test_deepspeed.py 47 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import dataclasses
16
import io
17
import itertools
18
import json
19
20
import os
import unittest
21
from copy import deepcopy
22
from functools import partial
23

24
import datasets
25
from parameterized import parameterized
26

27
import tests.trainer.test_trainer
Stas Bekman's avatar
Stas Bekman committed
28
from tests.trainer.test_trainer import TrainerIntegrationCommon  # noqa
29
from transformers import AutoModel, TrainingArguments, is_torch_available, logging
30
from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_available, unset_hf_deepspeed_config
31
from transformers.testing_utils import (
32
    CaptureLogger,
33
    CaptureStd,
34
    CaptureStderr,
35
    LoggingLevel,
36
37
38
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
39
    mockenv_context,
40
    require_deepspeed,
41
    require_optuna,
42
43
44
45
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)
46
from transformers.trainer_utils import get_last_checkpoint, set_seed
47
from transformers.utils import WEIGHTS_NAME, is_torch_bf16_gpu_available
48

49

50
if is_torch_available():
Stas Bekman's avatar
Stas Bekman committed
51
52
53
54
    from tests.trainer.test_trainer import (  # noqa
        RegressionModelConfig,
        RegressionPreTrainedModel,
    )
55

56
57
58
    # hack to restore original logging level pre #21700
    get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info")

59

60
set_seed(42)
61

62
63
64
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"

65
T5_SMALL = "t5-small"
66
T5_TINY = "patrickvonplaten/t5-tiny-random"
67
GPT2_TINY = "sshleifer/tiny-gpt2"
68
69


70
71
72
73
74
def load_json(path):
    with open(path) as f:
        return json.load(f)


Stas Bekman's avatar
Stas Bekman committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def get_master_port(real_launcher=False):
    """
    When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
    the issue is that once the port is tied it can't be used anywhere else outside of this process,
    since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
    able to run both emulated launcher and normal launcher tests we need 2 distinct ports.

    This function will give the right port in the right context. For real launcher it'll give the
    base port, for emulated launcher it'll give the base port + 1. In both cases a string is
    returned.

    Args:
        `real_launcher`: whether a real launcher is going to be used, or the emulated one

    """

    master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    if not real_launcher:
        master_port_base = str(int(master_port_base) + 1)
    return master_port_base


97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
def require_deepspeed_aio(test_case):
    """
    Decorator marking a test that requires deepspeed aio (nvme)
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)

    import deepspeed
    from deepspeed.ops.aio import AsyncIOBuilder

    if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]:
        return unittest.skip("test requires deepspeed async-io")(test_case)
    else:
        return test_case


113
114
if is_deepspeed_available():
    from deepspeed.utils import logger as deepspeed_logger  # noqa
115
    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
116
    from transformers.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled  # noqa
117

118
119
120
121
122
123
124

def get_launcher(distributed=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
    num_gpus = min(2, get_gpu_count()) if distributed else 1
Stas Bekman's avatar
Stas Bekman committed
125
    master_port = get_master_port(real_launcher=True)
126
    return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
127
128


129
130
ZERO2 = "zero2"
ZERO3 = "zero3"
131
132
133
134

FP16 = "fp16"
BF16 = "bf16"

135
stages = [ZERO2, ZERO3]
136
if is_torch_bf16_gpu_available():
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    dtypes = [FP16, BF16]
else:
    dtypes = [FP16]


def parameterized_custom_name_func(func, param_num, param):
    # customize the test name generator function as we want both params to appear in the sub-test
    # name, as by default it shows only the first param
    param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
    return f"{func.__name__}_{param_based_name}"


# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, dtypes))
151
152


153
154
155
156
157
158
159
160
161
162
@require_deepspeed
@require_torch_gpu
class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """
    Testing non-Trainer DeepSpeed integration
    """

    def setUp(self):
        super().setUp()

Stas Bekman's avatar
Stas Bekman committed
163
        master_port = get_master_port(real_launcher=False)
164
165
166
167
168
169
170
        self.dist_env_1_gpu = {
            "MASTER_ADDR": "localhost",
            "MASTER_PORT": master_port,
            "RANK": "0",
            "LOCAL_RANK": "0",
            "WORLD_SIZE": "1",
        }
171

172
173
174
175
176
177
    def tearDown(self):
        super().tearDown()

