modeling_blenderbot.py 74.3 KB
Newer Older
Sam Shleifer's avatar
Sam Shleifer committed
1
# coding=utf-8
2
# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
Sam Shleifer's avatar
Sam Shleifer committed
3
#
4
# Licensed under the Apache License, Version 2.0 (the "License");
Sam Shleifer's avatar
Sam Shleifer committed
5
6
7
8
9
10
11
12
13
14
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" PyTorch Blenderbot model."""
16
17


18
import copy
19
20
21
22
import math
import os
import random
import warnings
23
from typing import List, Optional, Tuple, Union
Sam Shleifer's avatar
Sam Shleifer committed
24
25

import torch
26
import torch.utils.checkpoint
27
28
from torch import nn
from torch.nn import CrossEntropyLoss
Sam Shleifer's avatar
Sam Shleifer committed
29

30
31
32
33
from ...activations import ACT2FN
from ...modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPastAndCrossAttentions,
34
    CausalLMOutputWithCrossAttentions,
35
36
37
38
    Seq2SeqLMOutput,
    Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
39
40
41
42
43
44
45
from ...utils import (
    add_end_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
46
from ..blenderbot_small import BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel
Sam Shleifer's avatar
Sam Shleifer committed
47
48
49
from .configuration_blenderbot import BlenderbotConfig


50
51
52
53
logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "BlenderbotConfig"
_TOKENIZER_FOR_DOC = "BlenderbotTokenizer"
54
_CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill"
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71


BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "facebook/blenderbot-3B",
    # See all Blenderbot models at https://huggingface.co/models?filter=blenderbot
]


# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
    """
    Shift input ids one token to the right.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    shifted_input_ids[:, 0] = decoder_start_token_id

72
73
    if pad_token_id is None:
        raise ValueError("self.model.config.pad_token_id has to be defined.")
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids


# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), float("-inf"))
    mask_cond = torch.arange(mask.size(-1))
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min)


class BlenderbotLearnedPositionalEmbedding(nn.Embedding):
    """
    This module learns positional embeddings up to a fixed maximum size.
    """

116
117
    def __init__(self, num_embeddings: int, embedding_dim: int):
        super().__init__(num_embeddings, embedding_dim)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

    def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
        """`input_ids_shape` is expected to be [bsz x seqlen]."""
        bsz, seq_len = input_ids_shape[:2]
        positions = torch.arange(
            past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
        )
        return super().forward(positions)


# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Blenderbot
class BlenderbotAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
145
146
147
148
149
150

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
151
        self.scaling = self.head_dim**-0.5
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        self.is_decoder = is_decoder

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
168
        layer_head_mask: Optional[torch.Tensor] = None,
169
170
171
172
173
174
175
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None
176
177

        bsz, tgt_len, _ = hidden_states.size()
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        # get key, value proj
        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

219
220
221
222
        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
            )
223
224

        if attention_mask is not None:
225
226
227
228
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
229
230
231
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

232
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)
233

234
        if layer_head_mask is not None:
235
236
237
238
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
                )
239
240
241
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

242
        if output_attentions:
243
            # this operation is a bit awkward, but it's required to
244
            # make sure that attn_weights keeps its gradient.
245
            # In order to do so, attn_weights have to be reshaped
246
247
248
249
250
251
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

252
        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
253
254
255

        attn_output = torch.bmm(attn_probs, value_states)

256
257
258
259
        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
            )
260

261
262
        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)
263
264
265
266

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned aross GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
267
268
269
270

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped, past_key_value
Sam Shleifer's avatar
Sam Shleifer committed
271

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Blenderbot
class BlenderbotEncoderLayer(nn.Module):
    def __init__(self, config: BlenderbotConfig):
        super().__init__()
        self.embed_dim = config.d_model
        self.self_attn = BlenderbotAttention(
            embed_dim=self.embed_dim,
            num_heads=config.encoder_attention_heads,
            dropout=config.attention_dropout,
        )
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

291
292
293
294
295
296
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_head_mask: torch.Tensor,
        output_attentions: bool = False,
297
    ) -> torch.Tensor:
298
299
        """
        Args:
300
301
302
303
304
305
306
            hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
            attention_mask (`torch.FloatTensor`): attention mask of size
                *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
                *(encoder_attention_heads,)*.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
307
308
309
310
311
                returned tensors for more detail.
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, attn_weights, _ = self.self_attn(
312
313
314
315
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
316
        )
317
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
318
319
320
321
322
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
323
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
324
        hidden_states = self.fc2(hidden_states)
325
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
326
327
        hidden_states = residual + hidden_states

