Unverified Commit 32eb29fe authored by Yih-Dar's avatar Yih-Dar Committed by GitHub
Browse files

Fix doc examples: modify config before super().__init__ (#14697)


Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
parent 48bf7e47
...@@ -1662,10 +1662,10 @@ class BartDecoderWrapper(BartPretrainedModel): ...@@ -1662,10 +1662,10 @@ class BartDecoderWrapper(BartPretrainedModel):
class BartForCausalLM(BartPretrainedModel): class BartForCausalLM(BartPretrainedModel):
def __init__(self, config): def __init__(self, config):
super().__init__(config)
config = copy.deepcopy(config) config = copy.deepcopy(config)
config.is_decoder = True config.is_decoder = True
config.is_encoder_decoder = False config.is_encoder_decoder = False
super().__init__(config)
self.model = BartDecoderWrapper(config) self.model = BartDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
......
...@@ -2865,10 +2865,10 @@ class BigBirdPegasusDecoderWrapper(BigBirdPegasusPreTrainedModel): ...@@ -2865,10 +2865,10 @@ class BigBirdPegasusDecoderWrapper(BigBirdPegasusPreTrainedModel):
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BigBirdPegasus, 'facebook/bart-large'->"google/bigbird-pegasus-large-arxiv" # Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BigBirdPegasus, 'facebook/bart-large'->"google/bigbird-pegasus-large-arxiv"
class BigBirdPegasusForCausalLM(BigBirdPegasusPreTrainedModel): class BigBirdPegasusForCausalLM(BigBirdPegasusPreTrainedModel):
def __init__(self, config): def __init__(self, config):
super().__init__(config)
config = copy.deepcopy(config) config = copy.deepcopy(config)
config.is_decoder = True config.is_decoder = True
config.is_encoder_decoder = False config.is_encoder_decoder = False
super().__init__(config)
self.model = BigBirdPegasusDecoderWrapper(config) self.model = BigBirdPegasusDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
......
...@@ -1400,10 +1400,10 @@ class BlenderbotDecoderWrapper(BlenderbotPreTrainedModel): ...@@ -1400,10 +1400,10 @@ class BlenderbotDecoderWrapper(BlenderbotPreTrainedModel):
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Blenderbot # Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Blenderbot
class BlenderbotForCausalLM(BlenderbotPreTrainedModel): class BlenderbotForCausalLM(BlenderbotPreTrainedModel):
def __init__(self, config): def __init__(self, config):
super().__init__(config)
config = copy.deepcopy(config) config = copy.deepcopy(config)
config.is_decoder = True config.is_decoder = True
config.is_encoder_decoder = False config.is_encoder_decoder = False
super().__init__(config)
self.model = BlenderbotDecoderWrapper(config) self.model = BlenderbotDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
......
...@@ -1374,10 +1374,10 @@ class BlenderbotSmallDecoderWrapper(BlenderbotSmallPreTrainedModel): ...@@ -1374,10 +1374,10 @@ class BlenderbotSmallDecoderWrapper(BlenderbotSmallPreTrainedModel):
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BlenderbotSmall # Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BlenderbotSmall
class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel): class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel):
def __init__(self, config): def __init__(self, config):
super().__init__(config)
config = copy.deepcopy(config) config = copy.deepcopy(config)
config.is_decoder = True config.is_decoder = True
config.is_encoder_decoder = False config.is_encoder_decoder = False
super().__init__(config)
self.model = BlenderbotSmallDecoderWrapper(config) self.model = BlenderbotSmallDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
......
...@@ -1397,10 +1397,10 @@ class MarianDecoderWrapper(MarianPreTrainedModel): ...@@ -1397,10 +1397,10 @@ class MarianDecoderWrapper(MarianPreTrainedModel):
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Marian # Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Marian
class MarianForCausalLM(MarianPreTrainedModel): class MarianForCausalLM(MarianPreTrainedModel):
def __init__(self, config): def __init__(self, config):
super().__init__(config)
config = copy.deepcopy(config) config = copy.deepcopy(config)
config.is_decoder = True config.is_decoder = True
config.is_encoder_decoder = False config.is_encoder_decoder = False
super().__init__(config)
self.model = MarianDecoderWrapper(config) self.model = MarianDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
......
