scheduler.py 121 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""A scheduler that manages a tensor parallel GPU worker."""

16
import faulthandler
17
import logging
18
import os
19
import signal
20
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
21
import threading
22
import time
23
from collections import deque
Lianmin Zheng's avatar
Lianmin Zheng committed
24
from concurrent import futures
25
from dataclasses import dataclass
26
from http import HTTPStatus
27
from types import SimpleNamespace
28
from typing import Deque, Dict, List, Optional, Tuple, Union
29

30
import psutil
31
import setproctitle
32
import torch
33
import zmq
34
35
from torch.cuda import Stream as CudaStream
from torch.cuda import StreamContext as CudaStreamContext
36
from torch.distributed import barrier
37

38
from sglang.global_config import global_config
Lianmin Zheng's avatar
Lianmin Zheng committed
39
from sglang.srt.configs.model_config import ModelConfig
40
41
42
43
from sglang.srt.constrained.base_grammar_backend import (
    INVALID_GRAMMAR_OBJ,
    create_grammar_backend,
)
Byron Hsu's avatar
Byron Hsu committed
44
45
46
47
48
from sglang.srt.disaggregation.decode import (
    DecodePreallocQueue,
    DecodeTransferQueue,
    SchedulerDisaggregationDecodeMixin,
)
49
50
51
from sglang.srt.disaggregation.decode_kvcache_offload_manager import (
    DecodeKVCacheOffloadManager,
)
Byron Hsu's avatar
Byron Hsu committed
52
53
54
55
56
57
from sglang.srt.disaggregation.prefill import (
    PrefillBootstrapQueue,
    SchedulerDisaggregationPrefillMixin,
)
from sglang.srt.disaggregation.utils import (
    DisaggregationMode,
58
    MetadataBuffers,
Byron Hsu's avatar
Byron Hsu committed
59
    ReqToMetadataIdxAllocator,
60
    TransferBackend,
61
    prepare_abort,
Byron Hsu's avatar
Byron Hsu committed
62
)
63
from sglang.srt.distributed import get_pp_group, get_world_group
fzyzcjy's avatar
fzyzcjy committed
64
from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
65
from sglang.srt.layers.dp_attention import compute_dp_attention_world_info
66
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
67
from sglang.srt.layers.moe import initialize_moe_config
68
69
from sglang.srt.managers.io_struct import (
    AbortReq,
70
71
    BatchTokenizedEmbeddingReqInput,
    BatchTokenizedGenerateReqInput,
72
73
    ClearHiCacheReqInput,
    ClearHiCacheReqOutput,
74
    CloseSessionReqInput,
75
    DestroyWeightsUpdateGroupReqInput,
76
    ExpertDistributionReq,
77
    ExpertDistributionReqOutput,
78
    ExpertDistributionReqType,
79
80
    FlushCacheReqInput,
    FlushCacheReqOutput,
81
    FreezeGCReq,
82
83
    GetInternalStateReq,
    GetInternalStateReqOutput,
84
85
    GetLoadReqInput,
    GetLoadReqOutput,
86
    GetWeightsByNameReqInput,
87
    HealthCheckOutput,
88
89
    InitWeightsSendGroupForRemoteInstanceReqInput,
    InitWeightsSendGroupForRemoteInstanceReqOutput,
90
    InitWeightsUpdateGroupReqInput,
91
92
    LoadLoRAAdapterReqInput,
    LoadLoRAAdapterReqOutput,
93
    MultiTokenizerRegisterReq,
94
    MultiTokenizerWrapper,
95
96
    OpenSessionReqInput,
    OpenSessionReqOutput,
97
    ProfileReq,
98
99
    ReleaseMemoryOccupationReqInput,
    ResumeMemoryOccupationReqInput,
100
101
    RpcReqInput,
    RpcReqOutput,
102
103
    SendWeightsToRemoteInstanceReqInput,
    SendWeightsToRemoteInstanceReqOutput,
104
105
    SetInternalStateReq,
    SetInternalStateReqOutput,
106
107
    SlowDownReqInput,
    SlowDownReqOutput,
108
109
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
110
111
    UnloadLoRAAdapterReqInput,
    UnloadLoRAAdapterReqOutput,
Chayenne's avatar
Chayenne committed
112
    UpdateWeightFromDiskReqInput,
113
    UpdateWeightsFromDistributedReqInput,
114
    UpdateWeightsFromTensorReqInput,
115
)
116
from sglang.srt.managers.mm_utils import init_embedding_cache
117
from sglang.srt.managers.overlap_utils import FutureIndices, FutureMap
118
119
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
120
    ModelWorkerBatch,
Mick's avatar
Mick committed
121
    MultimodalInputs,
122
    Req,
123
    RequestStage,
124
    ScheduleBatch,
125
    global_server_args_dict,
126
)
127
128
129
130
131
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
fzyzcjy's avatar
fzyzcjy committed
132
from sglang.srt.managers.scheduler_input_blocker import SchedulerInputBlocker
133
134
135
136
from sglang.srt.managers.scheduler_metrics_mixin import (
    RECORD_STEP_TIME,
    SchedulerMetricsMixin,
)
137
138
139
from sglang.srt.managers.scheduler_output_processor_mixin import (
    SchedulerOutputProcessorMixin,
)
140
from sglang.srt.managers.scheduler_profiler_mixin import SchedulerProfilerMixin
141
from sglang.srt.managers.scheduler_recv_skipper import SchedulerRecvSkipper
142
143
144
from sglang.srt.managers.scheduler_update_weights_mixin import (
    SchedulerUpdateWeightsMixin,
)
145
from sglang.srt.managers.session_controller import Session
146
from sglang.srt.managers.utils import validate_input_length
tarinkk's avatar
tarinkk committed
147
from sglang.srt.mem_cache.chunk_cache import ChunkCache, SWAChunkCache
148
from sglang.srt.mem_cache.hiradix_cache import HiRadixCache
149
from sglang.srt.mem_cache.radix_cache import RadixCache
Hanming Lu's avatar
Hanming Lu committed
150
from sglang.srt.mem_cache.swa_radix_cache import SWARadixCache
151
from sglang.srt.model_executor.forward_batch_info import (
152
    ForwardBatch,
153
154
155
    ForwardMode,
    PPProxyTensors,
)
156
from sglang.srt.parser.reasoning_parser import ReasoningParser
157
from sglang.srt.server_args import PortArgs, ServerArgs
158
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
159
160
161
162
from sglang.srt.tracing.trace import (
    process_tracing_init,
    trace_set_proc_propagate_context,
    trace_set_thread_info,
163
    trace_slice_batch,
164
165
166
    trace_slice_end,
    trace_slice_start,
)
167
from sglang.srt.two_batch_overlap import TboDPAttentionPreparer
168
from sglang.srt.utils import (
169
    DynamicGradMode,
170
    broadcast_pyobj,
fzyzcjy's avatar
fzyzcjy committed
171
    configure_gc_logger,
172
    configure_logger,
Lianmin Zheng's avatar
Lianmin Zheng committed
173
    disable_request_logging,
174
    freeze_gc,
175
    get_available_gpu_memory,
176
    get_bool_env_var,
177
    get_int_env_var,
178
    get_zmq_socket,
Lianmin Zheng's avatar
Lianmin Zheng committed
179
    kill_itself_when_parent_died,
180
    numa_bind_to_node,
181
    point_to_point_pyobj,
182
    pyspy_dump_schedulers,
183
184
    require_mlp_sync,
    require_mlp_tp_gather,
185
    set_gpu_proc_affinity,
186
187
188
    set_random_seed,
    suppress_other_loggers,
)
189
190
191
192
193
from sglang.srt.utils.hf_transformers_utils import (
    get_processor,
    get_tokenizer,
    get_tokenizer_from_processor,
)
194
from sglang.srt.utils.torch_memory_saver_adapter import TorchMemorySaverAdapter
195
from sglang.utils import TypeBasedDispatcher, get_exception_traceback
196
197
198

