samplers.py 28.4 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
3
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
4
import torch
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
7
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
comfyanonymous's avatar
comfyanonymous committed
8
import math
9
from comfy import model_base
comfyanonymous's avatar
comfyanonymous committed
10
11
12

def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
    return abs(a*b) // math.gcd(a, b)
comfyanonymous's avatar
comfyanonymous committed
13

comfyanonymous's avatar
comfyanonymous committed
14
15
#The main sampling function shared by all the samplers
#Returns predicted noise
16
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}, seed=None):
comfyanonymous's avatar
comfyanonymous committed
17
        def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
18
19
20
21
22
23
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
            if 'area' in cond[1]:
                area = cond[1]['area']
            if 'strength' in cond[1]:
                strength = cond[1]['strength']
24

25
            adm_cond = None
26
27
            if 'adm_encoded' in cond[1]:
                adm_cond = cond[1]['adm_encoded']
28

29
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
Jacob Segal's avatar
Jacob Segal committed
30
31
32
            if 'mask' in cond[1]:
                # Scale the mask to the size of the input
                # The mask should have been resized as we began the sampling process
33
34
35
                mask_strength = 1.0
                if "mask_strength" in cond[1]:
                    mask_strength = cond[1]["mask_strength"]
Jacob Segal's avatar
Jacob Segal committed
36
37
38
                mask = cond[1]['mask']
                assert(mask.shape[1] == x_in.shape[2])
                assert(mask.shape[2] == x_in.shape[3])
39
                mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
Jacob Segal's avatar
Jacob Segal committed
40
                mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
Jacob Segal's avatar
Jacob Segal committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
            else:
                mask = torch.ones_like(input_x)
            mult = mask * strength

            if 'mask' not in cond[1]:
                rr = 8
                if area[2] != 0:
                    for t in range(rr):
                        mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
                if (area[0] + area[2]) < x_in.shape[2]:
                    for t in range(rr):
                        mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
                if area[3] != 0:
                    for t in range(rr):
                        mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
                if (area[1] + area[3]) < x_in.shape[3]:
                    for t in range(rr):
                        mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

comfyanonymous's avatar
comfyanonymous committed
60
61
62
63
64
65
66
67
            conditionning = {}
            conditionning['c_crossattn'] = cond[0]
            if cond_concat_in is not None and len(cond_concat_in) > 0:
                cropped = []
                for x in cond_concat_in:
                    cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
                    cropped.append(cr)
                conditionning['c_concat'] = torch.cat(cropped, dim=1)
comfyanonymous's avatar
comfyanonymous committed
68

69
70
71
            if adm_cond is not None:
                conditionning['c_adm'] = adm_cond

comfyanonymous's avatar
comfyanonymous committed
72
73
74
            control = None
            if 'control' in cond[1]:
                control = cond[1]['control']
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

            patches = None
            if 'gligen' in cond[1]:
                gligen = cond[1]['gligen']
                patches = {}
                gligen_type = gligen[0]
                gligen_model = gligen[1]
                if gligen_type == "position":
                    gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device)
                else:
                    gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device)

                patches['middle_patch'] = [gligen_patch]

            return (input_x, mult, conditionning, area, control, patches)
comfyanonymous's avatar
comfyanonymous committed
90
91

        def cond_equal_size(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
92
93
            if c1 is c2:
                return True
comfyanonymous's avatar
comfyanonymous committed
94
95
96
            if c1.keys() != c2.keys():
                return False
            if 'c_crossattn' in c1:
comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
101
102
103
104
105
106
                s1 = c1['c_crossattn'].shape
                s2 = c2['c_crossattn'].shape
                if s1 != s2:
                    if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
                        return False

                    mult_min = lcm(s1[1], s2[1])
                    diff = mult_min // min(s1[1], s2[1])
                    if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
                        return False
comfyanonymous's avatar
comfyanonymous committed
107
108
109
            if 'c_concat' in c1:
                if c1['c_concat'].shape != c2['c_concat'].shape:
                    return False
110
111
112
            if 'c_adm' in c1:
                if c1['c_adm'].shape != c2['c_adm'].shape:
                    return False
comfyanonymous's avatar
comfyanonymous committed
113
114
            return True

comfyanonymous's avatar
comfyanonymous committed
115
116
117
        def can_concat_cond(c1, c2):
            if c1[0].shape != c2[0].shape:
                return False
118
119