        # reset the ds config global so that tests state doesn't leak
        unset_hf_deepspeed_config()

178
179
    def test_init_zero3_fp16(self):
        # test that zero.Init() works correctly under zero3/fp16
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        # now remove zero optimization
        del ds_config["zero_optimization"]
        dschf = HfDeepSpeedConfig(ds_config)

        self.assertFalse(dschf.is_zero3())
        self.assertFalse(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)


214
class TrainerIntegrationDeepSpeedWithCustomConfig(TestCasePlus):
215
216
    def setUp(self):
        super().setUp()
217
218
219
220
221

        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

Stas Bekman's avatar
Stas Bekman committed
222
        master_port = get_master_port(real_launcher=False)
223
224
225
226
227
228
229
        self.dist_env_1_gpu = {
            "MASTER_ADDR": "localhost",
            "MASTER_PORT": master_port,
            "RANK": "0",
            "LOCAL_RANK": "0",
            "WORLD_SIZE": "1",
        }
230

231
232
233
234
        self.ds_config_file = {
            "zero2": f"{self.test_file_dir_str}/ds_config_zero2.json",
            "zero3": f"{self.test_file_dir_str}/ds_config_zero3.json",
        }
235
236
237

        # use self.get_config_dict(stage) to use these to ensure the original is not modified
        with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
238
            config_zero2 = json.load(f)
239
        with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
240
            config_zero3 = json.load(f)
241
            # The following setting slows things down, so don't enable it by default unless needed by a test.
242
            # It's in the file as a demo for users since we want everything to work out of the box even if slower.
243
244
            config_zero3["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = False

245
246
247
248
        self.ds_config_dict = {
            "zero2": config_zero2,
            "zero3": config_zero3,
        }
249

250
251
252
253
254
255
    def tearDown(self):
        super().tearDown()

        # reset the ds config global so that tests state doesn't leak
        unset_hf_deepspeed_config()

256
257
258
    def get_config_dict(self, stage):
        # As some tests modify the dict, always make a copy
        return deepcopy(self.ds_config_dict[stage])
259

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

@require_deepspeed
@require_torch_gpu
class TrainerIntegrationDeepSpeed(TrainerIntegrationDeepSpeedWithCustomConfig, TrainerIntegrationCommon):
    """

    This class is for testing directly via get_regression_trainer

    It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
    which we can re-use here.

    Important: this class' setup can only work with a single gpu because it runs within the current
    pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.

    Note: if any of the tests of this class get run there will be at least one gpu occupied by them
    until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
    won't be released until this pytest worker exits.

    This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
    processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
    is not a bug.
    """

283
    # --- These tests are enough to run on one of zero stages --- #
284

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    def test_hf_ds_config_mismatch(self):
        ds_config = self.get_config_dict(ZERO2)

        # Purposefully configure these values to mismatch TrainingArguments values.
        # This currently doesn't cover all keys (but it could)
        per_device_train_batch_size = 2
        ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2

        ds_config["train_batch_size"] = 1000

        gradient_accumulation_steps = 2
        ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2

        max_grad_norm = 1.0
        ds_config["gradient_clipping"] = max_grad_norm + 0.1

        adam_beta1, adam_beta2 = 0.9, 0.99
        ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1]

        fp16 = True
        ds_config["fp16"]["enabled"] = not fp16

        keys = [
            "per_device_train_batch_size",
            "train_batch_size",
            "gradient_accumulation_steps",
            "max_grad_norm",
            "betas",
            "fp16",
        ]

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                local_rank=0,
                fp16=fp16,
                deepspeed=ds_config,
                per_device_train_batch_size=per_device_train_batch_size,
                gradient_accumulation_steps=gradient_accumulation_steps,
                max_grad_norm=max_grad_norm,
                adam_beta1=adam_beta1,
                adam_beta2=adam_beta2,
            )
            with self.assertRaises(Exception) as context:
                trainer.train()

        for key in keys:
            self.assertTrue(
                key in str(context.exception),
                f"{key} is not in the exception message:\n{context.exception}",
            )

336
337
338
339
340
341
342
343
344
    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
345
346
347
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
348
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
349
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
350
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
351
352
353
354
355
356
357
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
358
359
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
360
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
361
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
362
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
363
364
365
366
367
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
368
        a = 0
369
        with mockenv_context(**self.dist_env_1_gpu):
370
371
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
372
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
373
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
374
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
375
376
377
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)
378

379
    @require_deepspeed_aio
380
381
382
383
384
    def test_stage3_nvme_offload(self):
        with mockenv_context(**self.dist_env_1_gpu):
            # this actually doesn't have to be on NVMe, any storage will do since this test only
            # runs a simple check that we can use some directory as if it were NVMe
            nvme_path = self.get_auto_remove_tmp_dir()
385
            nvme_config = {"device": "nvme", "nvme_path": nvme_path}
386
387
388
            ds_config_zero3_dict = self.get_config_dict(ZERO3)
            ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config
            ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config
389
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict)
390
            with CaptureLogger(deepspeed_logger) as cl:
391
                trainer.train()
392
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    @require_optuna
    def test_hyperparameter_search(self):
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_zero3_dict = self.get_config_dict(ZERO3)

            # hyperparameter_search requires model_init() to recreate the model for each trial
            def model_init():
                config = RegressionModelConfig(a=0, b=0, double_output=False)
                model = RegressionPreTrainedModel(config)
                return model

            trainer = get_regression_trainer(
                local_rank=0,
                fp16=True,
                model_init=model_init,
                deepspeed=ds_config_zero3_dict,
            )

            n_trials = 3
            with CaptureLogger(deepspeed_logger) as cl:
                with CaptureStd() as cs:
                    trainer.hyperparameter_search(direction="maximize", n_trials=n_trials)
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
            self.assertIn(f"Trial {n_trials-1} finished with value", cs.err, "expected hyperparameter_search output")
            self.assertIn("Best is trial", cs.err, "expected hyperparameter_search output")

420
421
    # --- These tests need to run on both zero stages --- #

422
423
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_hf_optimizer_with_offload(self, stage, dtype):
424
        # non-DS optimizers can be used with ZERO-offload (as long as they have both CPU and GPU implementation (except LAMB))
425
426
427
        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
        # force cpu offload
428
        ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
429
        ds_config_dict["zero_force_ds_cpu_optimizer"] = False  # offload is not efficient w/o CPUAdam
430
        with mockenv_context(**self.dist_env_1_gpu):
431
            kwargs = {"local_rank": 0, "deepspeed": ds_config_dict}
432
433
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
434
            with CaptureLogger(deepspeed_logger) as cl:
435
                trainer.train()
436
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
437

438
439
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fake_notebook_no_launcher(self, stage, dtype):
440
441
442
443
444
        # this setup emulates a notebook where a launcher needs to be emulated by hand

        # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
        # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
        # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
445
446
        # to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger.
        with mockenv_context(**self.dist_env_1_gpu):
447
            kwargs = {"local_rank": 0, "deepspeed": self.get_config_dict(stage)}
448
449
450
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

451
            with CaptureLogger(deepspeed_logger) as cl:
452
                trainer.train()
453
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
454

455
456
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_early_get_last_lr(self, stage, dtype):
457
458
459
460
461
462
463
464
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
465
466
467
468
469
470
471
472
473
            kwargs = {
                "a": a,
                "b": b,
                "local_rank": 0,
                "train_len": 8,
                "deepspeed": self.get_config_dict(stage),
                "per_device_train_batch_size": 8,
                "logging_steps": 1,
            }
474
475
476
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

477
            trainer.train()
478
479
            post_train_a = trainer.model.a.item()

480
481
            # XXX: for some reason the following check fails with zero3/fp16 and any/bf16 - not a
            # broken but a different qualitative outcome - as if optimizer did run
482
483
484
485
            # oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere
            # print(trainer.model.a.item())
            # print(trainer.model.b.item())
            # need to investigate at some point
486
            if (stage == ZERO3 and dtype == FP16) or (dtype == BF16):
487
                return
488
489
490

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
491
            self.assertEqual(post_train_a, a)
492

493
494
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_gradient_accumulation(self, stage, dtype):
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

510
511
512
513
514
515
516
        kwargs = {
            "a": a,
            "b": b,
            "local_rank": 0,
            "train_len": train_len,
            "deepspeed": self.get_config_dict(stage),
        }
517
        kwargs[dtype] = True
518

519
520
        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
521
522
                **kwargs,
                per_device_train_batch_size=16,
523
524
525
526
527
528
529
530
531
532
533
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
534
                **kwargs,
535
                per_device_train_batch_size=4,
536
                gradient_accumulation_steps=4,
537
538
539
540
541
542
543
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

544
545
546
547
        # training with half the batch size but accumulation steps as 2 should give the same
        # weights, but sometimes get a slight difference still of 1e-6
        self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5)
        self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5)
548
549