logger = logging.getLogger(__name__)

199
# Test retract decode for debugging purposes
200
TEST_RETRACT = get_bool_env_var("SGLANG_TEST_RETRACT")
201
GRAMMAR_TIMEOUT = float(os.environ.get("SGLANG_GRAMMAR_TIMEOUT", 300))
202

203

204
205
@dataclass
class GenerationBatchResult:
206
207
208
209
210
    logits_output: Optional[LogitsProcessorOutput] = None
    pp_hidden_states_proxy_tensors: Optional[PPProxyTensors] = None
    next_token_ids: Optional[torch.Tensor] = None
    num_accepted_tokens: Optional[int] = None
    can_run_cuda_graph: bool = False
211
212

    # For output processing
213
214
215
216
217
218
219
    extend_input_len_per_req: Optional[List[int]] = None
    extend_logprob_start_len_per_req: Optional[List[int]] = None

    # For overlap scheduling
    copy_done: Optional[torch.cuda.Event] = None
    delay_sample_launch: bool = False
    forward_batch: Optional[ForwardBatch] = None
220
    future_indices: Optional[FutureIndices] = None
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

    def copy_to_cpu(self, return_logprob: bool = False):
        """Copy tensors to CPU in overlap scheduling.
        Only the tensors which are needed for processing results are copied,
        e.g., next_token_ids, logits outputs
        """
        if return_logprob:
            if self.logits_output.next_token_logits is not None:
                self.logits_output.next_token_logits = (
                    self.logits_output.next_token_logits.to("cpu", non_blocking=True)
                )
            if self.logits_output.input_token_logprobs is not None:
                self.logits_output.input_token_logprobs = (
                    self.logits_output.input_token_logprobs.to("cpu", non_blocking=True)
                )
        if self.logits_output.hidden_states is not None:
            self.logits_output.hidden_states = self.logits_output.hidden_states.to(
                "cpu", non_blocking=True
            )
        self.next_token_ids = self.next_token_ids.to("cpu", non_blocking=True)
        self.copy_done.record()
242
243
244
245
246

    @classmethod
    def from_pp_proxy(
        cls, logits_output, next_pp_outputs: PPProxyTensors, can_run_cuda_graph
    ):
247
        # TODO(lsyin): refactor PP and avoid using dict
248
249
250
251
252
253
254
255
256
257
258
        proxy_dict = next_pp_outputs.tensors
        return cls(
            logits_output=logits_output,
            pp_hidden_states_proxy_tensors=None,
            next_token_ids=next_pp_outputs["next_token_ids"],
            extend_input_len_per_req=proxy_dict.get("extend_input_len_per_req", None),
            extend_logprob_start_len_per_req=proxy_dict.get(
                "extend_logprob_start_len_per_req", None
            ),
            can_run_cuda_graph=can_run_cuda_graph,
        )
259
260
261
262
263
264
265


@dataclass
class EmbeddingBatchResult:
    embeddings: torch.Tensor


Byron Hsu's avatar
Byron Hsu committed
266
267
class Scheduler(
    SchedulerOutputProcessorMixin,
268
269
270
    SchedulerUpdateWeightsMixin,
    SchedulerProfilerMixin,
    SchedulerMetricsMixin,
Byron Hsu's avatar
Byron Hsu committed
271
272
273
    SchedulerDisaggregationDecodeMixin,
    SchedulerDisaggregationPrefillMixin,
):
274
275
    """A scheduler that manages a tensor parallel GPU worker."""

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    def launch_draft_worker(
        self, gpu_id, tp_rank, moe_ep_rank, server_args, port_args, dp_rank
    ):
        if self.spec_algorithm.is_eagle():
            from sglang.srt.speculative.eagle_worker import EAGLEWorker

            self.draft_worker = EAGLEWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                moe_ep_rank=moe_ep_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
        elif self.spec_algorithm.is_standalone():
            from sglang.srt.speculative.standalone_worker import StandaloneWorker

            self.draft_worker = StandaloneWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                moe_ep_rank=moe_ep_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
        elif self.spec_algorithm.is_ngram():
            from sglang.srt.speculative.ngram_worker import NGRAMWorker

            self.draft_worker = NGRAMWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                moe_ep_rank=moe_ep_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
        else:
            self.draft_worker = None

318
319
320
321
322
323
    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
Cheng Wan's avatar
Cheng Wan committed
324
        moe_ep_rank: int,
325
        pp_rank: int,
326
        dp_rank: Optional[int],
327
328
    ):
        # Parse args
329
        self.server_args = server_args
330
        self.tp_rank = tp_rank
Cheng Wan's avatar
Cheng Wan committed
331
        self.moe_ep_rank = moe_ep_rank
332
        self.pp_rank = pp_rank
333
        self.dp_rank = dp_rank
334
        self.tp_size = server_args.tp_size
Cheng Wan's avatar
Cheng Wan committed
335
        self.moe_ep_size = server_args.ep_size
336
337
        self.pp_size = server_args.pp_size
        self.dp_size = server_args.dp_size
338
        self.schedule_policy = server_args.schedule_policy
339
340
341
342
343
344
345
        self.enable_priority_scheduling = server_args.enable_priority_scheduling
        self.schedule_low_priority_values_first = (
            server_args.schedule_low_priority_values_first
        )
        self.priority_scheduling_preemption_threshold = (
            server_args.priority_scheduling_preemption_threshold
        )
346
        self.enable_lora = server_args.enable_lora
347
        self.max_loras_per_batch = server_args.max_loras_per_batch
348
        self.enable_overlap = not server_args.disable_overlap_schedule
349
        self.skip_tokenizer_init = server_args.skip_tokenizer_init
350
        self.enable_metrics = server_args.enable_metrics
351
352
353
        self.enable_metrics_for_all_schedulers = (
            server_args.enable_metrics_for_all_schedulers
        )
354
355
356
        self.enable_kv_cache_events = bool(
            server_args.kv_events_config and tp_rank == 0
        )
357
        self.enable_trace = server_args.enable_trace
358
        self.stream_interval = server_args.stream_interval
359
360
361
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
362
363
        self.gpu_id = gpu_id
        self.enable_hierarchical_cache = server_args.enable_hierarchical_cache
364
        self.enable_hicache_storage = server_args.hicache_storage_backend is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
365
        self.page_size = server_args.page_size
366

367
        self.attn_tp_rank, self.attn_tp_size, self.attn_dp_rank = (
368
369
370
371
372
373
374
375
            compute_dp_attention_world_info(
                server_args.enable_dp_attention,
                self.tp_rank,
                self.tp_size,
                self.dp_size,
            )
        )

376
377
378
        # Init model config
        self.model_config = ModelConfig.from_server_args(server_args)

379
380
        # Init inter-process communication
        context = zmq.Context(2)
381
        self.idle_sleeper = None
382
        if self.pp_rank == 0 and self.attn_tp_rank == 0:
383
            self.recv_from_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
384
                context, zmq.PULL, port_args.scheduler_input_ipc_name, False
385
            )
386
387
388
389
            self.recv_from_rpc = get_zmq_socket(
                context, zmq.DEALER, port_args.rpc_ipc_name, False
            )

390
            self.send_to_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
391
                context, zmq.PUSH, port_args.tokenizer_ipc_name, False
392
            )
393
            if server_args.skip_tokenizer_init:
394
                # Directly send to the TokenizerManager
395
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
396
                    context, zmq.PUSH, port_args.tokenizer_ipc_name, False
397
398
                )
            else:
399
                # Send to the DetokenizerManager
400
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
401
                    context, zmq.PUSH, port_args.detokenizer_ipc_name, False
402
                )
403

404
405
406
407
408
409
410
            if self.server_args.sleep_on_idle:
                self.idle_sleeper = IdleSleeper(
                    [
                        self.recv_from_tokenizer,
                        self.recv_from_rpc,
                    ]
                )
411
        else:
412
            self.recv_from_tokenizer = None
413
            self.recv_from_rpc = None
414
415
            self.send_to_tokenizer = SimpleNamespace(send_pyobj=lambda x: None)
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
416

417
418
419
420
421
        if self.current_scheduler_metrics_enabled():
            self.send_metrics_from_scheduler = get_zmq_socket(
                context, zmq.PUSH, port_args.metrics_ipc_name, False
            )

422
        # Init tokenizer
423
        self.init_tokenizer()
424

425
426
427
        # Init moe config
        self.init_moe_config()

428
429
430
431
432
433
434
435
436
        # Set reasoning_parser and think_end_id if --reasoning_parser is enabled
        if self.server_args.reasoning_parser and self.tokenizer:
            reasoning_parser = ReasoningParser(
                model_type=self.server_args.reasoning_parser, stream_reasoning=False
            )
            self.tokenizer.think_end_id = self.tokenizer.encode(
                reasoning_parser.detector.think_end_token, add_special_tokens=False
            )[0]

437
438
439
440
        # Check whether overlap can be enabled
        if not self.is_generation:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for embedding models.")
441

442
        # Launch a tensor parallel worker
443

444
445
446
        from sglang.srt.managers.tp_worker import TpModelWorker

        self.tp_worker = TpModelWorker(
447
            server_args=server_args,
448
449
            gpu_id=gpu_id,
            tp_rank=tp_rank,
Cheng Wan's avatar
Cheng Wan committed
450
            moe_ep_rank=moe_ep_rank,
451
            pp_rank=pp_rank,
452
            dp_rank=dp_rank,
453
            nccl_port=port_args.nccl_port,
454
        )
455

456
        # Launch a draft worker for speculative decoding
457
458
459
        self.launch_draft_worker(
            gpu_id, tp_rank, moe_ep_rank, server_args, port_args, dp_rank
        )
460

461
462
463
464
465
466
        # Dispatch the model worker
        if self.spec_algorithm.is_none():
            self.model_worker = self.tp_worker
        else:
            self.model_worker = self.draft_worker

467
        # Get token and memory info from the model worker
468
469
470
471
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
472
            self.max_queued_requests,
473
            self.max_req_len,
474
475
            self.max_req_input_len,
            self.random_seed,
476
            self.device,
477
478
479
480
481
            worker_global_server_args_dict,
            _,
            _,
            _,
        ) = self.tp_worker.get_worker_info()
482
483
        if global_server_args_dict["pp_max_micro_batch_size"] is None:
            global_server_args_dict["pp_max_micro_batch_size"] = max(
484
485
486
487
488
489
                self.max_running_requests // server_args.pp_size, 1
            )

        self.tp_group = self.tp_worker.get_tp_group()
        self.tp_cpu_group = self.tp_group.cpu_group
        self.attn_tp_group = self.tp_worker.get_attention_tp_group()
490
        self.attn_tp_cpu_group = self.tp_worker.get_attention_tp_cpu_group()
491
492
493
        self.pp_group = get_pp_group()
        self.world_group = get_world_group()

494
        self.pad_input_ids_func = self.tp_worker.get_pad_input_ids_func()
495
        global_server_args_dict.update(worker_global_server_args_dict)
496
        set_random_seed(self.random_seed)
497

498
        # Hybrid memory pool
Hanming Lu's avatar
Hanming Lu committed
499
500
501
502
503
504
505
        self.is_hybrid = self.tp_worker.is_hybrid
        if self.is_hybrid:
            self.sliding_window_size = self.tp_worker.sliding_window_size
            self.full_tokens_per_layer, self.swa_tokens_per_layer = (
                self.tp_worker.get_tokens_per_layer_info()
            )

506
        # Print debug info
507
        if tp_rank == 0:
508
509
510
            avail_mem = get_available_gpu_memory(
                self.device, self.gpu_id, empty_cache=False
            )
511
512
513
514
515
            logger.info(
                f"max_total_num_tokens={self.max_total_num_tokens}, "
                f"chunked_prefill_size={server_args.chunked_prefill_size}, "
                f"max_prefill_tokens={self.max_prefill_tokens}, "
                f"max_running_requests={self.max_running_requests}, "
516
                f"context_len={self.model_config.context_len}, "
517
                f"{'available_cpu_mem' if self.device == 'cpu' else 'available_gpu_mem'}={avail_mem:.2f} GB"
518
            )
519

Lianmin Zheng's avatar
Lianmin Zheng committed
520
        # Init memory pool and cache
521
        self.init_memory_pool_and_cache()
522
523
524

        # Init running status
        self.waiting_queue: List[Req] = []
525
        # The running decoding batch for continuous batching
Lianmin Zheng's avatar
Lianmin Zheng committed
526
        self.running_batch: ScheduleBatch = ScheduleBatch(reqs=[], batch_is_full=False)
527
        # The current forward batch
Lianmin Zheng's avatar
Lianmin Zheng committed
528
        self.cur_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
529
        # The last forward batch
530
        self.last_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
531
532
        self.forward_ct = 0
        self.forward_ct_decode = 0
533
        self.num_generated_tokens = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
534
        self.last_prefill_tokens = 0
535
536
        self.last_decode_stats_tic = time.perf_counter()
        self.last_prefill_stats_tic = time.perf_counter()
537
        self.return_health_check_ct = 0
538
539
540
541
542
        self.num_retracted_reqs: int = 0
        self.num_paused_reqs: int = 0
        self.kv_transfer_speed_gb_s: float = 0.0
        self.kv_transfer_latency_ms: float = 0.0
        self.sessions: Dict[str, Session] = {}
543
544
545
        self.default_stream: CudaStream = torch.get_device_module(
            self.device
        ).current_stream()
546
        if self.device == "cpu":
547
            self.default_stream.synchronize = lambda: None  # No-op for CPU
548
        self.forward_sleep_time = None
549

550
551
        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
552
553
        if self.chunked_prefill_size <= 0:  # -1 means disable
            self.chunked_prefill_size = None
554
        self.chunked_req = None
555
556
557
558
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
559
        # Init the grammar backend for constrained generation
560
        self.grammar_queue: List[Req] = []
561
        if not server_args.skip_tokenizer_init:
562
            self.grammar_backend = create_grammar_backend(
563
564
565
566
                server_args,
                self.tokenizer,
                self.model_config.vocab_size,
                self.model_config.hf_eos_token_id,
567
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
568
569
        else:
            self.grammar_backend = None
570

571
        # Init schedule policy and new token estimation
572
        self.policy = SchedulePolicy(
Lianmin Zheng's avatar
Lianmin Zheng committed
573
574
575
            self.schedule_policy,
            self.tree_cache,
            self.enable_hierarchical_cache,
576
577
            self.enable_priority_scheduling,
            self.schedule_low_priority_values_first,
578
        )
579
580
581
        # Enable preemption for priority scheduling.
        self.try_preemption = self.enable_priority_scheduling

582
583
584
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
585
586
        self.init_new_token_ratio = min(
            global_config.default_init_new_token_ratio
587
588
            * server_args.schedule_conservativeness,
            1.0,
589
        )
590
591
592
593
594
595
596
597
598
599
        self.min_new_token_ratio = min(
            self.init_new_token_ratio
            * global_config.default_min_new_token_ratio_factor,
            1.0,
        )
        self.new_token_ratio_decay = (
            self.init_new_token_ratio - self.min_new_token_ratio
        ) / global_config.default_new_token_ratio_decay_steps
        self.new_token_ratio = self.init_new_token_ratio

Lianmin Zheng's avatar
Lianmin Zheng committed
600
601
602
603
        # Init watchdog thread
        self.watchdog_timeout = server_args.watchdog_timeout
        t = threading.Thread(target=self.watchdog_thread, daemon=True)
        t.start()
604
        self.parent_process = psutil.Process().parent()
605
606

        # Init memory saver, profiler and metric stats
607
608
609
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=server_args.enable_memory_saver
        )
610
        self.offload_tags = set()
limingshu's avatar
limingshu committed
611
        self.init_profiler()
612

613
        self.recv_skipper = SchedulerRecvSkipper.maybe_create(server_args)
fzyzcjy's avatar
fzyzcjy committed
614
615
616
617
618
619
        self.input_blocker = (
            SchedulerInputBlocker(noop=self.attn_tp_rank != 0)
            if get_bool_env_var("SGLANG_ENABLE_COLOCATED_BATCH_GEN")
            else None
        )

620
        # Init metrics stats
621
        self.init_metrics(tp_rank, pp_rank, dp_rank)
622

623
624
625
        if self.enable_kv_cache_events:
            self.init_kv_events(server_args.kv_events_config)

626
627
628
629
630
631
632
633
634
        # Init disaggregation
        self.disaggregation_mode = DisaggregationMode(
            self.server_args.disaggregation_mode
        )
        self.init_disaggregation()

        if get_bool_env_var("SGLANG_GC_LOG"):
            configure_gc_logger()

635
636
        # Init prefill kv split size when deterministic inference is enabled with various attention backends
        self.init_deterministic_inference_config()
637

638
639
640
        # Init overlap
        self.init_overlap()

641
642
        # Init request dispatcher
        self._request_dispatcher = TypeBasedDispatcher(
643
644
645
            [
                (TokenizedGenerateReqInput, self.handle_generate_request),
                (TokenizedEmbeddingReqInput, self.handle_embedding_request),
646
647
                (BatchTokenizedGenerateReqInput, self.handle_batch_generate_request),
                (BatchTokenizedEmbeddingReqInput, self.handle_batch_embedding_request),
648
                (FlushCacheReqInput, self.flush_cache_wrapped),
649
                (ClearHiCacheReqInput, self.clear_hicache_storage_wrapped),
650
                (AbortReq, self.abort_request),
651
652
                (OpenSessionReqInput, self.open_session),
                (CloseSessionReqInput, self.close_session),
653
654
                (UpdateWeightFromDiskReqInput, self.update_weights_from_disk),
                (InitWeightsUpdateGroupReqInput, self.init_weights_update_group),
655
                (DestroyWeightsUpdateGroupReqInput, self.destroy_weights_update_group),
656
657
658
659
660
661
662
663
                (
                    InitWeightsSendGroupForRemoteInstanceReqInput,
                    self.init_weights_send_group_for_remote_instance,
                ),
                (
                    SendWeightsToRemoteInstanceReqInput,
                    self.send_weights_to_remote_instance,
                ),
664
665
666
667
668
669
                (
                    UpdateWeightsFromDistributedReqInput,
                    self.update_weights_from_distributed,
                ),
                (UpdateWeightsFromTensorReqInput, self.update_weights_from_tensor),
                (GetWeightsByNameReqInput, self.get_weights_by_name),
670
671
                (ReleaseMemoryOccupationReqInput, self.release_memory_occupation),
                (ResumeMemoryOccupationReqInput, self.resume_memory_occupation),
672
                (SlowDownReqInput, self.slow_down),
673
                (ProfileReq, self.profile),
674
                (FreezeGCReq, self.handle_freeze_gc),
675
                (GetInternalStateReq, self.get_internal_state),
676
                (SetInternalStateReq, self.set_internal_state),
677
                (RpcReqInput, self.handle_rpc_request),
678
                (ExpertDistributionReq, self.expert_distribution_handle),
679
680
                (LoadLoRAAdapterReqInput, self.load_lora_adapter),
                (UnloadLoRAAdapterReqInput, self.unload_lora_adapter),
681
                (MultiTokenizerRegisterReq, self.register_multi_tokenizer),
682
                (GetLoadReqInput, self.get_load),
683
684
685
            ]
        )

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
    def init_deterministic_inference_config(self):
        """Initialize deterministic inference configuration for different attention backends."""
        if not self.server_args.enable_deterministic_inference:
            self.truncation_align_size = None
            return

        backend_sizes = {
            "flashinfer": ("SGLANG_FLASHINFER_PREFILL_SPLIT_TILE_SIZE", 4096),
            "triton": ("SGLANG_TRITON_PREFILL_TRUNCATION_ALIGN_SIZE", 4096),
        }
        env_var, default_size = backend_sizes.get(
            self.server_args.attention_backend, (None, None)
        )
        self.truncation_align_size = (
            get_int_env_var(env_var, default_size) if env_var else None
        )

703
704
705
    def init_tokenizer(self):
        server_args = self.server_args
        self.is_generation = self.model_config.is_generation
706

707
708
709
710
711
712
713
714
715
        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if self.model_config.is_multimodal:
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
716
                    use_fast=not server_args.disable_fast_image_processor,
717
                )
xm:D's avatar
xm:D committed
718
                self.tokenizer = get_tokenizer_from_processor(self.processor)
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
                )

    def init_memory_pool_and_cache(self):
        server_args = self.server_args

        self.req_to_token_pool, self.token_to_kv_pool_allocator = (
            self.tp_worker.get_memory_pool()
        )

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
Hanming Lu's avatar
Hanming Lu committed
738
            if self.is_hybrid:
tarinkk's avatar
tarinkk committed
739
740
741
742
                ChunkCacheClass = SWAChunkCache
            else:
                ChunkCacheClass = ChunkCache
            self.tree_cache = ChunkCacheClass(
743
744
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
745
                page_size=self.page_size,
746
747
            )
        else:
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
            if os.environ.get("SGLANG_EXPERIMENTAL_CPP_RADIX_TREE") == "1":
                # lazy import to avoid JIT overhead
                from sglang.srt.mem_cache.radix_cache_cpp import RadixCacheCpp

                self.tree_cache = RadixCacheCpp(
                    disable=False,
                    use_hicache=self.enable_hierarchical_cache,
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool=self.token_to_kv_pool_allocator,
                    tp_cache_group=self.tp_cpu_group,
                    page_size=self.page_size,
                    hicache_ratio=server_args.hicache_ratio,
                    hicache_size=server_args.hicache_size,
                    hicache_write_policy=server_args.hicache_write_policy,
                    enable_kv_cache_events=self.enable_kv_cache_events,
                )
            elif self.enable_hierarchical_cache:
765
766
767
                self.tree_cache = HiRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
768
769
770
771
772
                    tp_cache_group=(
                        self.attn_tp_cpu_group
                        if self.server_args.enable_dp_attention
                        else self.tp_cpu_group
                    ),
773
                    page_size=self.page_size,
774
                    eviction_policy=server_args.radix_eviction_policy,
775
                    hicache_ratio=server_args.hicache_ratio,
Zhiqiang Xie's avatar
Zhiqiang Xie committed
776
777
                    hicache_size=server_args.hicache_size,
                    hicache_write_policy=server_args.hicache_write_policy,
778
                    hicache_io_backend=server_args.hicache_io_backend,
779
                    hicache_mem_layout=server_args.hicache_mem_layout,
780
                    enable_metrics=self.enable_metrics,
781
                    hicache_storage_backend=server_args.hicache_storage_backend,
pansicheng's avatar
pansicheng committed
782
                    hicache_storage_prefetch_policy=server_args.hicache_storage_prefetch_policy,
783
784
                    model_name=server_args.served_model_name,
                    storage_backend_extra_config=server_args.hicache_storage_backend_extra_config,
Ke Bao's avatar
Ke Bao committed
785
                    is_eagle=self.spec_algorithm.is_eagle(),
786
                )
787
788
789
                self.tp_worker.register_hicache_layer_transfer_counter(
                    self.tree_cache.cache_controller.layer_done_counter
                )
Hanming Lu's avatar
Hanming Lu committed
790
791
792
793
794
795
796
797
798
799
            elif self.is_hybrid:
                assert (
                    self.server_args.disaggregation_mode == "null"
                ), "Hybrid mode does not support disaggregation yet"
                self.tree_cache = SWARadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    sliding_window_size=self.sliding_window_size,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
800
                    is_eagle=self.spec_algorithm.is_eagle(),
Hanming Lu's avatar
Hanming Lu committed
801
                )
802
803
804
805
806
807
808
809
810
811
812
813
814
815
            elif server_args.enable_lmcache:
                from sglang.srt.mem_cache.storage.lmcache.lmc_radix_cache import (
                    LMCRadixCache,
                )

                self.tree_cache = LMCRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
                    model_config=self.model_config,
                    tp_size=self.tp_size,
                    rank=self.tp_rank,
                    tp_group=self.tp_group,
816
                    eviction_policy=server_args.radix_eviction_policy,
817
                )
818
819
820
821
            else:
                self.tree_cache = RadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Lianmin Zheng's avatar
Lianmin Zheng committed
822
                    page_size=self.page_size,
823
                    disable=server_args.disable_radix_cache,
824
                    enable_kv_cache_events=self.enable_kv_cache_events,
825
                    eviction_policy=server_args.radix_eviction_policy,
Ke Bao's avatar
Ke Bao committed
826
                    is_eagle=self.spec_algorithm.is_eagle(),
827
828
                )

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
        if (
            server_args.disaggregation_mode == "decode"
            and server_args.disaggregation_decode_enable_offload_kvcache
        ):
            self.decode_offload_manager = DecodeKVCacheOffloadManager(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                tp_group=(
                    self.attn_tp_cpu_group
                    if self.server_args.enable_dp_attention
                    else self.tp_cpu_group
                ),
                tree_cache=self.tree_cache,
                server_args=self.server_args,
            )
        else:
            self.decode_offload_manager = None

847
848
849
850
851
852
        self.decode_mem_cache_buf_multiplier = (
            1
            if self.spec_algorithm.is_none()
            else (
                server_args.speculative_num_draft_tokens
                + (
853
854
                    (server_args.speculative_eagle_topk or 1)
                    * (server_args.speculative_num_steps or 1)
855
856
                )
            )
857
        )
858

859
860
861
        embedding_cache_size = int(os.environ.get("SGLANG_VLM_CACHE_SIZE_MB", "100"))
        init_embedding_cache(embedding_cache_size * 1024 * 1024)

Byron Hsu's avatar
Byron Hsu committed
862
    def init_disaggregation(self):
863
864
865
866
        self.transfer_backend = TransferBackend(
            self.server_args.disaggregation_transfer_backend
        )

Byron Hsu's avatar
Byron Hsu committed
867
868
869
870
        if (
            self.disaggregation_mode == DisaggregationMode.DECODE
        ):  # *2 for the headroom.
            buffer_size = (self.req_to_token_pool.size) * 2
Byron Hsu's avatar
Byron Hsu committed
871
            self.req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
Byron Hsu's avatar
Byron Hsu committed
872
873
                buffer_size
            )
874
875
            self.disagg_metadata_buffers = MetadataBuffers(
                buffer_size,
876
                hidden_size=self.model_config.hf_text_config.hidden_size,
877
                hidden_states_dtype=self.model_config.dtype,
878
879
                custom_mem_pool=self.token_to_kv_pool_allocator.get_kvcache().maybe_get_custom_mem_pool(),
            )
Byron Hsu's avatar
Byron Hsu committed
880
881
882

            # The decode requests polling kv cache
            self.disagg_decode_transfer_queue = DecodeTransferQueue(
883
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
884
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
885
                tp_rank=self.tp_rank,
886
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
887
888
                scheduler=self,
                tree_cache=self.tree_cache,
Byron Hsu's avatar
Byron Hsu committed
889
890
891
892
893
894
            )

            # The decode requests pending for pre-allocation
            self.disagg_decode_prealloc_queue = DecodePreallocQueue(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Byron Hsu's avatar
Byron Hsu committed
895
896
                draft_token_to_kv_pool=(
                    None
897
                    if self.draft_worker is None or self.spec_algorithm.is_ngram()
Byron Hsu's avatar
Byron Hsu committed
898
899
                    else self.draft_worker.model_runner.token_to_kv_pool
                ),
Byron Hsu's avatar
Byron Hsu committed
900
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
901
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
902
903
904
                scheduler=self,
                transfer_queue=self.disagg_decode_transfer_queue,
                tree_cache=self.tree_cache,
905
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
906
907
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
908
909
                dp_size=self.server_args.dp_size,
                gpu_id=self.gpu_id,
Byron Hsu's avatar
Byron Hsu committed
910
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
911
912
                max_total_num_tokens=self.max_total_num_tokens,
                prefill_pp_size=self.server_args.disaggregation_prefill_pp,
913
                num_reserved_decode_tokens=self.server_args.num_reserved_decode_tokens,
914
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
915
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
916

Byron Hsu's avatar
Byron Hsu committed
917
918
919
        elif self.disaggregation_mode == DisaggregationMode.PREFILL:
            # *2 for the headroom.
            buffer_size = self.max_running_requests * 2
Byron Hsu's avatar
Byron Hsu committed
920
            self.req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
Byron Hsu's avatar
Byron Hsu committed
921
922
                buffer_size
            )
923
924
            self.disagg_metadata_buffers = MetadataBuffers(
                buffer_size,
925
                hidden_size=self.model_config.hf_text_config.hidden_size,
926
                hidden_states_dtype=self.model_config.dtype,
927
928
                custom_mem_pool=self.token_to_kv_pool_allocator.get_kvcache().maybe_get_custom_mem_pool(),
            )
Byron Hsu's avatar
Byron Hsu committed
929

Liangsheng Yin's avatar
Liangsheng Yin committed
930
            self.disagg_prefill_bootstrap_queue = PrefillBootstrapQueue(
Byron Hsu's avatar
Byron Hsu committed
931
                token_to_kv_pool=self.token_to_kv_pool_allocator.get_kvcache(),
Byron Hsu's avatar
Byron Hsu committed
932
933
                draft_token_to_kv_pool=(
                    None
934
                    if self.draft_worker is None or self.spec_algorithm.is_ngram()
Byron Hsu's avatar
Byron Hsu committed
935
936
                    else self.draft_worker.model_runner.token_to_kv_pool
                ),
Byron Hsu's avatar
Byron Hsu committed
937
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
938
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
939
940
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
Byron Hsu's avatar
Byron Hsu committed
941
                gpu_id=self.gpu_id,
Byron Hsu's avatar
Byron Hsu committed
942
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
943
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
944
945
946
                max_total_num_tokens=self.max_total_num_tokens,
                decode_tp_size=self.server_args.disaggregation_decode_tp,
                decode_dp_size=self.server_args.disaggregation_decode_dp,
947
                scheduler=self,
Byron Hsu's avatar
Byron Hsu committed
948
949
950
                pp_rank=self.pp_rank,
                pp_size=self.pp_size,
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
951
952
            )
            # The prefill requests that are in the middle of kv sending
953
            self.disagg_prefill_inflight_queue: List[Req] = []
Byron Hsu's avatar
Byron Hsu committed
954

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
    def init_overlap(self):
        if not self.enable_overlap:
            return

        self.forward_stream: CudaStream = torch.get_device_module(self.device).Stream()
        self.forward_stream_ctx: CudaStreamContext = torch.get_device_module(
            self.device
        ).stream(self.forward_stream)
        self.copy_stream: CudaStream = torch.get_device_module(self.device).Stream()
        self.copy_stream_ctx: CudaStreamContext = torch.get_device_module(
            self.device
        ).stream(self.copy_stream)

        self.future_map = FutureMap(self.max_running_requests, self.device)
        self.batch_record_buf = [None] * 2
        self.batch_record_ct = 0

    def record_batch_in_overlap(self, model_worker_batch: ModelWorkerBatch):
        # FIXME(lsyin): hacky way to keep a reference to avoid GPU tensors being freed by torch GC
        # NOTE: More Reliable: record all tensors into the forward stream
        # NOTE: - for all future tensors, we shall always read from future map
        #       - for all non-future tensors (produced only by schedule stream),
        #       we shall keep its reference not being release during all the forwarding pass
        self.batch_record_ct = (self.batch_record_ct + 1) % 2
        self.batch_record_buf[self.batch_record_ct] = model_worker_batch

981
982
983
984
    def init_moe_config(self):
        if hasattr(self.model_config.hf_config, "num_experts_per_tok"):
            initialize_moe_config(self.server_args)