328
329
330
        if hidden_states.dtype == torch.float16 and (
            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
        ):
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Blenderbot
class BlenderbotDecoderLayer(nn.Module):
    def __init__(self, config: BlenderbotConfig):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = BlenderbotAttention(
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.encoder_attn = BlenderbotAttention(
            self.embed_dim,
            config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
376
        layer_head_mask: Optional[torch.Tensor] = None,
377
        cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
378
379
380
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = True,
381
    ) -> torch.Tensor:
382
383
        """
        Args:
384
385
386
            hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
            attention_mask (`torch.FloatTensor`): attention mask of size
                *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
Sylvain Gugger's avatar
Sylvain Gugger committed
387
388
            encoder_hidden_states (`torch.FloatTensor`):
                cross attention input to the layer of shape *(seq_len, batch, embed_dim)*
389
390
391
392
393
394
395
396
397
            encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
                *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
                *(encoder_attention_heads,)*.
            cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
                size *(decoder_attention_heads,)*.
            past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
398
399
400
401
402
403
404
405
406
407
408
409
410
                returned tensors for more detail.
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        # Self Attention
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        # add present self-attn cache to positions 1,2 of present_key_value tuple
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=self_attn_past_key_value,
            attention_mask=attention_mask,
411
            layer_head_mask=layer_head_mask,
412
413
            output_attentions=output_attentions,
        )
414
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        hidden_states = residual + hidden_states

        # Cross-Attention Block
        cross_attn_present_key_value = None
        cross_attn_weights = None
        if encoder_hidden_states is not None:
            residual = hidden_states
            hidden_states = self.encoder_attn_layer_norm(hidden_states)

            # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
                hidden_states=hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
430
                layer_head_mask=cross_attn_layer_head_mask,
431
432
433
                past_key_value=cross_attn_past_key_value,
                output_attentions=output_attentions,
            )
434
            hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
435
436
437
438
439
440
441
442
443
            hidden_states = residual + hidden_states

            # add cross-attn to positions 3,4 of present_key_value tuple
            present_key_value = present_key_value + cross_attn_present_key_value

        # Fully Connected
        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
444
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
445
        hidden_states = self.fc2(hidden_states)
446
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class BlenderbotPreTrainedModel(PreTrainedModel):
    config_class = BlenderbotConfig
    base_model_prefix = "model"
463
    supports_gradient_checkpointing = True
464
465
466
467
468
469
470
471
472
473
474
475

    def _init_weights(self, module):
        std = self.config.init_std
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

476
477
478
479
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (BlenderbotDecoder, BlenderbotEncoder)):
            module.gradient_checkpointing = value

480
481
482
483
484
485
486
487
488
489
490
491
492
    @property
    def dummy_inputs(self):
        pad_token = self.config.pad_token_id
        input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
        dummy_inputs = {
            "attention_mask": input_ids.ne(pad_token),
            "input_ids": input_ids,
            "decoder_input_ids": input_ids,
        }
        return dummy_inputs


BLENDERBOT_START_DOCSTRING = r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
493
494
495
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)
Sam Shleifer's avatar
Sam Shleifer committed
496

Sylvain Gugger's avatar
Sylvain Gugger committed
497
498
499
    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.
Sam Shleifer's avatar
Sam Shleifer committed
500

501
    Parameters:
502
        config ([`BlenderbotConfig`]):
503
504
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
505
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
Sam Shleifer's avatar
Sam Shleifer committed
506
507
"""

508
BLENDERBOT_GENERATION_EXAMPLE = r"""
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    Conversation example:

    ```python
    >>> from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration

    >>> mname = "facebook/blenderbot-400M-distill"
    >>> model = BlenderbotForConditionalGeneration.from_pretrained(mname)
    >>> tokenizer = BlenderbotTokenizer.from_pretrained(mname)
    >>> UTTERANCE = "My friends are cool but they eat too many carbs."
    >>> print("Human: ", UTTERANCE)
    Human:  My friends are cool but they eat too many carbs.

    >>> inputs = tokenizer([UTTERANCE], return_tensors="pt")
    >>> reply_ids = model.generate(**inputs)
    >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
    Bot: That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?

    >>> REPLY = "I'm not sure"
    >>> print("Human: ", REPLY)
    Human: I'm not sure

    >>> NEXT_UTTERANCE = (
    ...     "My friends are cool but they eat too many carbs.</s> <s>That's unfortunate. "
    ...     "Are they trying to lose weight or are they just trying to be healthier?</s> "
    ...     "<s> I'm not sure."
    ... )
    >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="pt")
    >>> next_reply_ids = model.generate(**inputs)
    >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
    Bot:   That's too bad. Have you tried encouraging them to change their eating habits?
    ```
540
541
542
543
"""

BLENDERBOT_INPUTS_DOCSTRING = r"""
    Args:
544
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
545
546
547
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

Sylvain Gugger's avatar
Sylvain Gugger committed
548
549
            Indices can be obtained using [`BlenderbotTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.
550

551
552
553
            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
554
555
556
557

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

558
559
            [What are attention masks?](../glossary#attention-mask)
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
560
561
            Indices of decoder input sequence tokens in the vocabulary.

Sylvain Gugger's avatar
Sylvain Gugger committed
562
563
            Indices can be obtained using [`BlenderbotTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.
564

565
            [What are decoder input IDs?](../glossary#decoder-input-ids)
566

567
568
569
570
            Blenderbot uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
            `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).
        decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
571
572
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.
573
574
        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
575
576

            - 1 indicates the head is **not masked**,
577
            - 0 indicates the head is **masked**.
578

579
580
        decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
581
582
583
584

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

585
        cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
586
587
            Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
            1]`:
588
589
590
591

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

592
        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
593
594
595
            Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
            hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
596
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
597
598
599
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
600
601

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
602
603
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

Sylvain Gugger's avatar
Sylvain Gugger committed
604
605
            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
606
607
608
609
            `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape
            `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you
            can choose to directly pass an embedded representation. This is useful if you want more control over how to
            convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
610
611
        decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
Sylvain Gugger's avatar
Sylvain Gugger committed
612
613
            representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
            input (see `past_key_values`). This is useful if you want more control over how to convert
614
615
            `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.

Sylvain Gugger's avatar
Sylvain Gugger committed
616
617
            If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
            of `inputs_embeds`.
618
        use_cache (`bool`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
619
620
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
621
622
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
623
            tensors for more detail.
624
625
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
626
            more detail.
627
        return_dict (`bool`, *optional*):
628
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
629
630
631
632
633
634
"""


class BlenderbotEncoder(BlenderbotPreTrainedModel):
    """
    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
635
    [`BlenderbotEncoderLayer`].
636
637
638

    Args:
        config: BlenderbotConfig
639
        embed_tokens (nn.Embedding): output embedding
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    """

    def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)

        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop

        embed_dim = config.d_model
        self.padding_idx = config.pad_token_id
        self.max_source_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)

        self.embed_positions = BlenderbotLearnedPositionalEmbedding(
            config.max_position_embeddings,
            embed_dim,
        )
        self.layers = nn.ModuleList([BlenderbotEncoderLayer(config) for _ in range(config.encoder_layers)])
        self.layer_norm = nn.LayerNorm(config.d_model)

665
        self.gradient_checkpointing = False
666
667
        # Initialize weights and apply final processing
        self.post_init()
668
669
670
671
672

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
673
        head_mask=None,
674
675
676
677
678
679
680
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
681
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
682
683
684
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

Sylvain Gugger's avatar
Sylvain Gugger committed
685
686
                Indices can be obtained using [`BlenderbotTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.
687

688
689
690
                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
691
692
693
694

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

695
696
697
                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
698
699

                - 1 indicates the head is **not masked**,
700
                - 0 indicates the head is **masked**.
701

702
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
703
704
705
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
706
707
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
708
                returned tensors for more detail.
709
710
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
711
                for more detail.
712
            return_dict (`bool`, *optional*):
713
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

        embed_pos = self.embed_positions(input_shape)

        hidden_states = inputs_embeds + embed_pos
738
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
739
740
741
742
743
744
745
746

        # expand attention_mask
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
747
748
749

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
750
751
752
753
            if head_mask.size()[0] != len(self.layers):
                raise ValueError(
                    f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
                )
754
        for idx, encoder_layer in enumerate(self.layers):
755
756
757
758
759
760
761
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):  # skip the layer
                layer_outputs = (None, None)
            else:
762
                if self.gradient_checkpointing and self.training:
763
764
765
766
767
768
769
770
771
772
773

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs, output_attentions)

                        return custom_forward

                    layer_outputs = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(encoder_layer),
                        hidden_states,
                        attention_mask,
774
                        (head_mask[idx] if head_mask is not None else None),
775
776
                    )
                else:
777
778
779
780
781
782
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                        output_attentions=output_attentions,
                    )
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803

                hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        # add final layer norm
        hidden_states = self.layer_norm(hidden_states)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


class BlenderbotDecoder(BlenderbotPreTrainedModel):
    """
804
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotDecoderLayer`]
805
806
807

    Args:
        config: BlenderbotConfig
808
        embed_tokens (nn.Embedding): output embedding
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
    """

    def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.decoder_layerdrop
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)

        self.embed_positions = BlenderbotLearnedPositionalEmbedding(
            config.max_position_embeddings,
            config.d_model,
        )
        self.layers = nn.ModuleList([BlenderbotDecoderLayer(config) for _ in range(config.decoder_layers)])
        self.layer_norm = nn.LayerNorm(config.d_model)

831
        self.gradient_checkpointing = False
832
833
        # Initialize weights and apply final processing
        self.post_init()
834

835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
            ).to(self.device)

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

860
861
862
863
864
865
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
866
        head_mask=None,
867
        cross_attn_head_mask=None,
868
869
870
871
872
873
874
875
876
        past_key_values=None,
        inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
877
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
878
879
880
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

Sylvain Gugger's avatar
Sylvain Gugger committed
881
882
                Indices can be obtained using [`BlenderbotTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.
883

884
885
886
                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
887
888
889
890

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

891
892
                [What are attention masks?](../glossary#attention-mask)
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
893
894
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                of the decoder.
895
            encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
896
                Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
897
                selected in `[0, 1]`:
898
899
900
901

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

902
903
                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
904
905
                Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0,
                1]`:
906
907

                - 1 indicates the head is **not masked**,
908
                - 0 indicates the head is **masked**.
909

910
            cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
911
                Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
912
                cross-attention on hidden heads. Mask values selected in `[0, 1]`:
913
914

                - 1 indicates the head is **not masked**,
915
                - 0 indicates the head is **masked**.
916

917
            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
918
919
920
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
921
922

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
Sylvain Gugger's avatar
Sylvain Gugger committed
923
924
925
926
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
927
928
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
                shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
Sylvain Gugger's avatar
Sylvain Gugger committed
929
930
931
                `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
                control over how to convert `input_ids` indices into associated vectors than the model's internal
                embedding lookup matrix.
932
933
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
934
                returned tensors for more detail.
935
936
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
937
                for more detail.
938
            return_dict (`bool`, *optional*):
939
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

965
966
967
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask, input_shape, inputs_embeds, past_key_values_length
        )
968
969
970
971
972
973
974
975
976
977
978

        # expand encoder attention mask
        if encoder_hidden_states is not None and encoder_attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])

        # embed positions
        positions = self.embed_positions(input_shape, past_key_values_length)

        hidden_states = inputs_embeds + positions

979
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
980
981
982
983

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
984
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
985
        next_decoder_cache = () if use_cache else None
986

987
988
989
        # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
        for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
            if attn_mask is not None:
990
991
992
993
                if attn_mask.size()[0] != len(self.layers):
                    raise ValueError(
                        f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
                    )
994
995
996
997
998
999
1000
1001
1002
1003
        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):
                continue

            past_key_value = past_key_values[idx] if past_key_values is not None else None

1004
            if self.gradient_checkpointing and self.training:
1005

1006
                if use_cache:
1007
                    logger.warning(
1008
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1009
                    )
1010
                    use_cache = False
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, use_cache)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
1022
                    attention_mask,
1023
1024
                    encoder_hidden_states,
                    encoder_attention_mask,
1025
                    head_mask[idx] if head_mask is not None else None,
1026
                    cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
1027
1028
1029
1030
1031
1032
                    None,
                )
            else:

                layer_outputs = decoder_layer(
                    hidden_states,
1033
                    attention_mask=attention_mask,
1034
1035
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
1036
                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
1037
1038
1039
                    cross_attn_layer_head_mask=(
                        cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
                    ),
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )
            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)
1051
1052
1053

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

        # add final layer norm
        hidden_states = self.layer_norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )
Sam Shleifer's avatar
Sam Shleifer committed
1076
1077
1078


@add_start_docstrings(
1079
1080
    "The bare Blenderbot Model outputting raw hidden-states without any specific head on top.",
    BLENDERBOT_START_DOCSTRING,
1081
)
1082
1083
1084
class BlenderbotModel(BlenderbotPreTrainedModel):
    def __init__(self, config: BlenderbotConfig):
        super().__init__(config)
1085