        # see the note above how to get identical loss on a small bs
550
        self.assertAlmostEqual(no_grad_accum_loss, yes_grad_accum_loss, places=2)
551

552
    def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage, dtype):
553
554
555
        # adapted from TrainerIntegrationCommon.check_saved_checkpoints

        file_list = [WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]
556
557
558
559
560
561
562
563

        if stage == ZERO2:
            ds_file_list = ["mp_rank_00_model_states.pt"]
        elif stage == ZERO3:
            ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
        else:
            raise ValueError(f"unknown stage {stage}")

564
565
        if dtype == "bf16":
            ds_file_list.append("bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt")
566
567
568

        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
569
            self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
570
571
572

            # common files
            for filename in file_list:
573
574
                path = os.path.join(checkpoint, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
575
576
577
578
579
580

            # ds files
            ds_path = os.path.join(checkpoint, f"global_step{step}")
            for filename in ds_file_list:
                # filename = os.path.join(path, filename)
                # print(filename)
581
582
                path = os.path.join(ds_path, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
583

584
585
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_save_checkpoints(self, stage, dtype):
586
587
        # adapted from  TrainerIntegrationTest.test_save_checkpoints

588
        freq = 5
589
        output_dir = self.get_auto_remove_tmp_dir()
590
        ds_config_dict = self.get_config_dict(stage)
591
592
593
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
594
        if stage == ZERO3:
595
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
596
597
598

        # save checkpoints
        with mockenv_context(**self.dist_env_1_gpu):
599
600
601
602
603
            kwargs = {
                "output_dir": output_dir,
                "save_steps": freq,
                "deepspeed": ds_config_dict,
            }
604
605
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
606
607
608
            trainer.train()

        total = int(self.n_epochs * 64 / self.batch_size)
609
        self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage, dtype)
610

611
612
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_can_resume_training_errors(self, stage, dtype):
613
614
615
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = self.get_config_dict(stage)
            output_dir = self.get_auto_remove_tmp_dir()
616
            kwargs = {"output_dir": output_dir, "deepspeed": ds_config_dict}
617
618
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
619
620
621
622
623
624
625
626

            # 1. fail to find any checkpoint - due a fresh output_dir
            with self.assertRaises(Exception) as context:
                trainer.train(resume_from_checkpoint=True)
            self.assertTrue(
                "No valid checkpoint found in output directory" in str(context.exception),
                f"got exception: {context.exception}",
            )
627

628
629
630
631
632
633
634
635
            # 2. fail to find a bogus checkpoint
            with self.assertRaises(Exception) as context:
                checkpoint = os.path.join(output_dir, "checkpoint-5")
                trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
            self.assertTrue(
                "Can't find a valid checkpoint at" in str(context.exception), f"got exception: {context.exception}"
            )

636
637
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_can_resume_training_normal(self, stage, dtype):
638
639
        # adapted from TrainerIntegrationTest.test_can_resume_training
        # test normal resume for each stage separately, error-handling is tested in a different test
640
        output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
641
        ds_config_dict = self.get_config_dict(stage)
642
643
644
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
645
        if stage == ZERO3:
646
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
647

648
649
650
651
652
653
654
        kwargs = {
            "output_dir": output_dir,
            "train_len": 128,
            "save_steps": 5,
            "learning_rate": 0.1,
            "deepspeed": ds_config_dict,
        }
655
        kwargs[dtype] = True
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(output_dir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(output_dir, "checkpoint-15")

            # Reinitialize trainer and load model
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

688
689
690
691
692
            # Finally, should be able to resume with the same trainer/same deepspeed engine instance
            # XXX: but currently this not possible due DS bug: https://github.com/microsoft/DeepSpeed/issues/1612
            # trainer.train(resume_from_checkpoint=checkpoint)
            # a workaround needs to be used that re-creates the deepspeed engine

693
694
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_state_dict_from_zero_checkpoint(self, stage, dtype):
695
696
697
698
699
700
        # test that we can load fp32 weights directly from the zero checkpoint into the current model

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)

701
702
703
704
705
706
707
708
709
710
        kwargs = {
            "output_dir": output_dir,
            "train_len": 4,
            "per_device_train_batch_size": 4,
            "num_train_epochs": 1,
            "save_strategy": "steps",
            "save_steps": 1,
            "learning_rate": 0.1,
            "deepspeed": ds_config_dict,
        }
711
        kwargs[dtype] = True
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint_dir = get_last_checkpoint(output_dir)
            model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)

            (a1, b1) = model.a.item(), model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

728
729
730
731
    def test_config_object(self):
        # test that we can switch from zero2 to zero3 in the same process for example
        # test is_zero, etc.
        output_dir = self.get_auto_remove_tmp_dir()
732
        kwargs = {"output_dir": output_dir, "train_len": 8, "fp16": True}
733

734
735
        ds_config_zero3_dict = self.get_config_dict(ZERO3)
        ds_config_zero2_dict = self.get_config_dict(ZERO2)
736

737
        with mockenv_context(**self.dist_env_1_gpu):
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test we can repeat that and with train this time
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            trainer.train()
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test zero3 is disabled
            trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs)
            self.assertFalse(is_deepspeed_zero3_enabled())

            # check config obj
            config = deepspeed_config()
            self.assertTrue(bool(config), "Deepspeed config should be accessible")

            del trainer
            # now weakref should gc the global and we shouldn't get anything here
            config = deepspeed_config()
            self.assertFalse(is_deepspeed_zero3_enabled())
            self.assertFalse(bool(config), "Deepspeed config should not be accessible")

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_best_model(self, stage, dtype):
        # Test that forced deepspeed reinit doesn't break the model. the forced re-init after
        # loading the best model in Trainer is there to workaround this bug in Deepspeed
        # https://github.com/microsoft/DeepSpeed/issues/1612
        #
        # The test is derived from a repro script submitted in this Issue:
        # https://github.com/huggingface/transformers/issues/17114
        #
        # One additional feature of this test is that we use a non-AdamW optimizer to test that
        # deepspeed doesn't fallback to AdamW, which would prevent the optimizer states from loading
        # correctly

        from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer  # noqa

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # will use HF Trainer optimizer
        del ds_config_dict["scheduler"]  # will use HF Trainer scheduler
780
        ds_config_dict["zero_force_ds_cpu_optimizer"] = False  # offload is not efficient w/o CPUAdam
781
782
783
        # must use this setting to get the reload path exercised
        ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True

784
        with mockenv_context(**self.dist_env_1_gpu):
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
            args_dict = {
                "per_gpu_train_batch_size": 1,
                "per_gpu_eval_batch_size": 1,
                "gradient_accumulation_steps": 1,
                "learning_rate": 1e-4,
                "num_train_epochs": 1,
                "do_train": True,
                "do_eval": True,
                "optim": "adafactor",
                "evaluation_strategy": "steps",
                "eval_steps": 1,
                "save_strategy": "steps",
                "save_steps": 1,
                "load_best_model_at_end": True,
                "max_steps": 1,
                "deepspeed": ds_config_dict,
801
                "report_to": "none",
802
803
804
            }

            training_args = TrainingArguments(output_dir, **args_dict)
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
            tokenizer = T5Tokenizer.from_pretrained(T5_TINY)
            model = T5ForConditionalGeneration.from_pretrained(T5_TINY)

            def _add_eos_to_examples(example):
                example["input_text"] = f"question: {example['question']}  context: {example['context']}"
                example["target_text"] = example["answers"]["text"][0] if len(example["answers"]["text"]) > 0 else ""
                return example

            def _convert_to_features(example_batch):
                input_encodings = tokenizer.batch_encode_plus(
                    example_batch["input_text"], pad_to_max_length=True, max_length=512, truncation=True
                )
                target_encodings = tokenizer.batch_encode_plus(
                    example_batch["target_text"], pad_to_max_length=True, max_length=16, truncation=True
                )

                encodings = {
                    "input_ids": input_encodings["input_ids"],
                    "attention_mask": input_encodings["attention_mask"],
                    "labels": target_encodings["input_ids"],
                }

                return encodings

            def get_dataset():
                data_file = str(self.tests_dir / "fixtures/tests_samples/SQUAD/sample.json")
831
                data_files = {"train": data_file, "validation": data_file}
832
833
834
835
836
837
838
                raw_datasets = datasets.load_dataset("json", data_files=data_files, field="data")
                train_dataset = raw_datasets["train"].map(_add_eos_to_examples).map(_convert_to_features, batched=True)
                valid_dataset = deepcopy(train_dataset)
                return train_dataset, valid_dataset

            train_dataset, eval_dataset = get_dataset()