            #control
comfyanonymous's avatar
comfyanonymous committed
120
121
122
123
124
125
            if (c1[4] is None) != (c2[4] is None):
                return False
            if c1[4] is not None:
                if c1[4] is not c2[4]:
                    return False

126
127
128
129
130
131
132
            #patches
            if (c1[5] is None) != (c2[5] is None):
                return False
            if (c1[5] is not None):
                if c1[5] is not c2[5]:
                    return False

comfyanonymous's avatar
comfyanonymous committed
133
134
            return cond_equal_size(c1[2], c2[2])

comfyanonymous's avatar
comfyanonymous committed
135
136
137
        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
138
            c_adm = []
comfyanonymous's avatar
comfyanonymous committed
139
            crossattn_max_len = 0
comfyanonymous's avatar
comfyanonymous committed
140
141
            for x in c_list:
                if 'c_crossattn' in x:
comfyanonymous's avatar
comfyanonymous committed
142
143
144
145
146
147
                    c = x['c_crossattn']
                    if crossattn_max_len == 0:
                        crossattn_max_len = c.shape[1]
                    else:
                        crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
                    c_crossattn.append(c)
comfyanonymous's avatar
comfyanonymous committed
148
149
                if 'c_concat' in x:
                    c_concat.append(x['c_concat'])
150
151
                if 'c_adm' in x:
                    c_adm.append(x['c_adm'])
comfyanonymous's avatar
comfyanonymous committed
152
            out = {}
comfyanonymous's avatar
comfyanonymous committed
153
154
155
156
157
158
159
160
            c_crossattn_out = []
            for c in c_crossattn:
                if c.shape[1] < crossattn_max_len:
                    c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
                c_crossattn_out.append(c)

            if len(c_crossattn_out) > 0:
                out['c_crossattn'] = [torch.cat(c_crossattn_out)]
comfyanonymous's avatar
comfyanonymous committed
161
162
            if len(c_concat) > 0:
                out['c_concat'] = [torch.cat(c_concat)]
163
164
            if len(c_adm) > 0:
                out['c_adm'] = torch.cat(c_adm)
comfyanonymous's avatar
comfyanonymous committed
165
166
            return out

167
        def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options):
comfyanonymous's avatar
comfyanonymous committed
168
169
            out_cond = torch.zeros_like(x_in)
            out_count = torch.ones_like(x_in)/100000.0
170
171
172
173
174
175

            out_uncond = torch.zeros_like(x_in)
            out_uncond_count = torch.ones_like(x_in)/100000.0

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
176

177
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
178
            for x in cond:
comfyanonymous's avatar
comfyanonymous committed
179
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
180
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
181
                    continue
182
183
184

                to_run += [(p, COND)]
            for x in uncond:
comfyanonymous's avatar
comfyanonymous committed
185
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
186
187
188
189
190
191
192
193
                if p is None:
                    continue

                to_run += [(p, UNCOND)]

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
194
                to_batch_temp = []
195
                for x in range(len(to_run)):
comfyanonymous's avatar
comfyanonymous committed
196
197
                    if can_concat_cond(to_run[x][0], first[0]):
                        to_batch_temp += [x]
198
199
200
201
202
203
204
205
206

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
207
208
209
210
211
212

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
comfyanonymous's avatar
comfyanonymous committed
213
                control = None
214
                patches = None
215
216
217
218
219
220
221
222
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]
comfyanonymous's avatar
comfyanonymous committed
223
                    control = p[4]
224
                    patches = p[5]
225
226
227

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
228
                c = cond_cat(c)
comfyanonymous's avatar
comfyanonymous committed
229
                timestep_ = torch.cat([timestep] * batch_chunks)
230

comfyanonymous's avatar
comfyanonymous committed
231
                if control is not None:
232
                    c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
comfyanonymous's avatar
comfyanonymous committed
233

234
                transformer_options = {}
235
                if 'transformer_options' in model_options:
236
237
238
                    transformer_options = model_options['transformer_options'].copy()

                if patches is not None:
239
240
241
242
243
244
245
246
247
                    if "patches" in transformer_options:
                        cur_patches = transformer_options["patches"].copy()
                        for p in patches:
                            if p in cur_patches:
                                cur_patches[p] = cur_patches[p] + patches[p]
                            else:
                                cur_patches[p] = patches[p]
                    else:
                        transformer_options["patches"] = patches
248
249

                c['transformer_options'] = transformer_options
250

comfyanonymous's avatar
comfyanonymous committed
251
                output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
252
                del input_x
253

254
255
                model_management.throw_exception_if_processing_interrupted()

256
257
258
259
260
261
262
                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
263
264
265
266
                del mult

            out_cond /= out_count
            del out_count
267
268
269
270
            out_uncond /= out_uncond_count
            del out_uncond_count

            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
271
272


273
        max_total_area = model_management.maximum_batch_area()
274
        cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
275
        if "sampler_cfg_function" in model_options:
276
277
            args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
            return model_options["sampler_cfg_function"](args)
278
279
        else:
            return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
280

comfyanonymous's avatar
comfyanonymous committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294

class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):
    def __init__(self, model, quantize=False, device='cpu'):
        super().__init__(model, model.alphas_cumprod, quantize=quantize)

    def get_v(self, x, t, cond, **kwargs):
        return self.inner_model.apply_model(x, t, cond, **kwargs)


class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
        self.alphas_cumprod = model.alphas_cumprod
295
296
    def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}, seed=None):
        out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
297
298
299
300
        return out


class KSamplerX0Inpaint(torch.nn.Module):
301
302
303
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
304
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}, seed=None):
305
306
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
307
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
308
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options, seed=seed)
309
310
311
312
313
314
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
315

comfyanonymous's avatar
comfyanonymous committed
316
317
318
319
320
321
322
323
def simple_scheduler(model, steps):
    sigs = []
    ss = len(model.sigmas) / steps
    for x in range(steps):
        sigs += [float(model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
324
325
326
327
def ddim_scheduler(model, steps):
    sigs = []
    ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
    for x in range(len(ddim_timesteps) - 1, -1, -1):
328
329
330
331
        ts = ddim_timesteps[x]
        if ts > 999:
            ts = 999
        sigs.append(model.t_to_sigma(torch.tensor(ts)))
comfyanonymous's avatar
comfyanonymous committed
332
333
334
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
335
336
337
338
339
340
341
342
343
def blank_inpaint_image_like(latent_image):
    blank_image = torch.ones_like(latent_image)
    # these are the values for "zero" in pixel space translated to latent space
    blank_image[:,0] *= 0.8223
    blank_image[:,1] *= -0.6876
    blank_image[:,2] *= 0.6364
    blank_image[:,3] *= 0.1380
    return blank_image

Jacob Segal's avatar
Jacob Segal committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

Jacob Segal's avatar
Jacob Segal committed
367
368
369
370
371
372
373
374
375
376
377
def resolve_cond_masks(conditions, h, w, device):
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
        if 'mask' in c[1]:
            mask = c[1]['mask']
            mask = mask.to(device=device)
            modified = c[1].copy()
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
mara's avatar
mara committed
378
            if mask.shape[1] != h or mask.shape[2] != w:
Jacob Segal's avatar
Jacob Segal committed
379
380
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
381
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
382
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
383
384
385
386
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
387
                else:
Jacob Segal's avatar
Jacob Segal committed
388
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
389
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
390
391
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
392
393
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
394
395
396
397

            modified['mask'] = mask
            conditions[i] = [c[0], modified]

