
437

if __name__ == "__main__":
    main()