...@@ -1665,10 +1665,10 @@ class MBartDecoderWrapper(MBartPreTrainedModel): ...@@ -1665,10 +1665,10 @@ class MBartDecoderWrapper(MBartPreTrainedModel):
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->MBart # Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->MBart
class MBartForCausalLM(MBartPreTrainedModel): class MBartForCausalLM(MBartPreTrainedModel):
def __init__(self, config): def __init__(self, config):
super().__init__(config)
config = copy.deepcopy(config) config = copy.deepcopy(config)
config.is_decoder = True config.is_decoder = True
config.is_encoder_decoder = False config.is_encoder_decoder = False
super().__init__(config)
self.model = MBartDecoderWrapper(config) self.model = MBartDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
......
...@@ -1486,10 +1486,10 @@ class PegasusDecoderWrapper(PegasusPreTrainedModel): ...@@ -1486,10 +1486,10 @@ class PegasusDecoderWrapper(PegasusPreTrainedModel):
class PegasusForCausalLM(PegasusPreTrainedModel): class PegasusForCausalLM(PegasusPreTrainedModel):
def __init__(self, config): def __init__(self, config):
super().__init__(config)
config = copy.deepcopy(config) config = copy.deepcopy(config)
config.is_decoder = True config.is_decoder = True
config.is_encoder_decoder = False config.is_encoder_decoder = False
super().__init__(config)
self.model = PegasusDecoderWrapper(config) self.model = PegasusDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
......
...@@ -744,10 +744,10 @@ class Speech2Text2DecoderWrapper(Speech2Text2PreTrainedModel): ...@@ -744,10 +744,10 @@ class Speech2Text2DecoderWrapper(Speech2Text2PreTrainedModel):
) )
class Speech2Text2ForCausalLM(Speech2Text2PreTrainedModel): class Speech2Text2ForCausalLM(Speech2Text2PreTrainedModel):
def __init__(self, config): def __init__(self, config):
super().__init__(config)
config = copy.deepcopy(config) config = copy.deepcopy(config)
config.is_decoder = True config.is_decoder = True
config.is_encoder_decoder = False config.is_encoder_decoder = False
super().__init__(config)
self.model = Speech2Text2DecoderWrapper(config) self.model = Speech2Text2DecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
......
...@@ -777,10 +777,10 @@ class TrOCRDecoderWrapper(TrOCRPreTrainedModel): ...@@ -777,10 +777,10 @@ class TrOCRDecoderWrapper(TrOCRPreTrainedModel):
) )
class TrOCRForCausalLM(TrOCRPreTrainedModel): class TrOCRForCausalLM(TrOCRPreTrainedModel):
def __init__(self, config): def __init__(self, config):
super().__init__(config)
config = copy.deepcopy(config) config = copy.deepcopy(config)
config.is_decoder = True config.is_decoder = True
config.is_encoder_decoder = False config.is_encoder_decoder = False
super().__init__(config)
self.model = TrOCRDecoderWrapper(config) self.model = TrOCRDecoderWrapper(config)
self.output_projection = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.output_projection = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
......
...@@ -3173,10 +3173,10 @@ class {{cookiecutter.camelcase_modelname}}DecoderWrapper({{cookiecutter.camelcas ...@@ -3173,10 +3173,10 @@ class {{cookiecutter.camelcase_modelname}}DecoderWrapper({{cookiecutter.camelcas
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->{{cookiecutter.camelcase_modelname}} # Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}ForCausalLM({{cookiecutter.camelcase_modelname}}PreTrainedModel): class {{cookiecutter.camelcase_modelname}}ForCausalLM({{cookiecutter.camelcase_modelname}}PreTrainedModel):
def __init__(self, config): def __init__(self, config):
super().__init__(config)
config = copy.deepcopy(config) config = copy.deepcopy(config)
config.is_decoder = True config.is_decoder = True
config.is_encoder_decoder = False config.is_encoder_decoder = False
super().__init__(config)
self.model = {{cookiecutter.camelcase_modelname}}DecoderWrapper(config) self.model = {{cookiecutter.camelcase_modelname}}DecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment