run_xnli.py 15.7 KB
Newer Older
1
#!/usr/bin/env python
VictorSanh's avatar
VictorSanh committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
17
""" Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM).
18
    Adapted from `examples/text-classification/run_glue.py`"""
VictorSanh's avatar
VictorSanh committed
19
20
21
22

import logging
import os
import random
23
24
25
import sys
from dataclasses import dataclass, field
from typing import Optional
VictorSanh's avatar
VictorSanh committed
26
27

import numpy as np
28
from datasets import load_dataset, load_metric
VictorSanh's avatar
VictorSanh committed
29

30
import transformers
31
from transformers import (
32
33
34
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
35
36
37
38
39
40
41
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
42
)
43
from transformers.trainer_utils import get_last_checkpoint
44
from transformers.utils import check_min_version
45
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
46

VictorSanh's avatar
VictorSanh committed
47

48
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
49
check_min_version("4.7.0.dev0")
50
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
51

VictorSanh's avatar
VictorSanh committed
52
53
54
logger = logging.getLogger(__name__)


55
56
57
58
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
VictorSanh's avatar
VictorSanh committed
59

60
61
62
63
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """
VictorSanh's avatar
VictorSanh committed
64

65
66
67
68
69
    max_seq_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
70
71
        },
    )
72
73
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
74
    )
75
76
77
78
79
80
    pad_to_max_length: bool = field(
        default=True,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
81
    )
82
83
84
85
86
87
88
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
89
    max_eval_samples: Optional[int] = field(
90
91
        default=None,
        metadata={
92
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
93
94
95
            "value if set."
        },
    )
96
    max_predict_samples: Optional[int] = field(
97
98
        default=None,
        metadata={
99
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
100
101
102
            "value if set."
        },
    )
103
104
    server_ip: Optional[str] = field(default=None, metadata={"help": "For distant debugging."})
    server_port: Optional[str] = field(default=None, metadata={"help": "For distant debugging."})
VictorSanh's avatar
VictorSanh committed
105
106


107
108
109
110
111
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
VictorSanh's avatar
VictorSanh committed
112

113
114
    model_name_or_path: str = field(
        default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
115
    )
116
117
    language: str = field(
        default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."}
118
    )
119
120
    train_language: Optional[str] = field(
        default=None, metadata={"help": "Train language if it is different from the evaluation language."}
121
    )
122
123
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
124
    )
125
126
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
127
    )
128
    cache_dir: Optional[str] = field(
129
        default=None,
130
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
131
    )
132
133
134
    do_lower_case: Optional[bool] = field(
        default=False,
        metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"},
135
    )
136
137
138
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
139
    )
140
141
142
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
143
    )
144
145
146
147
148
149
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
150
151
    )

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
174
            )
VictorSanh's avatar
VictorSanh committed
175
176

    # Setup distant debugging if needed
177
    if data_args.server_ip and data_args.server_port:
VictorSanh's avatar
VictorSanh committed
178
179
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
180

VictorSanh's avatar
VictorSanh committed
181
        print("Waiting for debugger attach")
182
        ptvsd.enable_attach(address=(data_args.server_ip, data_args.server_port), redirect_output=True)
VictorSanh's avatar
VictorSanh committed
183
184
185
        ptvsd.wait_for_attach()

    # Setup logging
186
187
188
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
189
        handlers=[logging.StreamHandler(sys.stdout)],
190
    )
191
    logger.setLevel(logging.INFO if training_args.should_log else logging.WARN)
192
193

    # Log on each process the small summary:
194
    logger.warning(
195
196
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
197
    )
198

199
    # Set the verbosity to info of the Transformers logger (on main process only):
200
    if training_args.should_log:
201
202
203
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
204
205
206
207
208
209
210
211
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # Downloading and loading xnli dataset from the hub.
212
213
    if training_args.do_train:
        if model_args.train_language is None:
214
            train_dataset = load_dataset("xnli", model_args.language, split="train", cache_dir=model_args.cache_dir)
215
        else:
216
217
218
            train_dataset = load_dataset(
                "xnli", model_args.train_language, split="train", cache_dir=model_args.cache_dir
            )
219
220
221
        label_list = train_dataset.features["label"].names

    if training_args.do_eval:
222
        eval_dataset = load_dataset("xnli", model_args.language, split="validation", cache_dir=model_args.cache_dir)
223
224
225
        label_list = eval_dataset.features["label"].names

    if training_args.do_predict:
226
227
        predict_dataset = load_dataset("xnli", model_args.language, split="test", cache_dir=model_args.cache_dir)
        label_list = predict_dataset.features["label"].names
228
229

    # Labels
VictorSanh's avatar
VictorSanh committed
230
231
232
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
233
234
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
235
    config = AutoConfig.from_pretrained(
236
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
237
        num_labels=num_labels,
238
239
240
241
        finetuning_task="xnli",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
242
    )
243
    tokenizer = AutoTokenizer.from_pretrained(
244
245
246
247
248
249
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        do_lower_case=model_args.do_lower_case,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
250
    )
251
    model = AutoModelForSequenceClassification.from_pretrained(
252
253
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
254
        config=config,
255
256
257
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
258
    )
VictorSanh's avatar
VictorSanh committed
259

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    # Preprocessing the datasets
    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    def preprocess_function(examples):
        # Tokenize the texts
        return tokenizer(
            examples["premise"],
            examples["hypothesis"],
            padding=padding,
            max_length=data_args.max_seq_length,
            truncation=True,
        )
VictorSanh's avatar
VictorSanh committed
277

278
279
280
281
282
283
284
    if training_args.do_train:
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
285
            desc="Running tokenizer on train dataset",
286
        )
287
288
289
        # Log a few random samples from the training set:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
290
291

    if training_args.do_eval:
292
293
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
294
295
296
297
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
298
            desc="Running tokenizer on validation dataset",
299
        )
VictorSanh's avatar
VictorSanh committed
300

301
    if training_args.do_predict:
302
303
304
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
        predict_dataset = predict_dataset.map(
305
306
307
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
308
            desc="Running tokenizer on prediction dataset",
309
        )
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

    # Get the metric function
    metric = load_metric("xnli")

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.argmax(preds, axis=1)
        return metric.compute(predictions=preds, references=p.label_ids)

    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
333
        train_dataset=train_dataset if training_args.do_train else None,
334
335
336
337
338
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )
VictorSanh's avatar
VictorSanh committed
339
340

    # Training
341
    if training_args.do_train:
342
        checkpoint = None
343
344
345
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
346
347
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
348
        metrics = train_result.metrics
349
350
351
352
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
VictorSanh's avatar
VictorSanh committed
353

354
        trainer.save_model()  # Saves the tokenizer too for easy upload
355

356
357
358
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
VictorSanh's avatar
VictorSanh committed
359

360
361
362
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
363
364
        metrics = trainer.evaluate(eval_dataset=eval_dataset)

365
366
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
367

368
369
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
VictorSanh's avatar
VictorSanh committed
370

371
372
373
    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
374
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
375

376
377
378
379
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
380

381
382
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
383
384

        predictions = np.argmax(predictions, axis=1)
385
        output_predict_file = os.path.join(training_args.output_dir, "predictions.txt")
386
        if trainer.is_world_process_zero():
387
            with open(output_predict_file, "w") as writer:
388
389
390
391
392
                writer.write("index\tprediction\n")
                for index, item in enumerate(predictions):
                    item = label_list[item]
                    writer.write(f"{index}\t{item}\n")

VictorSanh's avatar
VictorSanh committed
393
394
395

if __name__ == "__main__":
    main()