modeling_blenderbot.py 75.2 KB
Newer Older
Sam Shleifer's avatar
Sam Shleifer committed
1
# coding=utf-8
2
# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
Sam Shleifer's avatar
Sam Shleifer committed
3
#
4
# Licensed under the Apache License, Version 2.0 (the "License");
Sam Shleifer's avatar
Sam Shleifer committed
5
6
7
8
9
10
11
12
13
14
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" PyTorch Blenderbot model."""
16
17


18
import copy
19
20
21
22
import math
import os
import random
import warnings
23
from typing import List, Optional, Tuple, Union
Sam Shleifer's avatar
Sam Shleifer committed
24
25

import torch
26
import torch.utils.checkpoint
27
28
from torch import nn
from torch.nn import CrossEntropyLoss
Sam Shleifer's avatar
Sam Shleifer committed
29

30
31
32
33
from ...activations import ACT2FN
from ...modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPastAndCrossAttentions,
34
    CausalLMOutputWithCrossAttentions,
35
36
37
38
    Seq2SeqLMOutput,
    Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
39
40
41
42
43
44
45
from ...utils import (
    add_end_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
46
from ..blenderbot_small import BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel
Sam Shleifer's avatar
Sam Shleifer committed
47
48
49
from .configuration_blenderbot import BlenderbotConfig


50
51
52
53
logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "BlenderbotConfig"
_TOKENIZER_FOR_DOC = "BlenderbotTokenizer"
54
_CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill"
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71


BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "facebook/blenderbot-3B",
    # See all Blenderbot models at https://huggingface.co/models?filter=blenderbot
]


# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
    """
    Shift input ids one token to the right.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    shifted_input_ids[:, 0] = decoder_start_token_id

72
73
    if pad_token_id is None:
        raise ValueError("self.model.config.pad_token_id has to be defined.")
74
75
76
77
78
79
80
81
82
83
84
85
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids


# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
Yih-Dar's avatar
Yih-Dar committed
86
    mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min))
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    mask_cond = torch.arange(mask.size(-1))
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

108
    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
109
110
111
112
113
114
115


class BlenderbotLearnedPositionalEmbedding(nn.Embedding):
    """
    This module learns positional embeddings up to a fixed maximum size.
    """

116
117
    def __init__(self, num_embeddings: int, embedding_dim: int):
        super().__init__(num_embeddings, embedding_dim)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

    def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
        """`input_ids_shape` is expected to be [bsz x seqlen]."""
        bsz, seq_len = input_ids_shape[:2]
        positions = torch.arange(
            past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
        )
        return super().forward(positions)


# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Blenderbot
class BlenderbotAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
145
146
147
148
149
150

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
151
        self.scaling = self.head_dim**-0.5
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        self.is_decoder = is_decoder

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
168
        layer_head_mask: Optional[torch.Tensor] = None,
169
170
171
172
173
174
175
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None
176
177

        bsz, tgt_len, _ = hidden_states.size()
178
179
180
181

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        # get key, value proj
182
183
184
185
186
187
188
189
        # `past_key_value[0].shape[2] == key_value_states.shape[1]`
        # is checking that the `sequence_length` of the `past_key_value` is the same as
        # the provided `key_value_states` to support prefix tuning
        if (
            is_cross_attention
            and past_key_value is not None
            and past_key_value[0].shape[2] == key_value_states.shape[1]
        ):
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

226
227
        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
228
229
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
                f" {attn_weights.size()}"
230
            )
231
232

        if attention_mask is not None:
233
234
235
236
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
237
238
239
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

240
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)
241

242
        if layer_head_mask is not None:
243
244
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
245
246
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
                    f" {layer_head_mask.size()}"
247
                )
248
249
250
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

251
        if output_attentions:
252
            # this operation is a bit awkward, but it's required to
253
            # make sure that attn_weights keeps its gradient.
254
            # In order to do so, attn_weights have to be reshaped
255
256
257
258
259
260
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

261
        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
262
263
264

        attn_output = torch.bmm(attn_probs, value_states)

265
266
        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
267
268
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
269
            )
270

271
272
        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)
273
274
275
276

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned aross GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
277
278
279
280

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped, past_key_value
Sam Shleifer's avatar
Sam Shleifer committed
281

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Blenderbot
class BlenderbotEncoderLayer(nn.Module):
    def __init__(self, config: BlenderbotConfig):
        super().__init__()
        self.embed_dim = config.d_model
        self.self_attn = BlenderbotAttention(
            embed_dim=self.embed_dim,
            num_heads=config.encoder_attention_heads,
            dropout=config.attention_dropout,
        )
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

301
302
303
304
305
306
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_head_mask: torch.Tensor,
        output_attentions: bool = False,
307
    ) -> torch.Tensor:
308
309
        """
        Args:
310
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
311
            attention_mask (`torch.FloatTensor`): attention mask of size
312
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
313
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
314
                `(encoder_attention_heads,)`.
315
316
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
317
318
319
320
321
                returned tensors for more detail.
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, attn_weights, _ = self.self_attn(
322
323
324
325
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
326
        )
327
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
328
329
330
331
332
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
333
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
334
        hidden_states = self.fc2(hidden_states)
335
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
336
337
        hidden_states = residual + hidden_states

338
339
340
        if hidden_states.dtype == torch.float16 and (
            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
        ):
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Blenderbot
class BlenderbotDecoderLayer(nn.Module):
    def __init__(self, config: BlenderbotConfig):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = BlenderbotAttention(
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.encoder_attn = BlenderbotAttention(
            self.embed_dim,
            config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
386
        layer_head_mask: Optional[torch.Tensor] = None,
387
        cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
388
389
390
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = True,
391
    ) -> torch.Tensor:
392
393
        """
        Args:
394
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
395
            attention_mask (`torch.FloatTensor`): attention mask of size
396
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
Sylvain Gugger's avatar
Sylvain Gugger committed
397
            encoder_hidden_states (`torch.FloatTensor`):
398
                cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
399
            encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
400
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
401
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
402
                `(encoder_attention_heads,)`.
403
            cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
404
                size `(decoder_attention_heads,)`.
405
406
407
            past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
408
409
410
411
412
413
414
415
416
417
418
419
420
                returned tensors for more detail.
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        # Self Attention
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        # add present self-attn cache to positions 1,2 of present_key_value tuple
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=self_attn_past_key_value,
            attention_mask=attention_mask,
421
            layer_head_mask=layer_head_mask,
422
423
            output_attentions=output_attentions,
        )
424
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        hidden_states = residual + hidden_states

        # Cross-Attention Block
        cross_attn_present_key_value = None
        cross_attn_weights = None
        if encoder_hidden_states is not None:
            residual = hidden_states
            hidden_states = self.encoder_attn_layer_norm(hidden_states)

            # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
                hidden_states=hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
440
                layer_head_mask=cross_attn_layer_head_mask,
441
442
443
                past_key_value=cross_attn_past_key_value,
                output_attentions=output_attentions,
            )
444
            hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
445
446
447
448
449
450
451
452
453
            hidden_states = residual + hidden_states

            # add cross-attn to positions 3,4 of present_key_value tuple
            present_key_value = present_key_value + cross_attn_present_key_value

        # Fully Connected
        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
454
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
455
        hidden_states = self.fc2(hidden_states)
456
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class BlenderbotPreTrainedModel(PreTrainedModel):
    config_class = BlenderbotConfig
    base_model_prefix = "model"
473
    supports_gradient_checkpointing = True
474
475
476
477
478
479
480
481
482
483
484
485

    def _init_weights(self, module):
        std = self.config.init_std
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

486
487
488
489
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (BlenderbotDecoder, BlenderbotEncoder)):
            module.gradient_checkpointing = value

490
491
492
493
494
495
496
497
498
499
500
501
502
    @property
    def dummy_inputs(self):
        pad_token = self.config.pad_token_id
        input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
        dummy_inputs = {
            "attention_mask": input_ids.ne(pad_token),
            "input_ids": input_ids,
            "decoder_input_ids": input_ids,
        }
        return dummy_inputs


BLENDERBOT_START_DOCSTRING = r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
503
504
505
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)
Sam Shleifer's avatar
Sam Shleifer committed
506

Sylvain Gugger's avatar
Sylvain Gugger committed
507
508
509
    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.
Sam Shleifer's avatar
Sam Shleifer committed
510

511
    Parameters:
512
        config ([`BlenderbotConfig`]):
513
514
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
515
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
Sam Shleifer's avatar
Sam Shleifer committed
516
517
"""

518
BLENDERBOT_GENERATION_EXAMPLE = r"""
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    Conversation example:

    ```python
    >>> from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration

    >>> mname = "facebook/blenderbot-400M-distill"
    >>> model = BlenderbotForConditionalGeneration.from_pretrained(mname)
    >>> tokenizer = BlenderbotTokenizer.from_pretrained(mname)
    >>> UTTERANCE = "My friends are cool but they eat too many carbs."
    >>> print("Human: ", UTTERANCE)
    Human:  My friends are cool but they eat too many carbs.

    >>> inputs = tokenizer([UTTERANCE], return_tensors="pt")
    >>> reply_ids = model.generate(**inputs)
    >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
    Bot: That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?

    >>> REPLY = "I'm not sure"
    >>> print("Human: ", REPLY)
    Human: I'm not sure

    >>> NEXT_UTTERANCE = (
    ...     "My friends are cool but they eat too many carbs.</s> <s>That's unfortunate. "
    ...     "Are they trying to lose weight or are they just trying to be healthier?</s> "
    ...     "<s> I'm not sure."
    ... )
    >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="pt")
    >>> next_reply_ids = model.generate(**inputs)
    >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
    Bot:   That's too bad. Have you tried encouraging them to change their eating habits?
    ```
550
551
552
553
"""

BLENDERBOT_INPUTS_DOCSTRING = r"""
    Args:
554
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
555
556
557
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

Sylvain Gugger's avatar
Sylvain Gugger committed
558
559
            Indices can be obtained using [`BlenderbotTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.
560

561
562
563
            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
564
565
566
567

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

568
569
            [What are attention masks?](../glossary#attention-mask)
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
570
571
            Indices of decoder input sequence tokens in the vocabulary.

Sylvain Gugger's avatar
Sylvain Gugger committed
572
573
            Indices can be obtained using [`BlenderbotTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.
574

575
            [What are decoder input IDs?](../glossary#decoder-input-ids)
576

577
578
579
580
            Blenderbot uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
            `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).
        decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
581
582
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.
583
584
        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
585
586

            - 1 indicates the head is **not masked**,
587
            - 0 indicates the head is **masked**.
588

589
590
        decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
591
592
593
594

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

595
        cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
596
597
            Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
            1]`:
598
599
600
601

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

602
        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
603
604
605
            Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
            hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
606
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
607
608
609
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
610
611

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
612
613
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

Sylvain Gugger's avatar
Sylvain Gugger committed
614
615
            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
616
617
618
619
            `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape
            `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you
            can choose to directly pass an embedded representation. This is useful if you want more control over how to
            convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
620
621
        decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
Sylvain Gugger's avatar
Sylvain Gugger committed
622
623
            representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
            input (see `past_key_values`). This is useful if you want more control over how to convert
624
625
            `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.

Sylvain Gugger's avatar
Sylvain Gugger committed
626
627
            If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
            of `inputs_embeds`.
628
        use_cache (`bool`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
629
630
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
631
632
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
633
            tensors for more detail.
634
635
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
636
            more detail.
637
        return_dict (`bool`, *optional*):
638
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
639
640
641
642
643
644
"""


class BlenderbotEncoder(BlenderbotPreTrainedModel):
    """
    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
645
    [`BlenderbotEncoderLayer`].
646
647
648

    Args:
        config: BlenderbotConfig
649
        embed_tokens (nn.Embedding): output embedding
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
    """

    def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)

        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop

        embed_dim = config.d_model
        self.padding_idx = config.pad_token_id
        self.max_source_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)

        self.embed_positions = BlenderbotLearnedPositionalEmbedding(
            config.max_position_embeddings,
            embed_dim,
        )
        self.layers = nn.ModuleList([BlenderbotEncoderLayer(config) for _ in range(config.encoder_layers)])
        self.layer_norm = nn.LayerNorm(config.d_model)

675
        self.gradient_checkpointing = False
676
677
        # Initialize weights and apply final processing
        self.post_init()
678
679
680
681
682

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
683
        head_mask=None,
684
685
686
687
688
689
690
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
691
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
692
693
694
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

Sylvain Gugger's avatar
Sylvain Gugger committed
695
696
                Indices can be obtained using [`BlenderbotTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.
697

698
699
700
                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
701
702
703
704

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

705
706
707
                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
708
709

                - 1 indicates the head is **not masked**,
710
                - 0 indicates the head is **masked**.
711

712
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
713
714
715
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
716
717
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
718
                returned tensors for more detail.
719
720
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
721
                for more detail.
722
            return_dict (`bool`, *optional*):
723
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

        embed_pos = self.embed_positions(input_shape)

        hidden_states = inputs_embeds + embed_pos
748
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
749
750
751
752
753
754
755
756

        # expand attention_mask
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
757
758
759

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
760
761
            if head_mask.size()[0] != len(self.layers):
                raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
762
763
                    f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
                    f" {head_mask.size()[0]}."
764
                )
765
        for idx, encoder_layer in enumerate(self.layers):
766
767
768
769
770
771
772
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):  # skip the layer
                layer_outputs = (None, None)
            else:
773
                if self.gradient_checkpointing and self.training:
774
775
776
777
778
779
780
781
782
783
784

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs, output_attentions)

                        return custom_forward

                    layer_outputs = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(encoder_layer),
                        hidden_states,
                        attention_mask,
785
                        (head_mask[idx] if head_mask is not None else None),
786
787
                    )
                else:
788
789
790
791
792
793
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                        output_attentions=output_attentions,
                    )
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

                hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        # add final layer norm
        hidden_states = self.layer_norm(hidden_states)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


class BlenderbotDecoder(BlenderbotPreTrainedModel):
    """
815
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotDecoderLayer`]
816
817
818

    Args:
        config: BlenderbotConfig
819
        embed_tokens (nn.Embedding): output embedding
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
    """

    def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.decoder_layerdrop
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)

        self.embed_positions = BlenderbotLearnedPositionalEmbedding(
            config.max_position_embeddings,
            config.d_model,
        )
        self.layers = nn.ModuleList([BlenderbotDecoderLayer(config) for _ in range(config.decoder_layers)])
        self.layer_norm = nn.LayerNorm(config.d_model)

842
        self.gradient_checkpointing = False
843
844
        # Initialize weights and apply final processing
        self.post_init()
845

846
847
848
849
850
851
852
853
854
855
856
857
858
859
    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
860
            ).to(inputs_embeds.device)
861
862
863

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
864
865
866
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
                inputs_embeds.device
            )
867
868
869
870
871
872
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

873
874
875
876
877
878
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
879
        head_mask=None,
880
        cross_attn_head_mask=None,
881
882
883
884
885
886
887
888
889
        past_key_values=None,
        inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
890
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
891
892
893
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

Sylvain Gugger's avatar
Sylvain Gugger committed
894
895
                Indices can be obtained using [`BlenderbotTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.
896

897
898
899
                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
900
901
902
903

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

904
905
                [What are attention masks?](../glossary#attention-mask)
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
906
907
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                of the decoder.
908
            encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
909
                Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
910
                selected in `[0, 1]`:
911
912
913
914

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

915
916
                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
917
918
                Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0,
                1]`:
919
920

                - 1 indicates the head is **not masked**,
921
                - 0 indicates the head is **masked**.
922

923
            cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
924
                Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
925
                cross-attention on hidden heads. Mask values selected in `[0, 1]`:
926
927

                - 1 indicates the head is **not masked**,
928
                - 0 indicates the head is **masked**.
929

930
            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
931
932
933
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
934
935

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
Sylvain Gugger's avatar
Sylvain Gugger committed
936
937
938
939
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
940
941
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
                shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
Sylvain Gugger's avatar
Sylvain Gugger committed
942
943
944
                `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
                control over how to convert `input_ids` indices into associated vectors than the model's internal
                embedding lookup matrix.
945
946
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
947
                returned tensors for more detail.
948
949
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
950
                for more detail.
951
            return_dict (`bool`, *optional*):
952
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

978
979
980
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask, input_shape, inputs_embeds, past_key_values_length
        )
981
982
983
984
985
986
987
988
989
990
991

        # expand encoder attention mask
        if encoder_hidden_states is not None and encoder_attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])

        # embed positions
        positions = self.embed_positions(input_shape, past_key_values_length)

        hidden_states = inputs_embeds + positions

992
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
993
994
995
996

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
997
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
998
        next_decoder_cache = () if use_cache else None
999

1000
1001
1002
        # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
        for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
            if attn_mask is not None:
1003
1004
                if attn_mask.size()[0] != len(self.layers):
                    raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1005
1006
                        f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
                        f" {head_mask.size()[0]}."
1007
                    )
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):
                continue

            past_key_value = past_key_values[idx] if past_key_values is not None else None

1018
            if self.gradient_checkpointing and self.training:
1019

1020
                if use_cache:
1021
                    logger.warning(
1022
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1023
                    )
1024
                    use_cache = False
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, use_cache)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
1036
                    attention_mask,
1037
1038
                    encoder_hidden_states,
                    encoder_attention_mask,
1039
                    head_mask[idx] if head_mask is not None else None,
1040
                    cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
1041
1042
1043
1044
1045
1046
                    None,
                )
            else:

                layer_outputs = decoder_layer(
                    hidden_states,
1047
                    attention_mask=attention_mask,
1048
1049
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
1050
                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
1051
1052
1053
                    cross_attn_layer_head_mask=(
                        cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
                    ),
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )
            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)
1065
1066
1067

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

        # add final layer norm
        hidden_states = self.layer_norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )
Sam Shleifer's avatar
Sam Shleifer committed
1090
1091
1092


@add_start_docstrings(
1093
1094
    "The bare Blenderbot Model outputting raw hidden-states without any specific head on top.",
    BLENDERBOT_START_DOCSTRING,
1095
)
1096
class BlenderbotModel(BlenderbotPreTrainedModel):
1097
1098
    _keys_to_ignore_on_load_missing = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]

1099
1100
    def __init__(self, config: BlenderbotConfig):
        super().__init__(config)
1101

1102
1103
1104
1105
1106
1107
        padding_idx, vocab_size = config.pad_token_id, config.vocab_size
        self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)

        self.encoder = BlenderbotEncoder(config, self.shared)
        self.decoder = BlenderbotDecoder(config, self.shared)

1108
1109
        # Initialize weights and apply final processing
        self.post_init()
1110
1111
1112
1113
1114

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
        if pretrained_model_name_or_path == "facebook/blenderbot-90M":
            warnings.warn(
Sylvain Gugger's avatar
Sylvain Gugger committed
1115
1116
1117
                "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
                " checkpoint `facebook/small_blenderbot-90M` with"
                " `BlenderbotSmallModel.from_pretrained('facebook/small_blenderbot-90M')` instead.",
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
                FutureWarning,
            )
            return BlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path)

        return super(BlenderbotModel, cls).from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, value):
        self.shared = value
        self.encoder.embed_tokens = self.shared
        self.decoder.embed_tokens = self.shared

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
1158
1159
1160
        r"""
        Returns:

1161
        Example:
1162

1163
1164
        ```python
        >>> from transformers import BlenderbotTokenizer, BlenderbotModel
1165

1166
1167
        >>> model = BlenderbotModel.from_pretrained("facebook/blenderbot-400M-distill")
        >>> tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
1168

1169
        >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
1170
        >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids  # Batch size 1
1171
        >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_input_ids)
1172

1173
        >>> last_hidden_states = outputs.last_hidden_state
1174
1175
        >>> list(last_hidden_states.shape)
        [1, 6, 1280]
1176
        ```"""
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
1188
                head_mask=head_mask,
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_outputs[0],
            encoder_attention_mask=attention_mask,
1208
            head_mask=decoder_head_mask,
1209
            cross_attn_head_mask=cross_attn_head_mask,
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
            past_key_values=past_key_values,
            inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )
1231
1232
1233


@add_start_docstrings(
1234
    "The Blenderbot Model with a language modeling head. Can be used for summarization.", BLENDERBOT_START_DOCSTRING
Sam Shleifer's avatar
Sam Shleifer committed
1235
)
1236
1237
1238
1239
class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel):
    base_model_prefix = "model"
    _keys_to_ignore_on_load_missing = [
        r"final_logits_bias",
1240
1241
1242
        r"encoder.version",
        r"decoder.version",
        r"lm_head.weight",
1243
1244
        "decoder.embed_tokens.weight",
        "encoder.embed_tokens.weight",
1245
    ]
Sam Shleifer's avatar
Sam Shleifer committed
1246

1247
1248
1249
1250
1251
1252
    def __init__(self, config: BlenderbotConfig):
        super().__init__(config)
        self.model = BlenderbotModel(config)
        self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
        self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)

1253
1254
        # Initialize weights and apply final processing
        self.post_init()
1255
1256
1257
1258
1259

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
        if pretrained_model_name_or_path == "facebook/blenderbot-90M":
            warnings.warn(
Sylvain Gugger's avatar
Sylvain Gugger committed
1260
1261
1262
                "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
                " checkpoint `facebook/small_blenderbot-90M` with"
                " `BlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')` instead.",
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
                FutureWarning,
            )
            return BlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path)

        return super(BlenderbotForConditionalGeneration, cls).from_pretrained(
            pretrained_model_name_or_path, *model_args, **kwargs
        )

    def get_encoder(self):
        return self.model.get_encoder()

    def get_decoder(self):
        return self.model.get_decoder()

    def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
        new_embeddings = super().resize_token_embeddings(new_num_tokens)
        self._resize_final_logits_bias(new_num_tokens)
        return new_embeddings

    def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
        old_num_tokens = self.final_logits_bias.shape[-1]
        if new_num_tokens <= old_num_tokens:
            new_bias = self.final_logits_bias[:, :new_num_tokens]
        else:
            extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
            new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
        self.register_buffer("final_logits_bias", new_bias)

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    @add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE)
    def forward(
        self,
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
1319
        r"""
1320
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1321
1322
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1323
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1324
1325
1326
1327
1328
1329

        Returns:
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if labels is not None:
1330
1331
1332
            if use_cache:
                logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
            use_cache = False
1333
            if decoder_input_ids is None and decoder_inputs_embeds is None:
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
1344
1345
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
1346
            cross_attn_head_mask=cross_attn_head_mask,
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return Seq2SeqLMOutput(
            loss=masked_lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )

    def prepare_inputs_for_generation(
1379
1380
        self,
        decoder_input_ids,
1381
        past_key_values=None,
1382
1383
        attention_mask=None,
        head_mask=None,
1384
1385
        decoder_head_mask=None,
        cross_attn_head_mask=None,
1386
1387
1388
        use_cache=None,
        encoder_outputs=None,
        **kwargs
1389
1390
    ):
        # cut decoder_input_ids if past is used
1391
        if past_key_values is not None:
1392
1393
1394
1395
1396
            decoder_input_ids = decoder_input_ids[:, -1:]

        return {
            "input_ids": None,  # encoder_outputs is defined. input_ids not needed
            "encoder_outputs": encoder_outputs,
1397
            "past_key_values": past_key_values,
1398
1399
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
1400
            "head_mask": head_mask,
1401
1402
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
1403
1404
            "use_cache": use_cache,  # change this to avoid caching (presumably for debugging)
        }
Sam Shleifer's avatar
Sam Shleifer committed
1405

1406
1407
1408
1409
1410
1411
1412
1413
1414
    @staticmethod
    def _reorder_cache(past, beam_idx):
        reordered_past = ()
        for layer_past in past:
            # cached cross_attention states don't have to be reordered -> they are always the same
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
            )
        return reordered_past
1415
1416
1417
1418
1419
1420


# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Blenderbot
class BlenderbotDecoderWrapper(BlenderbotPreTrainedModel):
    """
    This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
1421
    used in combination with the [`EncoderDecoderModel`] framework.
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
    """

    def __init__(self, config):
        super().__init__(config)
        self.decoder = BlenderbotDecoder(config)

    def forward(self, *args, **kwargs):
        return self.decoder(*args, **kwargs)


1432
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Blenderbot, facebook/bart-base->facebook/blenderbot-400M-distill
1433
class BlenderbotForCausalLM(BlenderbotPreTrainedModel):
1434
1435
    _keys_to_ignore_on_load_missing = ["lm_head.weight"]

1436
1437
1438
1439
    def __init__(self, config):
        config = copy.deepcopy(config)
        config.is_decoder = True
        config.is_encoder_decoder = False
1440
        super().__init__(config)
1441
1442
1443
1444
        self.model = BlenderbotDecoderWrapper(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

1445
1446
        # Initialize weights and apply final processing
        self.post_init()
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468

    def get_input_embeddings(self):
        return self.model.decoder.embed_tokens

    def set_input_embeddings(self, value):
        self.model.decoder.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model.decoder = decoder

    def get_decoder(self):
        return self.model.decoder

    @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
1483
1484
        r"""
        Args:
1485
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1486
1487
1488
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

Sylvain Gugger's avatar
Sylvain Gugger committed
1489
1490
                Indices can be obtained using [`BlenderbotTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.
1491

1492
1493
1494
                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1495
1496
1497
1498

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

1499
1500
                [What are attention masks?](../glossary#attention-mask)
            encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1501
1502
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                if the model is configured as a decoder.
1503
            encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1504
                Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
1505
1506
1507
                in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
            head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
1508
1509

                - 1 indicates the head is **not masked**,
1510
                - 0 indicates the head is **masked**.
1511

1512
1513
            cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
1514
1515

                - 1 indicates the head is **not masked**,
1516
                - 0 indicates the head is **masked**.
1517

1518
            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1519
1520
1521
1522
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
                tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
1523
1524

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
Sylvain Gugger's avatar
Sylvain Gugger committed
1525
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
1526

Sylvain Gugger's avatar
Sylvain Gugger committed
1527
1528
1529
                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1530
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1531
1532
1533
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1534
            use_cache (`bool`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1535
1536
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
1537
1538
1539

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.
1540
1541
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1542
                returned tensors for more detail.
1543
1544
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
1545
                for more detail.
1546
            return_dict (`bool`, *optional*):
1547
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1548
1549
1550

        Returns:

1551
        Example:
1552

1553
1554
        ```python
        >>> from transformers import BlenderbotTokenizer, BlenderbotForCausalLM
1555

1556
1557
1558
1559
        >>> tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
        >>> model = BlenderbotForCausalLM.from_pretrained(
        ...     "facebook/blenderbot-400M-distill", add_cross_attention=False
        ... )
1560
1561
1562
        >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs)
1563

1564
        >>> logits = outputs.logits
1565
1566
1567
        >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
        >>> list(logits.shape) == expected_shape
        True
1568
        ```"""
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model.decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            head_mask=head_mask,
1583
            cross_attn_head_mask=cross_attn_head_mask,
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = self.lm_head(outputs[0])

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )

1612
1613
1614
    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
    ):
1615
1616
1617
1618
        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        if attention_mask is None:
            attention_mask = input_ids.new_ones(input_ids.shape)

1619
        if past_key_values:
1620
1621
1622
1623
1624
            input_ids = input_ids[:, -1:]
        # first step, decoder_cached_states are empty
        return {
            "input_ids": input_ids,  # encoder_outputs is defined. input_ids not needed
            "attention_mask": attention_mask,
1625
            "past_key_values": past_key_values,
1626
1627
1628
1629
1630
1631
1632
1633
1634
            "use_cache": use_cache,
        }

    @staticmethod
    def _reorder_cache(past, beam_idx):
        reordered_past = ()
        for layer_past in past:
            reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
        return reordered_past