1086
1087
1088
1089
1090
1091
        padding_idx, vocab_size = config.pad_token_id, config.vocab_size
        self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)

        self.encoder = BlenderbotEncoder(config, self.shared)
        self.decoder = BlenderbotDecoder(config, self.shared)

1092
1093
        # Initialize weights and apply final processing
        self.post_init()
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
        if pretrained_model_name_or_path == "facebook/blenderbot-90M":
            warnings.warn(
                "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical checkpoint `facebook/small_blenderbot-90M` with `BlenderbotSmallModel.from_pretrained('facebook/small_blenderbot-90M')` instead.",
                FutureWarning,
            )
            return BlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path)

        return super(BlenderbotModel, cls).from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, value):
        self.shared = value
        self.encoder.embed_tokens = self.shared
        self.decoder.embed_tokens = self.shared

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
1140
1141
1142
        r"""
        Returns:

1143
        Example:
1144

1145
1146
        ```python
        >>> from transformers import BlenderbotTokenizer, BlenderbotModel
1147

1148
1149
        >>> model = BlenderbotModel.from_pretrained("facebook/blenderbot-400M-distill")
        >>> tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
1150

1151
        >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
1152
        >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids  # Batch size 1
1153
        >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_input_ids)
1154

1155
        >>> last_hidden_states = outputs.last_hidden_state
1156
1157
        >>> list(last_hidden_states.shape)
        [1, 6, 1280]
1158
        ```"""
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
1170
                head_mask=head_mask,
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_outputs[0],
            encoder_attention_mask=attention_mask,
1190
            head_mask=decoder_head_mask,
1191
            cross_attn_head_mask=cross_attn_head_mask,
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
            past_key_values=past_key_values,
            inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )
1213
1214
1215


@add_start_docstrings(
1216
    "The Blenderbot Model with a language modeling head. Can be used for summarization.", BLENDERBOT_START_DOCSTRING
Sam Shleifer's avatar
Sam Shleifer committed
1217
)
1218
1219
1220
1221
1222
1223
1224
1225
class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel):
    base_model_prefix = "model"
    _keys_to_ignore_on_load_missing = [
        r"final_logits_bias",
        r"encoder\.version",
        r"decoder\.version",
        r"lm_head\.weight",
    ]
Sam Shleifer's avatar
Sam Shleifer committed
1226

1227
1228
1229
1230
1231
1232
    def __init__(self, config: BlenderbotConfig):
        super().__init__(config)
        self.model = BlenderbotModel(config)
        self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
        self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)

1233
1234
        # Initialize weights and apply final processing
        self.post_init()
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
        if pretrained_model_name_or_path == "facebook/blenderbot-90M":
            warnings.warn(
                "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical checkpoint `facebook/small_blenderbot-90M` with `BlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')` instead.",
                FutureWarning,
            )
            return BlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path)

        return super(BlenderbotForConditionalGeneration, cls).from_pretrained(
            pretrained_model_name_or_path, *model_args, **kwargs
        )

    def get_encoder(self):
        return self.model.get_encoder()

    def get_decoder(self):
        return self.model.get_decoder()

    def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
        new_embeddings = super().resize_token_embeddings(new_num_tokens)
        self._resize_final_logits_bias(new_num_tokens)
        return new_embeddings

    def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
        old_num_tokens = self.final_logits_bias.shape[-1]
        if new_num_tokens <= old_num_tokens:
            new_bias = self.final_logits_bias[:, :new_num_tokens]
        else:
            extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
            new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
        self.register_buffer("final_logits_bias", new_bias)

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    @add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE)
    def forward(
        self,
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
1297
        r"""
1298
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1299
1300
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1301
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1302
1303
1304
1305
1306
1307

        Returns:
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if labels is not None:
1308
1309
1310
            if use_cache:
                logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
            use_cache = False
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
            if decoder_input_ids is None:
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
1322
1323
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
1324
            cross_attn_head_mask=cross_attn_head_mask,
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return Seq2SeqLMOutput(
            loss=masked_lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )

    def prepare_inputs_for_generation(
1357
1358
1359
1360
1361
        self,
        decoder_input_ids,
        past=None,
        attention_mask=None,
        head_mask=None,
1362
1363
        decoder_head_mask=None,
        cross_attn_head_mask=None,
1364
1365
1366
        use_cache=None,
        encoder_outputs=None,
        **kwargs
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
    ):
        # cut decoder_input_ids if past is used
        if past is not None:
            decoder_input_ids = decoder_input_ids[:, -1:]

        return {
            "input_ids": None,  # encoder_outputs is defined. input_ids not needed
            "encoder_outputs": encoder_outputs,
            "past_key_values": past,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
1378
            "head_mask": head_mask,
1379
1380
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
1381
1382
            "use_cache": use_cache,  # change this to avoid caching (presumably for debugging)
        }
Sam Shleifer's avatar
Sam Shleifer committed
1383

1384
1385
1386
1387
1388
1389
1390
1391
1392
    @staticmethod
    def _reorder_cache(past, beam_idx):
        reordered_past = ()
        for layer_past in past:
            # cached cross_attention states don't have to be reordered -> they are always the same
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
            )
        return reordered_past
1393
1394
1395
1396
1397
1398


# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Blenderbot
class BlenderbotDecoderWrapper(BlenderbotPreTrainedModel):
    """
    This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
1399
    used in combination with the [`EncoderDecoderModel`] framework.
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
    """

    def __init__(self, config):
        super().__init__(config)
        self.decoder = BlenderbotDecoder(config)

    def forward(self, *args, **kwargs):
        return self.decoder(*args, **kwargs)


1410
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Blenderbot, facebook/bart-base->facebook/blenderbot-400M-distill
1411
1412
1413
1414
1415
class BlenderbotForCausalLM(BlenderbotPreTrainedModel):
    def __init__(self, config):
        config = copy.deepcopy(config)
        config.is_decoder = True
        config.is_encoder_decoder = False
1416
        super().__init__(config)
1417
1418
1419
1420
        self.model = BlenderbotDecoderWrapper(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

1421
1422
        # Initialize weights and apply final processing
        self.post_init()
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444

    def get_input_embeddings(self):
        return self.model.decoder.embed_tokens

    def set_input_embeddings(self, value):
        self.model.decoder.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model.decoder = decoder

    def get_decoder(self):
        return self.model.decoder

    @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
1459
1460
        r"""
        Args:
1461
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1462
1463
1464
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

Sylvain Gugger's avatar
Sylvain Gugger committed
1465
1466
                Indices can be obtained using [`BlenderbotTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.
1467

1468
1469
1470
                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1471
1472
1473
1474

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

1475
1476
                [What are attention masks?](../glossary#attention-mask)
            encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1477
1478
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                if the model is configured as a decoder.
1479
            encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1480
                Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
1481
1482
1483
                in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
            head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
1484
1485

                - 1 indicates the head is **not masked**,
1486
                - 0 indicates the head is **masked**.
1487

1488
1489
            cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
1490
1491

                - 1 indicates the head is **not masked**,
1492
                - 0 indicates the head is **masked**.
1493

1494
            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1495
1496
1497
1498
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
                tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
1499
1500

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
Sylvain Gugger's avatar
Sylvain Gugger committed
1501
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
1502

Sylvain Gugger's avatar
Sylvain Gugger committed
1503
1504
1505
                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1506
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1507
1508
1509
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1510
            use_cache (`bool`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1511
1512
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
1513
1514
1515

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.
1516
1517
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1518
                returned tensors for more detail.
1519
1520
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
1521
                for more detail.
1522
            return_dict (`bool`, *optional*):
1523
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1524
1525
1526

        Returns:

1527
        Example:
1528

1529
1530
        ```python
        >>> from transformers import BlenderbotTokenizer, BlenderbotForCausalLM
1531

1532
1533
1534
1535
        >>> tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
        >>> model = BlenderbotForCausalLM.from_pretrained(
        ...     "facebook/blenderbot-400M-distill", add_cross_attention=False
        ... )
1536
1537
1538
        >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs)
1539

1540
        >>> logits = outputs.logits
1541
1542
1543
        >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
        >>> list(logits.shape) == expected_shape
        True
1544
        ```"""
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model.decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            head_mask=head_mask,
1559
            cross_attn_head_mask=cross_attn_head_mask,
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = self.lm_head(outputs[0])

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )

    def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, use_cache=None, **kwargs):
        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        if attention_mask is None:
            attention_mask = input_ids.new_ones(input_ids.shape)

        if past:
            input_ids = input_ids[:, -1:]
        # first step, decoder_cached_states are empty
        return {
            "input_ids": input_ids,  # encoder_outputs is defined. input_ids not needed
            "attention_mask": attention_mask,
            "past_key_values": past,
            "use_cache": use_cache,
        }

    @staticmethod
    def _reorder_cache(past, beam_idx):
        reordered_past = ()
        for layer_past in past:
            reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
        return reordered_past