run_xnli.py 17 KB
Newer Older
1
#!/usr/bin/env python
VictorSanh's avatar
VictorSanh committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
17
""" Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM).
18
    Adapted from `examples/text-classification/run_glue.py`"""
VictorSanh's avatar
VictorSanh committed
19
20
21
22

import logging
import os
import random
23
24
25
import sys
from dataclasses import dataclass, field
from typing import Optional
VictorSanh's avatar
VictorSanh committed
26

27
import datasets
28
import evaluate
VictorSanh's avatar
VictorSanh committed
29
import numpy as np
30
from datasets import load_dataset
VictorSanh's avatar
VictorSanh committed
31

32
import transformers
33
from transformers import (
34
35
36
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
37
38
39
40
41
42
43
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
44
)
45
from transformers.trainer_utils import get_last_checkpoint
46
from transformers.utils import check_min_version, send_example_telemetry
47
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
48

VictorSanh's avatar
VictorSanh committed
49

50
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
51
check_min_version("4.28.0.dev0")
Lysandre's avatar
Lysandre committed
52

53
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
54

VictorSanh's avatar
VictorSanh committed
55
56
57
logger = logging.getLogger(__name__)


58
59
60
61
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
VictorSanh's avatar
VictorSanh committed
62

63
64
65
66
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """
VictorSanh's avatar
VictorSanh committed
67

68
69
70
    max_seq_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
71
72
73
74
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
75
76
        },
    )
77
78
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
79
    )
80
81
82
    pad_to_max_length: bool = field(
        default=True,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
83
84
85
86
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
87
        },
88
    )
89
90
91
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
92
93
94
95
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
96
97
        },
    )
98
    max_eval_samples: Optional[int] = field(
99
100
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
101
102
103
104
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
105
106
        },
    )
107
    max_predict_samples: Optional[int] = field(
108
109
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
110
111
112
113
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
114
115
        },
    )
VictorSanh's avatar
VictorSanh committed
116
117


118
119
120
121
122
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
VictorSanh's avatar
VictorSanh committed
123

124
125
    model_name_or_path: str = field(
        default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
126
    )
127
128
    language: str = field(
        default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."}
129
    )
130
131
    train_language: Optional[str] = field(
        default=None, metadata={"help": "Train language if it is different from the evaluation language."}
132
    )
133
134
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
135
    )
136
137
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
138
    )
139
    cache_dir: Optional[str] = field(
140
        default=None,
141
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
142
    )
143
144
145
    do_lower_case: Optional[bool] = field(
        default=False,
        metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"},
146
    )
147
148
149
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
150
    )
151
152
153
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
154
    )
155
156
157
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
158
            "help": (
159
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
Sylvain Gugger's avatar
Sylvain Gugger committed
160
161
                "with private models)."
            )
162
        },
163
    )
164
165
166
167
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
168

169
170
171
172
173
174
175
176
177

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

178
179
180
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_xnli", model_args)
VictorSanh's avatar
VictorSanh committed
181
182

    # Setup logging
183
    logging.basicConfig(
184
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
185
        datefmt="%m/%d/%Y %H:%M:%S",
186
        handlers=[logging.StreamHandler(sys.stdout)],
187
    )
188

189
190
191
192
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

193
194
195
196
197
198
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
199
200

    # Log on each process the small summary:
201
    logger.warning(
202
203
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
204
    )
205
206
    logger.info(f"Training/evaluation parameters {training_args}")

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

222
223
224
225
226
227
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # Downloading and loading xnli dataset from the hub.
228
229
    if training_args.do_train:
        if model_args.train_language is None:
230
231
232
233
234
235
236
            train_dataset = load_dataset(
                "xnli",
                model_args.language,
                split="train",
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
237
        else:
238
            train_dataset = load_dataset(
239
240
241
242
243
                "xnli",
                model_args.train_language,
                split="train",
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
244
            )
245
246
247
        label_list = train_dataset.features["label"].names

    if training_args.do_eval:
248
249
250
251
252
253
254
        eval_dataset = load_dataset(
            "xnli",
            model_args.language,
            split="validation",
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
255
256
257
        label_list = eval_dataset.features["label"].names

    if training_args.do_predict:
258
259
260
261
262
263
264
        predict_dataset = load_dataset(
            "xnli",
            model_args.language,
            split="test",
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
265
        label_list = predict_dataset.features["label"].names
266
267

    # Labels
VictorSanh's avatar
VictorSanh committed
268
269
270
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
271
272
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
273
    config = AutoConfig.from_pretrained(
274
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
275
        num_labels=num_labels,
276
277
278
279
        finetuning_task="xnli",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
280
    )
281
    tokenizer = AutoTokenizer.from_pretrained(
282
283
284
285
286
287
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        do_lower_case=model_args.do_lower_case,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
288
    )
289
    model = AutoModelForSequenceClassification.from_pretrained(
290
291
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
292
        config=config,
293
294
295
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
296
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
297
    )
VictorSanh's avatar
VictorSanh committed
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    # Preprocessing the datasets
    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    def preprocess_function(examples):
        # Tokenize the texts
        return tokenizer(
            examples["premise"],
            examples["hypothesis"],
            padding=padding,
            max_length=data_args.max_seq_length,
            truncation=True,
        )
VictorSanh's avatar
VictorSanh committed
316

317
318
    if training_args.do_train:
        if data_args.max_train_samples is not None:
319
320
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
321
322
323
324
325
326
327
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
328
329
330
        # Log a few random samples from the training set:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
331
332

    if training_args.do_eval:
333
        if data_args.max_eval_samples is not None:
334
335
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
336
337
338
339
340
341
342
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
VictorSanh's avatar
VictorSanh committed
343

344
    if training_args.do_predict:
345
        if data_args.max_predict_samples is not None:
346
347
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
348
349
350
351
352
353
354
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
355
356

    # Get the metric function
357
    metric = evaluate.load("xnli")
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.argmax(preds, axis=1)
        return metric.compute(predictions=preds, references=p.label_ids)

    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
378
        train_dataset=train_dataset if training_args.do_train else None,
379
380
381
382
383
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )
VictorSanh's avatar
VictorSanh committed
384
385

    # Training
386
    if training_args.do_train:
387
        checkpoint = None
388
389
390
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
391
392
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
393
        metrics = train_result.metrics
394
395
396
397
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
VictorSanh's avatar
VictorSanh committed
398

399
        trainer.save_model()  # Saves the tokenizer too for easy upload
400

401
402
403
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
VictorSanh's avatar
VictorSanh committed
404

405
406
407
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
408
409
        metrics = trainer.evaluate(eval_dataset=eval_dataset)

410
411
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
412

413
414
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
VictorSanh's avatar
VictorSanh committed
415

416
417
418
    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
419
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
420

421
422
423
424
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
425

426
427
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
428
429

        predictions = np.argmax(predictions, axis=1)
430
        output_predict_file = os.path.join(training_args.output_dir, "predictions.txt")
431
        if trainer.is_world_process_zero():
432
            with open(output_predict_file, "w") as writer:
433
434
435
436
437
                writer.write("index\tprediction\n")
                for index, item in enumerate(predictions):
                    item = label_list[item]
                    writer.write(f"{index}\t{item}\n")

VictorSanh's avatar
VictorSanh committed
438
439
440

if __name__ == "__main__":
    main()