839
840
841
842
843
844
845
846
847
848
            trainer = Trainer(
                model=model,
                tokenizer=tokenizer,
                args=training_args,
                train_dataset=train_dataset,
                eval_dataset=eval_dataset,
            )
            trainer.train()  # crash 1 was here
            trainer.evaluate()  # crash 2 was here

849
850
851
852

@slow
@require_deepspeed
@require_torch_gpu
853
class TestDeepSpeedWithLauncher(TestCasePlus):
Patrick von Platen's avatar
Patrick von Platen committed
854
    """This class is for testing via an external script - can do multiple gpus"""
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

    # Tests to devise #
    #
    # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
    # the 2 gpus will generate prediction sequences that aren't of the same length - this is because
    # we had to code a special feature to sync the gpus when the predicted sequences aren't of the
    # same length. In general this will tested as a side-effect through a variety of other tests -
    # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
    # long as we have a few full tests running on zero3 + predict_with_generate this should be
    # mostly covered.
    #
    # but there are 5 variations on beam search in `generate`- with identical code branched with `if
    # synced_gpus`
    #
    # 2. most tests should probably be run on both: zero2 and zero3 configs
    #
871

872
    @require_torch_multi_gpu
873
874
875
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_basic_distributed(self, stage, dtype):
        self.run_and_check(stage=stage, dtype=dtype, distributed=True)
876

877
878
    def test_do_eval_no_train(self):
        # testing only zero3 since zero2 makes no sense with inference
879
        self.run_and_check(
880
            stage=ZERO3,
881
            dtype=FP16,
882
883
            eval_steps=1,
            distributed=False,
884
885
            do_train=False,
            do_eval=True,
886
        )
887

888
889
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fp32_non_distributed(self, stage, dtype):
890
891
892
893
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
894
            dtype=dtype,
895
896
897
898
899
            model_name=T5_TINY,
            distributed=False,
            do_train=True,
            do_eval=True,
            quality_checks=False,
900
            fp32=True,
901
902
903
        )

    @require_torch_multi_gpu
904
905
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fp32_distributed(self, stage, dtype):
906
907
908
909
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
910
            dtype=dtype,
911
912
913
914
915
            model_name=T5_TINY,
            distributed=True,
            do_train=True,
            do_eval=True,
            quality_checks=False,
916
            fp32=True,
917
918
        )

919
920
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_resume_train_not_from_ds_checkpoint(self, stage, dtype):
921
922
923
924
925
        # do normal training and then resume not from the deepspeed checkpoint but explicitly from
        # the saved model dir

        do_train = True
        do_eval = False
926
927
928
929
930
931
932
933
        kwargs = {
            "stage": stage,
            "dtype": dtype,
            "eval_steps": 1,
            "distributed": True,
            "do_train": do_train,
            "do_eval": do_eval,
        }
934
935
936
937
938
939
940
941
942
943

        # 1. normal training
        output_dir = self.run_and_check(**kwargs)

        # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
        # - i.e. the same path the model was saved to in step 1
        output_dir = self.run_trainer(**kwargs, model_name=output_dir)

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

944
    @require_torch_multi_gpu
945
    @parameterized.expand(["bf16", "fp16", "fp32"])
946
    def test_inference(self, dtype):
947
        if dtype == "bf16" and not is_torch_bf16_gpu_available():
948
949
            self.skipTest("test requires bfloat16 hardware support")

950
951
        # this is just inference, so no optimizer should be loaded
        # it only works for z3 (makes no sense with z1-z2)
952
        fp32 = True if dtype == "fp32" else False
953
954
        self.run_and_check(
            stage=ZERO3,
955
            dtype=FP16,
956
957
958
959
960
            model_name=T5_TINY,
            distributed=True,
            do_train=False,
            do_eval=True,
            quality_checks=False,
961
            fp32=fp32,
962
963
        )

964
    def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True):
965
966
967
        if do_train:
            train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
            self.assertIn("train_samples_per_second", train_metrics)
968
969
            if quality_checks:
                self.assertGreater(train_metrics["train_samples_per_second"], 0.5)
970
971
972
973

        if do_eval:
            eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
            self.assertIn("eval_bleu", eval_metrics)
974
975
            if quality_checks:
                self.assertGreater(eval_metrics["eval_bleu"], 1)
976
977