comfyanonymous's avatar
comfyanonymous committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
def create_cond_with_same_area_if_none(conds, c):
    if 'area' not in c[1]:
        return

    c_area = c[1]['area']
    smallest = None
    for x in conds:
        if 'area' in x[1]:
            a = x[1]['area']
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
                        elif 'area' not in smallest[1]:
                            smallest = x
                        else:
                            if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
    if 'area' in smallest[1]:
        if smallest[1]['area'] == c_area:
            return
    n = c[1].copy()
    conds += [[smallest[0], n]]
comfyanonymous's avatar
comfyanonymous committed
427

428
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
429
430
431
432
433
434
435
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
        if 'area' not in x[1]:
436
437
            if name in x[1] and x[1][name] is not None:
                cond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
438
439
440
441
442
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
        if 'area' not in x[1]:
443
444
            if name in x[1] and x[1][name] is not None:
                uncond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
445
446
447
448
449
450
451
452
453
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
454
        if name in o[1] and o[1][name] is not None:
comfyanonymous's avatar
comfyanonymous committed
455
            n = o[1].copy()
456
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
457
458
459
            uncond += [[o[0], n]]
        else:
            n = o[1].copy()
460
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
461
462
            uncond[temp[1]] = [o[0], n]

463
def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
464
465
    for t in range(len(conds)):
        x = conds[t]
comfyanonymous's avatar
comfyanonymous committed
466
        adm_out = None
467
468
        if 'adm' in x[1]:
            adm_out = x[1]["adm"]
469
        else:
470
            params = x[1].copy()
471
472
473
            params["width"] = params.get("width", width * 8)
            params["height"] = params.get("height", height * 8)
            params["prompt_type"] = params.get("prompt_type", prompt_type)
474
            adm_out = model.encode_adm(device=device, **params)
475

comfyanonymous's avatar
comfyanonymous committed
476
477
        if adm_out is not None:
            x[1] = x[1].copy()
478
            x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size).to(device)
479
480
481

    return conds

482

comfyanonymous's avatar
comfyanonymous committed
483
class KSampler:
484
    SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
485
    SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
486
487
                "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
                "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]
comfyanonymous's avatar
comfyanonymous committed
488

489
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
490
        self.model = model
comfyanonymous's avatar
comfyanonymous committed
491
        self.model_denoise = CFGNoisePredictor(self.model)
492
        if self.model.model_type == model_base.ModelType.V_PREDICTION:
comfyanonymous's avatar
comfyanonymous committed
493
            self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
494
        else:
comfyanonymous's avatar
comfyanonymous committed
495
            self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
496

comfyanonymous's avatar
comfyanonymous committed
497
        self.model_k = KSamplerX0Inpaint(self.model_wrap)
comfyanonymous's avatar
comfyanonymous committed
498
499
500
501
502
503
504
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
505
506
        self.sigma_min=float(self.model_wrap.sigma_min)
        self.sigma_max=float(self.model_wrap.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
507
        self.set_steps(steps, denoise)
508
        self.denoise = denoise
509
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
510

comfyanonymous's avatar
comfyanonymous committed
511
512
513
514
515
516
517
518
519
520
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
        if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
            steps += 1
            discard_penultimate_sigma = True

        if self.scheduler == "karras":
            sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
521
522
        elif self.scheduler == "exponential":
            sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
523
524
525
526
527
528
529
530
531
532
533
534
535
        elif self.scheduler == "normal":
            sigmas = self.model_wrap.get_sigmas(steps)
        elif self.scheduler == "simple":
            sigmas = simple_scheduler(self.model_wrap, steps)
        elif self.scheduler == "ddim_uniform":
            sigmas = ddim_scheduler(self.model_wrap, steps)
        else:
            print("error invalid scheduler", self.scheduler)

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
536
537
    def set_steps(self, steps, denoise=None):
        self.steps = steps
538
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
539
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
540
541
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
542
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
543
544
            self.sigmas = sigmas[-(steps + 1):]

