Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
96cd5bcb
"git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "1c542df7e554a2014051dd09becf60f157fed524"
Unverified
Commit
96cd5bcb
authored
Mar 22, 2022
by
ivanllt
Committed by
GitHub
Mar 21, 2022
Browse files
added type hints for blenderbot and blenderbot_small (#16307)
parent
e226a24f
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
135 additions
and
135 deletions
+135
-135
src/transformers/models/blenderbot/modeling_blenderbot.py
src/transformers/models/blenderbot/modeling_blenderbot.py
+33
-33
src/transformers/models/blenderbot/modeling_tf_blenderbot.py
src/transformers/models/blenderbot/modeling_tf_blenderbot.py
+35
-35
src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
...mers/models/blenderbot_small/modeling_blenderbot_small.py
+33
-33
src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
...s/models/blenderbot_small/modeling_tf_blenderbot_small.py
+34
-34
No files found.
src/transformers/models/blenderbot/modeling_blenderbot.py
View file @
96cd5bcb
...
@@ -1119,22 +1119,22 @@ class BlenderbotModel(BlenderbotPreTrainedModel):
...
@@ -1119,22 +1119,22 @@ class BlenderbotModel(BlenderbotPreTrainedModel):
@
replace_return_docstrings
(
output_type
=
Seq2SeqModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
Seq2SeqModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
decoder_input_ids
=
None
,
decoder_input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
decoder_attention_mask
=
None
,
decoder_attention_mask
:
Optional
[
torch
.
LongTensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
decoder_head_mask
=
None
,
decoder_head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
cross_attn_head_mask
=
None
,
cross_attn_head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
encoder_outputs
=
None
,
encoder_outputs
:
Optional
[
Union
[
Tuple
,
BaseModelOutput
]]
=
None
,
past_key_values
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
decoder_inputs_embeds
=
None
,
decoder_inputs_embeds
:
Optional
[
torch
.
FloatTensor
]
=
None
,
use_cache
=
None
,
use_cache
:
Optional
[
bool
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
[
torch
.
FloatTensor
],
Seq2SeqModelOutput
]
:
r
"""
r
"""
Returns:
Returns:
...
@@ -1275,23 +1275,23 @@ class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel):
...
@@ -1275,23 +1275,23 @@ class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel):
@
add_end_docstrings
(
BLENDERBOT_GENERATION_EXAMPLE
)
@
add_end_docstrings
(
BLENDERBOT_GENERATION_EXAMPLE
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
decoder_input_ids
=
None
,
decoder_input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
decoder_attention_mask
=
None
,
decoder_attention_mask
:
Optional
[
torch
.
LongTensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
decoder_head_mask
=
None
,
decoder_head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
cross_attn_head_mask
=
None
,
cross_attn_head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
encoder_outputs
=
None
,
encoder_outputs
:
Optional
[
Union
[
Tuple
,
BaseModelOutput
]]
=
None
,
past_key_values
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
decoder_inputs_embeds
=
None
,
decoder_inputs_embeds
:
Optional
[
torch
.
FloatTensor
]
=
None
,
labels
=
None
,
labels
:
Optional
[
torch
.
LongTensor
]
=
None
,
use_cache
=
None
,
use_cache
:
Optional
[
bool
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
[
torch
.
FloatTensor
],
Seq2SeqLMOutput
]
:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
...
...
src/transformers/models/blenderbot/modeling_tf_blenderbot.py
View file @
96cd5bcb
...
@@ -18,7 +18,7 @@
...
@@ -18,7 +18,7 @@
import
os
import
os
import
random
import
random
import
warnings
import
warnings
from
typing
import
Optional
,
Tuple
,
Union
from
typing
import
List
,
Optional
,
Tuple
,
Union
import
tensorflow
as
tf
import
tensorflow
as
tf
...
@@ -1137,24 +1137,24 @@ class TFBlenderbotModel(TFBlenderbotPreTrainedModel):
...
