modeling_blenderbot.py 75.2 KB
Newer Older
Sam Shleifer's avatar
Sam Shleifer committed
1
# coding=utf-8
2
# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
Sam Shleifer's avatar
Sam Shleifer committed
3
#
4
# Licensed under the Apache License, Version 2.0 (the "License");
Sam Shleifer's avatar
Sam Shleifer committed
5
6
7
8
9
10
11
12
13
14
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" PyTorch Blenderbot model."""
16
17


18
import copy
19
20
21
22
import math
import os
import random
import warnings
23
from typing import List, Optional, Tuple, Union
Sam Shleifer's avatar
Sam Shleifer committed
24
25

import torch
26
import torch.utils.checkpoint
27
28
from torch import nn
from torch.nn import CrossEntropyLoss
Sam Shleifer's avatar
Sam Shleifer committed
29

30
31
32
33
from ...activations import ACT2FN
from ...modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPastAndCrossAttentions,
34
    CausalLMOutputWithCrossAttentions,
35
36
37
38
    Seq2SeqLMOutput,
    Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
39
40
41
42
43
44
45
from ...utils import (
    add_end_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
46
from ..blenderbot_small import BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel
Sam Shleifer's avatar
Sam Shleifer committed
47
48
49
from .configuration_blenderbot import BlenderbotConfig


50
51
52
logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "BlenderbotConfig"
53
_CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill"
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70


BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "facebook/blenderbot-3B",
    # See all Blenderbot models at https://huggingface.co/models?filter=blenderbot
]


# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
    """
    Shift input ids one token to the right.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    shifted_input_ids[:, 0] = decoder_start_token_id

71
72
    if pad_token_id is None:
        raise ValueError("self.model.config.pad_token_id has to be defined.")
73
74
75
76
77
78
79
80
81
82
83
84
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids


# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
Yih-Dar's avatar
Yih-Dar committed
85
    mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min))
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    mask_cond = torch.arange(mask.size(-1))
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

107
    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
108
109
110
111
112
113
114


class BlenderbotLearnedPositionalEmbedding(nn.Embedding):
    """
    This module learns positional embeddings up to a fixed maximum size.
    """

115
116
    def __init__(self, num_embeddings: int, embedding_dim: int):
        super().__init__(num_embeddings, embedding_dim)
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
        """`input_ids_shape` is expected to be [bsz x seqlen]."""
        bsz, seq_len = input_ids_shape[:2]
        positions = torch.arange(
            past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
        )
        return super().forward(positions)


# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Blenderbot
class BlenderbotAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
144
145
146
147
148
149

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
150
        self.scaling = self.head_dim**-0.5
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        self.is_decoder = is_decoder

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
167
        layer_head_mask: Optional[torch.Tensor] = None,
168
169
170
171
172
173
174
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None
175
176

        bsz, tgt_len, _ = hidden_states.size()
177
178
179
180

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        # get key, value proj
181
182
183
184
185
186
187
188
        # `past_key_value[0].shape[2] == key_value_states.shape[1]`
        # is checking that the `sequence_length` of the `past_key_value` is the same as
        # the provided `key_value_states` to support prefix tuning
        if (
            is_cross_attention
            and past_key_value is not None
            and past_key_value[0].shape[2] == key_value_states.shape[1]
        ):
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

225
226
        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
227
228
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
                f" {attn_weights.size()}"
229
            )
230
231

        if attention_mask is not None:
232
233
234
235
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
236
237
238
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

239
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)
240

241
        if layer_head_mask is not None:
242
243
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
244
245
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
                    f" {layer_head_mask.size()}"
246
                )
247
248
249
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

250
        if output_attentions:
251
            # this operation is a bit awkward, but it's required to
252
            # make sure that attn_weights keeps its gradient.
253
            # In order to do so, attn_weights have to be reshaped
254
255
256
257
258
259
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

260
        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
261
262
263

        attn_output = torch.bmm(attn_probs, value_states)

264
265
        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
266
267
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
268
            )
269

270
271
        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)
272
273
274
275

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned aross GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
276
277
278
279