    # XXX: need to do better validation beyond just that the run was successful
978
979
980
    def run_and_check(
        self,
        stage,
981
        dtype,
982
983
984
985
986
987
        model_name: str = T5_SMALL,
        eval_steps: int = 10,
        distributed: bool = True,
        do_train: bool = True,
        do_eval: bool = True,
        quality_checks: bool = True,
988
        fp32: bool = False,
989
990
        extra_args_str: str = None,
        remove_args_str: str = None,
991
992
    ):
        # we are doing quality testing so using a small real model
993
        output_dir = self.run_trainer(
994
            stage=stage,
995
            dtype=dtype,
996
            model_name=model_name,
997
            eval_steps=eval_steps,
998
            num_train_epochs=1,
999
1000
            do_train=do_train,
            do_eval=do_eval,
1001
            distributed=distributed,
1002
            fp32=fp32,
1003
1004
1005
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
1006

1007
        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks)
1008
1009

        return output_dir
1010
1011
1012

    def run_trainer(
        self,
1013
        stage: str,
1014
        dtype: str,
1015
        model_name: str,
1016
1017
1018
1019
        eval_steps: int = 10,
        num_train_epochs: int = 1,
        do_train: bool = False,
        do_eval: bool = True,
1020
        distributed: bool = True,
1021
        fp32: bool = False,
1022
1023
1024
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
1025
        max_len = 32
Sylvain Gugger's avatar
Sylvain Gugger committed
1026
        data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
1027
1028
1029
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
1030
1031
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
1032
1033
1034
1035
1036
1037
1038
            --output_dir {output_dir}
            --overwrite_output_dir
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --warmup_steps 8
            --predict_with_generate
1039
1040
            --save_steps 0
            --eval_steps {eval_steps}
1041
1042
            --group_by_length
            --label_smoothing_factor 0.1
1043
1044
            --source_lang en
            --target_lang ro
1045
            --report_to none
1046
        """.split()
1047
1048
        args.extend(["--source_prefix", '"translate English to Romanian: "'])

1049
1050
        if not fp32:
            args.extend([f"--{dtype}"])
1051

1052
1053
1054
1055
1056
1057
1058
        actions = 0
        if do_train:
            actions += 1
            args.extend(
                f"""
            --do_train
            --num_train_epochs {str(num_train_epochs)}
1059
            --max_train_samples 16
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
            --per_device_train_batch_size 2
            --learning_rate 3e-3
            """.split()
            )

        if do_eval:
            actions += 1
            args.extend(
                """
            --do_eval
1070
            --max_eval_samples 16
1071
1072
1073
1074
1075
            --per_device_eval_batch_size 2
            """.split()
            )

        assert actions > 0, "need at least do_train or do_eval for the test to run"
1076
1077
1078
1079

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

1080
        # currently only works for bool args
1081
1082
1083
1084
        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

1085
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
1086
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
1087
        launcher = get_launcher(distributed)
1088
1089

        cmd = launcher + script + args + ds_args
1090
        # keep for quick debug
1091
1092
1093
1094
1095
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir

1096
1097
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_clm(self, stage, dtype):
1098
1099
1100
1101
1102
1103
        # this test exercises model.resize_token_embeddings() which requires param gathering outside
        # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
1104
            --model_name_or_path {GPT2_TINY}
1105
1106
1107
1108
1109
1110
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
1111
1112
1113
1114
            --max_train_samples 16
            --max_eval_samples 16
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
1115
1116
            --num_train_epochs 1
            --warmup_steps 8
1117
            --block_size 64
1118
            --report_to none
1119
1120
            """.split()

1121
1122
        args.extend([f"--{dtype}"])

1123
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
1124
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
1125
        launcher = get_launcher(distributed=True)
1126
1127
1128
1129

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
1130
1131
        execute_subprocess_async(cmd, env=self.get_env())

1132
    def test_clm_from_config_zero3_fp16(self):
1133
1134
1135
1136
1137
1138
        # this test exercises AutoModel.from_config(config) - to ensure zero.Init is called

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_type gpt2
1139
            --tokenizer_name {GPT2_TINY}
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --max_train_samples 4
            --per_device_train_batch_size 2
            --num_train_epochs 1
            --warmup_steps 8
            --block_size 8
            --fp16
            --report_to none
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split()
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
1156
        launcher = get_launcher(distributed=True)
1157
1158
1159
1160
1161
1162

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        with CaptureStderr() as cs:
            execute_subprocess_async(cmd, env=self.get_env())
1163
        self.assertIn("Detected DeepSpeed ZeRO-3", cs.err)