545
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
546
547
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
548
549
        sigma_min = self.sigma_min

comfyanonymous's avatar
comfyanonymous committed
550
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
551
552
            sigma_min = sigmas[last_step]
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
553
554
555
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
556
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
557
558
559
560
561
562
563
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
564

comfyanonymous's avatar
comfyanonymous committed
565
566
        positive = positive[:]
        negative = negative[:]
Jacob Segal's avatar
Jacob Segal committed
567
568
569
570

        resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
        resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)

comfyanonymous's avatar
comfyanonymous committed
571
572
573
574
575
576
        #make sure each cond area has an opposite one with the same area
        for c in positive:
            create_cond_with_same_area_if_none(negative, c)
        for c in negative:
            create_cond_with_same_area_if_none(positive, c)

577
578
        apply_empty_x_to_equal_area(positive, negative, 'control', lambda cond_cnets, x: cond_cnets[x])
        apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
579

comfyanonymous's avatar
comfyanonymous committed
580
        if self.model.is_adm():
581
582
            positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "positive")
            negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "negative")
583

584
585
586
        if latent_image is not None:
            latent_image = self.model.process_latent_in(latent_image)

587
        extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options, "seed":seed}
comfyanonymous's avatar
comfyanonymous committed
588

comfyanonymous's avatar
comfyanonymous committed
589
        cond_concat = None
590
        if hasattr(self.model, 'concat_keys'): #inpaint
comfyanonymous's avatar
comfyanonymous committed
591
592
593
594
595
596
            cond_concat = []
            for ck in self.model.concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
                        cond_concat.append(denoise_mask[:,:1])
                    elif ck == "masked_image":
597
                        cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
comfyanonymous's avatar
comfyanonymous committed
598
599
600
601
602
603
604
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(blank_inpaint_image_like(noise))
            extra_args["cond_concat"] = cond_concat

605
606
607
608
609
        if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
            max_denoise = False
        else:
            max_denoise = True

610

611
612
613
614
615
616
617
        if self.sampler == "uni_pc":
            samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
        elif self.sampler == "uni_pc_bh2":
            samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
        elif self.sampler == "ddim":
            timesteps = []
            for s in range(sigmas.shape[0]):
618
                timesteps.insert(0, self.model_wrap.sigma_to_discrete_timestep(sigmas[s]))
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
            noise_mask = None
            if denoise_mask is not None:
                noise_mask = 1.0 - denoise_mask

            ddim_callback = None
            if callback is not None:
                total_steps = len(timesteps) - 1
                ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)

            sampler = DDIMSampler(self.model, device=self.device)
            sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
            z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
            samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
                                                    conditioning=positive,
                                                    batch_size=noise.shape[0],
                                                    shape=noise.shape[1:],
                                                    verbose=False,
                                                    unconditional_guidance_scale=cfg,
                                                    unconditional_conditioning=negative,
                                                    eta=0.0,
                                                    x_T=z_enc,
                                                    x0=latent_image,
                                                    img_callback=ddim_callback,
642
                                                    denoise_function=self.model_wrap.predict_eps_discrete_timestep,
643
644
645
646
647
                                                    extra_args=extra_args,
                                                    mask=noise_mask,
                                                    to_zero=sigmas[-1]==0,
                                                    end_step=sigmas.shape[0] - 1,
                                                    disable_pbar=disable_pbar)
648

649
650
651
652
        else:
            extra_args["denoise_mask"] = denoise_mask
            self.model_k.latent_image = latent_image
            self.model_k.noise = noise
653

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
            if max_denoise:
                noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
            else:
                noise = noise * sigmas[0]

            k_callback = None
            total_steps = len(sigmas) - 1
            if callback is not None:
                k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

            if latent_image is not None:
                noise += latent_image
            if self.sampler == "dpm_fast":
                samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            elif self.sampler == "dpm_adaptive":
                samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            else:
                samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
672

673
        return self.model.process_latent_out(samples.to(torch.float32))