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped, past_key_value
Sam Shleifer's avatar
Sam Shleifer committed
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Blenderbot
class BlenderbotEncoderLayer(nn.Module):
    def __init__(self, config: BlenderbotConfig):
        super().__init__()
        self.embed_dim = config.d_model
        self.self_attn = BlenderbotAttention(
            embed_dim=self.embed_dim,
            num_heads=config.encoder_attention_heads,
            dropout=config.attention_dropout,
        )
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

300
301
302
303
304
305
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_head_mask: torch.Tensor,
        output_attentions: bool = False,
306
    ) -> torch.Tensor:
307
308
        """
        Args:
309
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
310
            attention_mask (`torch.FloatTensor`): attention mask of size
311
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
312
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
313
                `(encoder_attention_heads,)`.
314
315
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
316
317
318
319
320
                returned tensors for more detail.
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, attn_weights, _ = self.self_attn(
321
322
323
324
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
325
        )
326
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
327
328
329
330
331
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
332
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
333
        hidden_states = self.fc2(hidden_states)
334
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
335
336
        hidden_states = residual + hidden_states

337
338
339
        if hidden_states.dtype == torch.float16 and (
            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
        ):
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Blenderbot
class BlenderbotDecoderLayer(nn.Module):
    def __init__(self, config: BlenderbotConfig):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = BlenderbotAttention(
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.encoder_attn = BlenderbotAttention(
            self.embed_dim,
            config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
385
        layer_head_mask: Optional[torch.Tensor] = None,
386
        cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
387
388
389
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = True,
390
    ) -> torch.Tensor:
391
392
        """
        Args:
393
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
394
            attention_mask (`torch.FloatTensor`): attention mask of size
395
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
Sylvain Gugger's avatar
Sylvain Gugger committed
396
            encoder_hidden_states (`torch.FloatTensor`):
397
                cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
398
            encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
399
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
400
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
401
                `(encoder_attention_heads,)`.
402
            cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
403
                size `(decoder_attention_heads,)`.
404
405
406
            past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
407
408
409
410
411
412
413
414
415
416
417
418
419
                returned tensors for more detail.
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        # Self Attention
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        # add present self-attn cache to positions 1,2 of present_key_value tuple
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=self_attn_past_key_value,
            attention_mask=attention_mask,
420
            layer_head_mask=layer_head_mask,
421
422
            output_attentions=output_attentions,
        )
423
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
        hidden_states = residual + hidden_states

        # Cross-Attention Block
        cross_attn_present_key_value = None
        cross_attn_weights = None
        if encoder_hidden_states is not None:
            residual = hidden_states
            hidden_states = self.encoder_attn_layer_norm(hidden_states)

            # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
                hidden_states=hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
439
                layer_head_mask=cross_attn_layer_head_mask,
440
441
442
                past_key_value=cross_attn_past_key_value,
                output_attentions=output_attentions,
            )
443
            hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
444
445
446
447
448
449
450
451
452
            hidden_states = residual + hidden_states

            # add cross-attn to positions 3,4 of present_key_value tuple
            present_key_value = present_key_value + cross_attn_present_key_value

        # Fully Connected
        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
453
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
454
        hidden_states = self.fc2(hidden_states)
455
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class BlenderbotPreTrainedModel(PreTrainedModel):
    config_class = BlenderbotConfig
    base_model_prefix = "model"
472
    supports_gradient_checkpointing = True
473
474
475
476
477
478
479
480
481
482
483
484

    def _init_weights(self, module):
        std = self.config.init_std
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

485
486
487
488
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (BlenderbotDecoder, BlenderbotEncoder)):
            module.gradient_checkpointing = value

489
490
491
492
493
494
495
496
497
498
499
500
501
    @property
    def dummy_inputs(self):
        pad_token = self.config.pad_token_id
        input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
        dummy_inputs = {
            "attention_mask": input_ids.ne(pad_token),
            "input_ids": input_ids,
            "decoder_input_ids": input_ids,
        }
        return dummy_inputs


BLENDERBOT_START_DOCSTRING = r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
502
503
504
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)
Sam Shleifer's avatar
Sam Shleifer committed
505

Sylvain Gugger's avatar
Sylvain Gugger committed
506
507
508
    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.
Sam Shleifer's avatar
Sam Shleifer committed
509

510
    Parameters:
511
        config ([`BlenderbotConfig`]):
512
513
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
514
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
Sam Shleifer's avatar
Sam Shleifer committed
515
516
"""

517
BLENDERBOT_GENERATION_EXAMPLE = r"""
518
519
520
    Conversation example:

    ```python
Sylvain Gugger's avatar
Sylvain Gugger committed
521
    >>> from transformers import AutoTokenizer, BlenderbotForConditionalGeneration
522
523
524

    >>> mname = "facebook/blenderbot-400M-distill"
    >>> model = BlenderbotForConditionalGeneration.from_pretrained(mname)
Sylvain Gugger's avatar
Sylvain Gugger committed
525
    >>> tokenizer = AutoTokenizer.from_pretrained(mname)
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    >>> UTTERANCE = "My friends are cool but they eat too many carbs."
    >>> print("Human: ", UTTERANCE)
    Human:  My friends are cool but they eat too many carbs.

    >>> inputs = tokenizer([UTTERANCE], return_tensors="pt")
    >>> reply_ids = model.generate(**inputs)
    >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
    Bot: That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?

    >>> REPLY = "I'm not sure"
    >>> print("Human: ", REPLY)
    Human: I'm not sure

    >>> NEXT_UTTERANCE = (
    ...     "My friends are cool but they eat too many carbs.</s> <s>That's unfortunate. "
    ...     "Are they trying to lose weight or are they just trying to be healthier?</s> "
    ...     "<s> I'm not sure."
    ... )
    >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="pt")
    >>> next_reply_ids = model.generate(**inputs)
    >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
547
    Bot:   I see. Well, it's good that they're trying to change their eating habits.
548
    ```
549
550
551
552
"""

BLENDERBOT_INPUTS_DOCSTRING = r"""
    Args:
553
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
554
555
556
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

Sylvain Gugger's avatar
Sylvain Gugger committed
557
            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Sylvain Gugger's avatar
Sylvain Gugger committed
558
            [`PreTrainedTokenizer.__call__`] for details.
559

560
561
562
            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
563
564
565
566

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

567
568
            [What are attention masks?](../glossary#attention-mask)
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
569
570
            Indices of decoder input sequence tokens in the vocabulary.

Sylvain Gugger's avatar
Sylvain Gugger committed
571
            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Sylvain Gugger's avatar
Sylvain Gugger committed
572
            [`PreTrainedTokenizer.__call__`] for details.
573

574
            [What are decoder input IDs?](../glossary#decoder-input-ids)
575

576
577
578
579
            Blenderbot uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
            `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).
        decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
580
581
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.
582
583
        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
584
585

            - 1 indicates the head is **not masked**,
586
            - 0 indicates the head is **masked**.
587

588
589
        decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
590
591
592
593

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

594
        cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
595
596
            Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
            1]`:
597
598
599
600

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

601
        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
602
603
604
            Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
            hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
605
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
606
607
608
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
609
610

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
611
612
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

Sylvain Gugger's avatar
Sylvain Gugger committed
613
614
            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
615
616
617
618
            `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape
            `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you
            can choose to directly pass an embedded representation. This is useful if you want more control over how to
            convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
619
620
        decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
Sylvain Gugger's avatar
Sylvain Gugger committed
621
622
            representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
            input (see `past_key_values`). This is useful if you want more control over how to convert
623
624
            `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.

Sylvain Gugger's avatar
Sylvain Gugger committed
625
626
            If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
            of `inputs_embeds`.
627
        use_cache (`bool`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
628
629
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
630
631
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
632
            tensors for more detail.
633
634
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
635
            more detail.
636
        return_dict (`bool`, *optional*):
637
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
638
639
640
641
642
643
"""


class BlenderbotEncoder(BlenderbotPreTrainedModel):
    """
    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
644
    [`BlenderbotEncoderLayer`].
645
646
647

    Args:
        config: BlenderbotConfig
648
        embed_tokens (nn.Embedding): output embedding
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
    """

    def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)

        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop

        embed_dim = config.d_model
        self.padding_idx = config.pad_token_id
        self.max_source_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)

        self.embed_positions = BlenderbotLearnedPositionalEmbedding(
            config.max_position_embeddings,
            embed_dim,
        )
        self.layers = nn.ModuleList([BlenderbotEncoderLayer(config) for _ in range(config.encoder_layers)])
        self.layer_norm = nn.LayerNorm(config.d_model)

674
        self.gradient_checkpointing = False
675
676
        # Initialize weights and apply final processing
        self.post_init()
677
678
679
680
681

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
682
        head_mask=None,
683
684
685
686
687
688
689
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
690
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
691
692
693
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

Sylvain Gugger's avatar
Sylvain Gugger committed
694
                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Sylvain Gugger's avatar
Sylvain Gugger committed
695
                [`PreTrainedTokenizer.__call__`] for details.
696

697
698
699
                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
700
701
702
703

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

704
705
706
                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
707
708

                - 1 indicates the head is **not masked**,
709
                - 0 indicates the head is **masked**.
710

711
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
712
713
714
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
715
716
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
717
                returned tensors for more detail.
718
719
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
720
                for more detail.
721
            return_dict (`bool`, *optional*):
722
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

        embed_pos = self.embed_positions(input_shape)

        hidden_states = inputs_embeds + embed_pos
747
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
748
749
750
751
752
753
754
755

        # expand attention_mask
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
756
757
758

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
759
760
            if head_mask.size()[0] != len(self.layers):
                raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
761
762
                    f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
                    f" {head_mask.size()[0]}."
763
                )
764
        for idx, encoder_layer in enumerate(self.layers):
765
766
767
768
769
770
771
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):  # skip the layer
                layer_outputs = (None, None)
            else:
772
                if self.gradient_checkpointing and self.training:
773
774
775
776
777
778
779
780
781
782
783

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs, output_attentions)

                        return custom_forward

                    layer_outputs = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(encoder_layer),
                        hidden_states,
                        attention_mask,
784
                        (head_mask[idx] if head_mask is not None else None),
785
786
                    )
                else:
787
788
789
790
791
792
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                        output_attentions=output_attentions,
                    )
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

                hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        # add final layer norm
        hidden_states = self.layer_norm(hidden_states)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


class BlenderbotDecoder(BlenderbotPreTrainedModel):
    """
814
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotDecoderLayer`]
815
816
817

    Args:
        config: BlenderbotConfig
818
        embed_tokens (nn.Embedding): output embedding
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
    """

    def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.decoder_layerdrop
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)

        self.embed_positions = BlenderbotLearnedPositionalEmbedding(
            config.max_position_embeddings,
            config.d_model,
        )
        self.layers = nn.ModuleList([BlenderbotDecoderLayer(config) for _ in range(config.decoder_layers)])
        self.layer_norm = nn.LayerNorm(config.d_model)

841
        self.gradient_checkpointing = False
842
843
        # Initialize weights and apply final processing
        self.post_init()
844

845
846
847
848
849
850
851
852
853
854
855
856
857
858
    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
859
            ).to(inputs_embeds.device)
860
861
862

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
863
864
865
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
                inputs_embeds.device
            )
866
867
868
869
870
871
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

872
873
874
875
876
877
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
878
        head_mask=None,
879
        cross_attn_head_mask=None,
880
881
882
883
884
885
886
887
888
        past_key_values=None,
        inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
889
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
890
891
892
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

Sylvain Gugger's avatar
Sylvain Gugger committed
893
                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Sylvain Gugger's avatar
Sylvain Gugger committed
894
                [`PreTrainedTokenizer.__call__`] for details.
895

896
897
898
                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
899
900
901
902

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

903
904
                [What are attention masks?](../glossary#attention-mask)
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
905
906
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                of the decoder.
907
            encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
908
                Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
909
                selected in `[0, 1]`:
910
911
912
913

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

914
915
                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
916
917
                Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0,
                1]`:
918
919

                - 1 indicates the head is **not masked**,
920
                - 0 indicates the head is **masked**.
921

922
            cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
923
                Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
924
                cross-attention on hidden heads. Mask values selected in `[0, 1]`:
925
926

                - 1 indicates the head is **not masked**,
927
                - 0 indicates the head is **masked**.
928

929
            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
930
931
932
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
933
934

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
Sylvain Gugger's avatar
Sylvain Gugger committed
935
936
937
938
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
939
940
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
                shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
Sylvain Gugger's avatar
Sylvain Gugger committed
941
942
943
                `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
                control over how to convert `input_ids` indices into associated vectors than the model's internal
                embedding lookup matrix.
944
945
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
946
                returned tensors for more detail.
947
948
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
949
                for more detail.
950
            return_dict (`bool`, *optional*):
951
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

977
978
979
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask, input_shape, inputs_embeds, past_key_values_length
        )
980
981
982
983
984
985
986
987
988
989
990

        # expand encoder attention mask
        if encoder_hidden_states is not None and encoder_attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])

        # embed positions
        positions = self.embed_positions(input_shape, past_key_values_length)

        hidden_states = inputs_embeds + positions

991
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
992
993
994
995

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
996
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
997
        next_decoder_cache = () if use_cache else None
998

999
1000
1001
        # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
        for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
            if attn_mask is not None:
1002
1003
                if attn_mask.size()[0] != len(self.layers):
                    raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1004
1005
                        f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
                        f" {head_mask.size()[0]}."
1006
                    )
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):
                continue

            past_key_value = past_key_values[idx] if past_key_values is not None else None

1017
            if self.gradient_checkpointing and self.training:
1018
                if use_cache:
1019
                    logger.warning(
1020
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1021
                    )
1022
                    use_cache = False
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, use_cache)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
1034
                    attention_mask,
1035
1036
                    encoder_hidden_states,
                    encoder_attention_mask,
1037
                    head_mask[idx] if head_mask is not None else None,
1038
                    cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
1039
1040
1041
1042
1043
                    None,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
1044
                    attention_mask=attention_mask,
1045
1046
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
1047
                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
1048
1049
1050
                    cross_attn_layer_head_mask=(
                        cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
                    ),
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )
            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)
1062
1063
1064

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

        # add final layer norm
        hidden_states = self.layer_norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )
Sam Shleifer's avatar
Sam Shleifer committed
1087
1088
1089


@add_start_docstrings(
1090
1091
    "The bare Blenderbot Model outputting raw hidden-states without any specific head on top.",
    BLENDERBOT_START_DOCSTRING,
1092
)
1093
class BlenderbotModel(BlenderbotPreTrainedModel):
1094
1095
    _keys_to_ignore_on_load_missing = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]

1096
1097
    def __init__(self, config: BlenderbotConfig):
        super().__init__(config)
1098

1099
1100
1101
1102
1103
1104
        padding_idx, vocab_size = config.pad_token_id, config.vocab_size
        self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)

        self.encoder = BlenderbotEncoder(config, self.shared)
        self.decoder = BlenderbotDecoder(config, self.shared)

1105
1106
        # Initialize weights and apply final processing
        self.post_init()
1107
1108
1109
1110
1111

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
        if pretrained_model_name_or_path == "facebook/blenderbot-90M":
            warnings.warn(
Sylvain Gugger's avatar
Sylvain Gugger committed
1112
1113
1114
                "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
                " checkpoint `facebook/small_blenderbot-90M` with"
                " `BlenderbotSmallModel.from_pretrained('facebook/small_blenderbot-90M')` instead.",
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
                FutureWarning,
            )
            return BlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path)

        return super(BlenderbotModel, cls).from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, value):
        self.shared = value
        self.encoder.embed_tokens = self.shared
        self.decoder.embed_tokens = self.shared

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
1155
1156
1157
        r"""
        Returns:

1158
        Example:
1159

1160
        ```python
Sylvain Gugger's avatar
Sylvain Gugger committed
1161
        >>> from transformers import AutoTokenizer, BlenderbotModel
1162

1163
        >>> model = BlenderbotModel.from_pretrained("facebook/blenderbot-400M-distill")
Sylvain Gugger's avatar
Sylvain Gugger committed
1164
        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
1165

1166
        >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
1167
        >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids  # Batch size 1
1168
        >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_input_ids)
1169

1170
        >>> last_hidden_states = outputs.last_hidden_state
1171
1172
        >>> list(last_hidden_states.shape)
        [1, 6, 1280]
1173
        ```"""
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
1185
                head_mask=head_mask,
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_outputs[0],
            encoder_attention_mask=attention_mask,
1205
            head_mask=decoder_head_mask,
1206
            cross_attn_head_mask=cross_attn_head_mask,
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
            past_key_values=past_key_values,
            inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )
1228
1229
1230


@add_start_docstrings(
1231
    "The Blenderbot Model with a language modeling head. Can be used for summarization.", BLENDERBOT_START_DOCSTRING
Sam Shleifer's avatar
Sam Shleifer committed
1232
)
1233
1234
1235
1236
class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel):
    base_model_prefix = "model"
    _keys_to_ignore_on_load_missing = [
        r"final_logits_bias",
1237
1238
1239
        r"encoder.version",
        r"decoder.version",
        r"lm_head.weight",
1240
1241
        "decoder.embed_tokens.weight",
        "encoder.embed_tokens.weight",
1242
    ]
Sam Shleifer's avatar
Sam Shleifer committed
1243

1244
1245
1246
1247
1248
1249
    def __init__(self, config: BlenderbotConfig):
        super().__init__(config)
        self.model = BlenderbotModel(config)
        self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
        self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)

1250
1251
        # Initialize weights and apply final processing
        self.post_init()
1252
1253
1254
1255
1256

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
        if pretrained_model_name_or_path == "facebook/blenderbot-90M":
            warnings.warn(
Sylvain Gugger's avatar
Sylvain Gugger committed
1257
1258
1259
                "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
                " checkpoint `facebook/small_blenderbot-90M` with"
                " `BlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')` instead.",
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
                FutureWarning,
            )
            return BlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path)

        return super(BlenderbotForConditionalGeneration, cls).from_pretrained(
            pretrained_model_name_or_path, *model_args, **kwargs
        )

    def get_encoder(self):
        return self.model.get_encoder()

    def get_decoder(self):
        return self.model.get_decoder()

    def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
        new_embeddings = super().resize_token_embeddings(new_num_tokens)
        self._resize_final_logits_bias(new_num_tokens)
        return new_embeddings

    def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
        old_num_tokens = self.final_logits_bias.shape[-1]
        if new_num_tokens <= old_num_tokens:
            new_bias = self.final_logits_bias[:, :new_num_tokens]
        else:
            extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
            new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
        self.register_buffer("final_logits_bias", new_bias)

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    @add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE)
    def forward(
        self,
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
1316
        r"""
1317
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1318
1319
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1320
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1321
1322
1323
1324
1325
1326

        Returns:
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if labels is not None:
1327
1328
1329
            if use_cache:
                logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
            use_cache = False
1330
            if decoder_input_ids is None and decoder_inputs_embeds is None:
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
1341
1342
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
1343
            cross_attn_head_mask=cross_attn_head_mask,
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return Seq2SeqLMOutput(
            loss=masked_lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )

    def prepare_inputs_for_generation(
1376
1377
        self,
        decoder_input_ids,
1378
        past_key_values=None,
1379
1380
        attention_mask=None,
        head_mask=None,
1381
1382
        decoder_head_mask=None,
        cross_attn_head_mask=None,
1383
1384
        use_cache=None,
        encoder_outputs=None,
1385
        **kwargs,
1386
1387
    ):
        # cut decoder_input_ids if past is used
1388
        if past_key_values is not None:
1389
1390
1391
1392
1393
            decoder_input_ids = decoder_input_ids[:, -1:]

        return {
            "input_ids": None,  # encoder_outputs is defined. input_ids not needed
            "encoder_outputs": encoder_outputs,
1394
            "past_key_values": past_key_values,
1395
1396
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
1397
            "head_mask": head_mask,
1398
1399
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
1400
1401
            "use_cache": use_cache,  # change this to avoid caching (presumably for debugging)
        }
Sam Shleifer's avatar
Sam Shleifer committed
1402

1403
    @staticmethod
1404
    def _reorder_cache(past_key_values, beam_idx):
1405
        reordered_past = ()
1406
        for layer_past in past_key_values:
1407
1408
1409
1410
1411
            # cached cross_attention states don't have to be reordered -> they are always the same
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
            )
        return reordered_past
1412
1413
1414
1415
1416
1417


# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Blenderbot
class BlenderbotDecoderWrapper(BlenderbotPreTrainedModel):
    """
    This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
1418
    used in combination with the [`EncoderDecoderModel`] framework.
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
    """

    def __init__(self, config):
        super().__init__(config)
        self.decoder = BlenderbotDecoder(config)

    def forward(self, *args, **kwargs):
        return self.decoder(*args, **kwargs)


1429
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Blenderbot, facebook/bart-base->facebook/blenderbot-400M-distill
1430
class BlenderbotForCausalLM(BlenderbotPreTrainedModel):
1431
1432
    _keys_to_ignore_on_load_missing = ["lm_head.weight"]

1433
1434
1435
1436
    def __init__(self, config):
        config = copy.deepcopy(config)
        config.is_decoder = True
        config.is_encoder_decoder = False
1437
        super().__init__(config)
1438
1439
1440
1441
        self.model = BlenderbotDecoderWrapper(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

1442
1443
        # Initialize weights and apply final processing
        self.post_init()
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465

    def get_input_embeddings(self):
        return self.model.decoder.embed_tokens

    def set_input_embeddings(self, value):
        self.model.decoder.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model.decoder = decoder

    def get_decoder(self):
        return self.model.decoder

    @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
1480
1481
        r"""
        Args:
1482
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1483
1484
1485
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

Sylvain Gugger's avatar
Sylvain Gugger committed
1486
                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Sylvain Gugger's avatar
Sylvain Gugger committed
1487
                [`PreTrainedTokenizer.__call__`] for details.
1488

1489
1490
1491
                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1492
1493
1494
1495

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

1496
1497
                [What are attention masks?](../glossary#attention-mask)
            encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1498
1499
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                if the model is configured as a decoder.
1500
            encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1501
                Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
1502
1503
1504
                in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
            head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
1505
1506

                - 1 indicates the head is **not masked**,
1507
                - 0 indicates the head is **masked**.
1508

1509
1510
            cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
1511
1512

                - 1 indicates the head is **not masked**,
1513
                - 0 indicates the head is **masked**.
1514

1515
            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1516
1517
1518
1519
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
                tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
1520
1521

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
Sylvain Gugger's avatar
Sylvain Gugger committed
1522
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
1523

Sylvain Gugger's avatar
Sylvain Gugger committed
1524
1525
1526
                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1527
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1528
1529
1530
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1531
            use_cache (`bool`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1532
1533
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
1534
1535
1536

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.
1537
1538
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1539
                returned tensors for more detail.
1540
1541
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
1542
                for more detail.
1543
            return_dict (`bool`, *optional*):
1544
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1545
1546
1547

        Returns:

1548
        Example:
1549

1550
        ```python
Sylvain Gugger's avatar
Sylvain Gugger committed
1551
        >>> from transformers import AutoTokenizer, BlenderbotForCausalLM
1552

Sylvain Gugger's avatar
Sylvain Gugger committed
1553
        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
1554
1555
1556
        >>> model = BlenderbotForCausalLM.from_pretrained(
        ...     "facebook/blenderbot-400M-distill", add_cross_attention=False
        ... )
1557
1558
1559
        >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs)
1560

1561
        >>> logits = outputs.logits
1562
1563
1564
        >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
        >>> list(logits.shape) == expected_shape
        True
1565
        ```"""
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model.decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            head_mask=head_mask,
1580
            cross_attn_head_mask=cross_attn_head_mask,
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = self.lm_head(outputs[0])

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )

1609
1610
1611
    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
    ):
1612
1613
1614
1615
        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        if attention_mask is None:
            attention_mask = input_ids.new_ones(input_ids.shape)

1616
        if past_key_values:
1617
1618
1619
1620
1621
            input_ids = input_ids[:, -1:]
        # first step, decoder_cached_states are empty
        return {
            "input_ids": input_ids,  # encoder_outputs is defined. input_ids not needed
            "attention_mask": attention_mask,
1622
            "past_key_values": past_key_values,
1623
1624
1625
1626
            "use_cache": use_cache,
        }

    @staticmethod
1627
    def _reorder_cache(past_key_values, beam_idx):
1628
        reordered_past = ()
1629
        for layer_past in past_key_values:
1630
1631
            reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
        return reordered_past