@@ -1137,24 +1137,24 @@ class TFBlenderbotModel(TFBlenderbotPreTrainedModel):
)
)
def
call
(
def
call
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
tf
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_input_ids
=
None
,
decoder_input_ids
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_attention_mask
=
None
,
decoder_attention_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_head_mask
=
None
,
decoder_head_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
cross_attn_head_mask
=
None
,
cross_attn_head_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
encoder_outputs
:
Optional
[
Union
[
Tuple
,
TFBaseModelOutput
]]
=
None
,
encoder_outputs
:
Optional
[
Union
[
Tuple
,
TFBaseModelOutput
]]
=
None
,
past_key_values
=
None
,
past_key_values
:
Optional
[
List
[
tf
.
Tensor
]]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_inputs_embeds
=
None
,
decoder_inputs_embeds
:
Optional
[
tf
.
Tensor
]
=
None
,
use_cache
=
None
,
use_cache
:
Optional
[
bool
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
training
=
False
,
training
:
Optional
[
bool
]
=
False
,
**
kwargs
**
kwargs
):
)
->
Union
[
Tuple
[
tf
.
Tensor
],
TFSeq2SeqModelOutput
]
:
outputs
=
self
.
model
(
outputs
=
self
.
model
(
input_ids
=
input_ids
,
input_ids
=
input_ids
,
attention_mask
=
attention_mask
,
attention_mask
=
attention_mask
,
...
@@ -1253,25 +1253,25 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
...
@@ -1253,25 +1253,25 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
@
add_end_docstrings
(
BLENDERBOT_GENERATION_EXAMPLE
)
@
add_end_docstrings
(
BLENDERBOT_GENERATION_EXAMPLE
)
def
call
(
def
call
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
tf
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_input_ids
=
None
,
decoder_input_ids
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_attention_mask
=
None
,
decoder_attention_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_head_mask
=
None
,
decoder_head_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
cross_attn_head_mask
=
None
,
cross_attn_head_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
encoder_outputs
:
Optional
[
TFBaseModelOutput
]
=
None
,
encoder_outputs
:
Optional
[
Union
[
Tuple
,
TFBaseModelOutput
]
]
=
None
,
past_key_values
=
None
,
past_key_values
:
Optional
[
List
[
tf
.
Tensor
]]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_inputs_embeds
=
None
,
decoder_inputs_embeds
:
Optional
[
tf
.
Tensor
]
=
None
,
use_cache
=
None
,
use_cache
:
Optional
[
bool
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
labels
=
None
,
labels
:
Optional
[
tf
.
Tensor
]
=
None
,
training
=
False
,
training
:
Optional
[
bool
]
=
False
,
**
kwargs
,
**
kwargs
,
):
)
->
Union
[
Tuple
[
tf
.
Tensor
],
TFSeq2SeqLMOutput
]
:
r
"""
r
"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
...
...
src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
View file @
96cd5bcb
...
@@ -1102,22 +1102,22 @@ class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel):
...
@@ -1102,22 +1102,22 @@ class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel):
@
replace_return_docstrings
(
output_type
=
Seq2SeqModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
Seq2SeqModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
decoder_input_ids
=
None
,
decoder_input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
decoder_attention_mask
=
None
,
decoder_attention_mask
:
Optional
[
torch
.
LongTensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
decoder_head_mask
=
None
,
decoder_head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
cross_attn_head_mask
=
None
,
cross_attn_head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
encoder_outputs
=
None
,
encoder_outputs
:
Optional
[
Union
[
Tuple
,
BaseModelOutput
]]
=
None
,
past_key_values
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
decoder_inputs_embeds
=
None
,
decoder_inputs_embeds
:
Optional
[
torch
.
FloatTensor
]
=
None
,
use_cache
=
None
,
use_cache
:
Optional
[
bool
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
[
torch
.
FloatTensor
],
Seq2SeqModelOutput
]
:
r
"""
r
"""
Returns:
Returns:
...
@@ -1246,23 +1246,23 @@ class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel):
...
@@ -1246,23 +1246,23 @@ class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel):
@
add_end_docstrings
(
BLENDERBOT_SMALL_GENERATION_EXAMPLE
)
@
add_end_docstrings
(
BLENDERBOT_SMALL_GENERATION_EXAMPLE
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
decoder_input_ids
=
None
,
decoder_input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
decoder_attention_mask
=
None
,
decoder_attention_mask
:
Optional
[
torch
.
LongTensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
decoder_head_mask
=
None
,
decoder_head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
cross_attn_head_mask
=
None
,
cross_attn_head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
encoder_outputs
=
None
,
encoder_outputs
:
Optional
[
Union
[
Tuple
,
BaseModelOutput
]]
=
None
,
past_key_values
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
decoder_inputs_embeds
=
None
,
decoder_inputs_embeds
:
Optional
[
torch
.
FloatTensor
]
=
None
,
labels
=
None
,
labels
:
Optional
[
torch
.
LongTensor
]
=
None
,
use_cache
=
None
,
use_cache
:
Optional
[
bool
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
[
torch
.
FloatTensor
],
Seq2SeqLMOutput
]
:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
...
...
src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
View file @
96cd5bcb
...
@@ -16,7 +16,7 @@
...
@@ -16,7 +16,7 @@
import
random
import
random
from
typing
import
Optional
,
Tuple
,
Union
from
typing
import
List
,
Optional
,
Tuple
,
Union
import
numpy
as
np
import
numpy
as
np
import
tensorflow
as
tf
import
tensorflow
as
tf
...
@@ -1132,24 +1132,24 @@ class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel):
...
@@ -1132,24 +1132,24 @@ class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel):
)
)
def
call
(
def
call
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
tf
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_input_ids
=
None
,
decoder_input_ids
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_attention_mask
=
None
,
decoder_attention_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_head_mask
=
None
,
decoder_head_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
cross_attn_head_mask
=
None
,
cross_attn_head_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
encoder_outputs
:
Optional
[
Union
[
Tuple
,
TFBaseModelOutput
]]
=
None
,
encoder_outputs
:
Optional
[
Union
[
Tuple
,
TFBaseModelOutput
]]
=
None
,
past_key_values
=
None
,
past_key_values
:
Optional
[
List
[
tf
.
Tensor
]]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_inputs_embeds
=
None
,
decoder_inputs_embeds
:
Optional
[
tf
.
Tensor
]
=
None
,
use_cache
=
None
,
use_cache
:
Optional
[
bool
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
training
=
False
,
training
:
Optional
[
bool
]
=
False
,
**
kwargs
**
kwargs
):
)
->
Union
[
Tuple
[
tf
.
Tensor
],
TFSeq2SeqModelOutput
]
:
outputs
=
self
.
model
(
outputs
=
self
.
model
(
input_ids
=
input_ids
,
input_ids
=
input_ids
,
...
@@ -1236,25 +1236,25 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
...
@@ -1236,25 +1236,25 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
@
add_end_docstrings
(
BLENDERBOT_SMALL_GENERATION_EXAMPLE
)
@
add_end_docstrings
(
BLENDERBOT_SMALL_GENERATION_EXAMPLE
)
def
call
(
def
call
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
tf
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_input_ids
=
None
,
decoder_input_ids
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_attention_mask
=
None
,
decoder_attention_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_head_mask
=
None
,
decoder_head_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
cross_attn_head_mask
=
None
,
cross_attn_head_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
encoder_outputs
:
Optional
[
TFBaseModelOutput
]
=
None
,
encoder_outputs
:
Optional
[
TFBaseModelOutput
]
=
None
,
past_key_values
=
None
,
past_key_values
:
Optional
[
List
[
tf
.
Tensor
]]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
tf
.
Tensor
]
=
None
,
decoder_inputs_embeds
=
None
,
decoder_inputs_embeds
:
Optional
[
tf
.
Tensor
]
=
None
,
use_cache
=
None
,
use_cache
:
Optional
[
bool
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
labels
=
None
,
labels
:
Optional
[
tf
.
Tensor
]
=
None
,
training
=
False
,
training
:
Optional
[
bool
]
=
False
,
**
kwargs
,
**
kwargs
,
):
)
->
Union
[
Tuple
[
tf
.
Tensor
],
TFSeq2SeqLMOutput
]
:
r
"""
r
"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment