run_xnli.py 17.6 KB
Newer Older
1
#!/usr/bin/env python
VictorSanh's avatar
VictorSanh committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
17
""" Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM).
18
    Adapted from `examples/text-classification/run_glue.py`"""
VictorSanh's avatar
VictorSanh committed
19
20
21
22

import logging
import os
import random
23
import sys
24
import warnings
25
26
from dataclasses import dataclass, field
from typing import Optional
VictorSanh's avatar
VictorSanh committed
27

28
import datasets
29
import evaluate
VictorSanh's avatar
VictorSanh committed
30
import numpy as np
31
from datasets import load_dataset
VictorSanh's avatar
VictorSanh committed
32

33
import transformers
34
from transformers import (
35
36
37
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
38
39
40
41
42
43
44
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
45
)
46
from transformers.trainer_utils import get_last_checkpoint
47
from transformers.utils import check_min_version, send_example_telemetry
48
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
49

VictorSanh's avatar
VictorSanh committed
50

51
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
52
check_min_version("4.32.0.dev0")
Lysandre's avatar
Lysandre committed
53

54
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
55

VictorSanh's avatar
VictorSanh committed
56
57
58
logger = logging.getLogger(__name__)


59
60
61
62
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
VictorSanh's avatar
VictorSanh committed
63

64
65
66
67
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """
VictorSanh's avatar
VictorSanh committed
68

69
70
71
    max_seq_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
72
73
74
75
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
76
77
        },
    )
78
79
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
80
    )
81
82
83
    pad_to_max_length: bool = field(
        default=True,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
84
85
86
87
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
88
        },
89
    )
90
91
92
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
93
94
95
96
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
97
98
        },
    )
99
    max_eval_samples: Optional[int] = field(
100
101
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
102
103
104
105
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
106
107
        },
    )
108
    max_predict_samples: Optional[int] = field(
109
110
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
111
112
113
114
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
115
116
        },
    )
VictorSanh's avatar
VictorSanh committed
117
118


119
120
121
122
123
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
VictorSanh's avatar
VictorSanh committed
124

125
126
    model_name_or_path: str = field(
        default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
127
    )
128
129
    language: str = field(
        default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."}
130
    )
131
132
    train_language: Optional[str] = field(
        default=None, metadata={"help": "Train language if it is different from the evaluation language."}
133
    )
134
135
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
136
    )
137
138
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
139
    )
140
    cache_dir: Optional[str] = field(
141
        default=None,
142
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
143
    )
144
145
146
    do_lower_case: Optional[bool] = field(
        default=False,
        metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"},
147
    )
148
149
150
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
151
    )
152
153
154
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
155
    )
156
157
    token: str = field(
        default=None,
158
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
159
            "help": (
160
161
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
162
            )
163
        },
164
    )
165
166
167
168
169
170
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
171
172
173
174
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
175

176
177
178
179
180
181
182
183
184

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

185
186
187
188
189
190
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

191
192
193
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_xnli", model_args)
VictorSanh's avatar
VictorSanh committed
194
195

    # Setup logging
196
    logging.basicConfig(
197
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
198
        datefmt="%m/%d/%Y %H:%M:%S",
199
        handlers=[logging.StreamHandler(sys.stdout)],
200
    )
201

202
203
204
205
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

206
207
208
209
210
211
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
212
213

    # Log on each process the small summary:
214
    logger.warning(
215
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
216
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
217
    )
218
219
    logger.info(f"Training/evaluation parameters {training_args}")

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

235
236
237
238
239
240
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # Downloading and loading xnli dataset from the hub.
241
242
    if training_args.do_train:
        if model_args.train_language is None:
243
244
245
246
247
            train_dataset = load_dataset(
                "xnli",
                model_args.language,
                split="train",
                cache_dir=model_args.cache_dir,
248
                token=model_args.token,
249
            )
250
        else:
251
            train_dataset = load_dataset(
252
253
254
255
                "xnli",
                model_args.train_language,
                split="train",
                cache_dir=model_args.cache_dir,
256
                token=model_args.token,
257
            )
258
259
260
        label_list = train_dataset.features["label"].names

    if training_args.do_eval:
261
262
263
264
265
        eval_dataset = load_dataset(
            "xnli",
            model_args.language,
            split="validation",
            cache_dir=model_args.cache_dir,
266
            token=model_args.token,
267
        )
268
269
270
        label_list = eval_dataset.features["label"].names

    if training_args.do_predict:
271
272
273
274
275
        predict_dataset = load_dataset(
            "xnli",
            model_args.language,
            split="test",
            cache_dir=model_args.cache_dir,
276
            token=model_args.token,
277
        )
278
        label_list = predict_dataset.features["label"].names
279
280

    # Labels
VictorSanh's avatar
VictorSanh committed
281
282
283
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
284
285
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
286
    config = AutoConfig.from_pretrained(
287
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
288
        num_labels=num_labels,
289
290
        id2label={str(i): label for i, label in enumerate(label_list)},
        label2id={label: i for i, label in enumerate(label_list)},
291
292
293
        finetuning_task="xnli",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
294
        token=model_args.token,
295
    )
296
    tokenizer = AutoTokenizer.from_pretrained(
297
298
299
300
301
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        do_lower_case=model_args.do_lower_case,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
302
        token=model_args.token,
303
    )
304
    model = AutoModelForSequenceClassification.from_pretrained(
305
306
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
307
        config=config,
308
309
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
310
        token=model_args.token,
311
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
312
    )
VictorSanh's avatar
VictorSanh committed
313

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    # Preprocessing the datasets
    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    def preprocess_function(examples):
        # Tokenize the texts
        return tokenizer(
            examples["premise"],
            examples["hypothesis"],
            padding=padding,
            max_length=data_args.max_seq_length,
            truncation=True,
        )
VictorSanh's avatar
VictorSanh committed
331

332
333
    if training_args.do_train:
        if data_args.max_train_samples is not None:
334
335
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
336
337
338
339
340
341
342
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
343
344
345
        # Log a few random samples from the training set:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
346
347

    if training_args.do_eval:
348
        if data_args.max_eval_samples is not None:
349
350
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
351
352
353
354
355
356
357
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
VictorSanh's avatar
VictorSanh committed
358

359
    if training_args.do_predict:
360
        if data_args.max_predict_samples is not None:
361
362
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
363
364
365
366
367
368
369
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
370
371

    # Get the metric function
372
    metric = evaluate.load("xnli")
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.argmax(preds, axis=1)
        return metric.compute(predictions=preds, references=p.label_ids)

    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
393
        train_dataset=train_dataset if training_args.do_train else None,
394
395
396
397
398
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )
VictorSanh's avatar
VictorSanh committed
399
400

    # Training
401
    if training_args.do_train:
402
        checkpoint = None
403
404
405
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
406
407
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
408
        metrics = train_result.metrics
409
410
411
412
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
VictorSanh's avatar
VictorSanh committed
413

414
        trainer.save_model()  # Saves the tokenizer too for easy upload
415

416
417
418
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
VictorSanh's avatar
VictorSanh committed
419

420
421
422
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
423
424
        metrics = trainer.evaluate(eval_dataset=eval_dataset)

425
426
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
427

428
429
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
VictorSanh's avatar
VictorSanh committed
430

431
432
433
    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
434
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
435

436
437
438
439
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
440

441
442
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
443
444

        predictions = np.argmax(predictions, axis=1)
445
        output_predict_file = os.path.join(training_args.output_dir, "predictions.txt")
446
        if trainer.is_world_process_zero():
447
            with open(output_predict_file, "w") as writer:
448
449
450
451
452
                writer.write("index\tprediction\n")
                for index, item in enumerate(predictions):
                    item = label_list[item]
                    writer.write(f"{index}\t{item}\n")

VictorSanh's avatar
VictorSanh committed
453
454
455

if __name__ == "__main__":
    main()