985
    @DynamicGradMode()
986
    def event_loop_normal(self):
987
        """A normal scheduler loop."""
988
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
989
990
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
991

992
            batch = self.get_next_batch_to_run()
Lianmin Zheng's avatar
Lianmin Zheng committed
993
            self.cur_batch = batch
994
995
996
997

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
Lianmin Zheng's avatar
Lianmin Zheng committed
998
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
999
                # When the server is idle, do self-check and re-init some states
1000
                self.self_check_during_idle()
1001
1002

            self.last_batch = batch
1003

1004
    @DynamicGradMode()
Lianmin Zheng's avatar
Lianmin Zheng committed
1005
    def event_loop_overlap(self):
1006
        """A scheduler loop that overlaps the CPU processing and GPU computation."""
1007
        self.result_queue: Deque[Tuple[ScheduleBatch, GenerationBatchResult]] = deque()
Lianmin Zheng's avatar
Lianmin Zheng committed
1008
1009

        while True:
1010
1011
            self.launch_last_batch_sample_if_needed()

Lianmin Zheng's avatar
Lianmin Zheng committed
1012
1013
1014
1015
1016
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)

            batch = self.get_next_batch_to_run()
            self.cur_batch = batch
1017

Lianmin Zheng's avatar
Lianmin Zheng committed
1018
1019
            if batch:
                result = self.run_batch(batch)
1020
                self.result_queue.append((batch.copy(), result))
Lianmin Zheng's avatar
Lianmin Zheng committed
1021
1022

            if self.last_batch:
1023
                # Process the results of the last batch
1024
                tmp_batch, tmp_result = self.result_queue.popleft()
1025
                self.process_batch_result(tmp_batch, tmp_result)
Lianmin Zheng's avatar
Lianmin Zheng committed
1026
            elif batch is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1027
                # When the server is idle, do self-check and re-init some states
1028
                self.self_check_during_idle()
Lianmin Zheng's avatar
Lianmin Zheng committed
1029
1030
1031

            self.last_batch = batch

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
    @DynamicGradMode()
    def event_loop_pp(self):
        """A non-overlap scheduler loop for pipeline parallelism."""
        mbs = [None] * self.pp_size
        last_mbs = [None] * self.pp_size
        self.running_mbs = [
            ScheduleBatch(reqs=[], batch_is_full=False) for _ in range(self.pp_size)
        ]
        pp_outputs: Optional[PPProxyTensors] = None
        while True:
            server_is_idle = True
            for mb_id in range(self.pp_size):
                self.running_batch = self.running_mbs[mb_id]
                self.last_batch = last_mbs[mb_id]

                recv_reqs = self.recv_requests()
                self.process_input_requests(recv_reqs)
                mbs[mb_id] = self.get_next_batch_to_run()
                self.running_mbs[mb_id] = self.running_batch

                self.cur_batch = mbs[mb_id]
                if self.cur_batch:
                    server_is_idle = False
                    result = self.run_batch(self.cur_batch)

1057
                # (last rank) send the outputs to the next step
1058
1059
                if self.pp_group.is_last_rank:
                    if self.cur_batch:
1060
                        next_token_ids = result.next_token_ids
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
                        if self.cur_batch.return_logprob:
                            pp_outputs = PPProxyTensors(
                                {
                                    "next_token_ids": next_token_ids,
                                    "extend_input_len_per_req": result.extend_input_len_per_req,
                                    "extend_logprob_start_len_per_req": result.extend_logprob_start_len_per_req,
                                }
                                | (
                                    {
                                        f"logits_output.{k}": v
                                        for k, v in result.logits_output.__dict__.items()
                                    }
                                    if result.logits_output is not None
                                    else {}
                                )
                            )
                        else:
                            pp_outputs = PPProxyTensors(
                                {
                                    "next_token_ids": next_token_ids,
                                }
                            )
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
                        # send the output from the last round to let the next stage worker run post processing
                        self.pp_group.send_tensor_dict(
                            pp_outputs.tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                # receive outputs and post-process (filter finished reqs) the coming microbatch
                next_mb_id = (mb_id + 1) % self.pp_size
                next_pp_outputs = None
                if mbs[next_mb_id] is not None:
                    next_pp_outputs: Optional[PPProxyTensors] = PPProxyTensors(
                        self.pp_group.recv_tensor_dict(
                            all_gather_group=self.attn_tp_group
                        )
                    )
                    mbs[next_mb_id].output_ids = next_pp_outputs["next_token_ids"]
1099
1100
1101
1102
1103
1104
1105
1106
1107
                    logits_output_args = {
                        k[len("logits_output.") :]: v
                        for k, v in next_pp_outputs.tensors.items()
                        if k.startswith("logits_output.")
                    }
                    if len(logits_output_args) > 0:
                        logits_output = LogitsProcessorOutput(**logits_output_args)
                    else:
                        logits_output = None
1108
1109

                    output_result = GenerationBatchResult.from_pp_proxy(
1110
                        logits_output=logits_output,
1111
                        next_pp_outputs=next_pp_outputs,
1112
                        can_run_cuda_graph=result.can_run_cuda_graph,
1113
1114
1115
1116
                    )
                    self.process_batch_result(mbs[next_mb_id], output_result)
                    last_mbs[next_mb_id] = mbs[next_mb_id]

1117
                # (not last rank)
1118
                if not self.pp_group.is_last_rank:
1119
1120
                    # carry the outputs to the next stage
                    # send the outputs from the last round to let the next stage worker run post processing
1121
1122
1123
1124
1125
1126
1127
                    if pp_outputs:
                        self.pp_group.send_tensor_dict(
                            pp_outputs.tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                    # send out reqs to the next stage
1128
                    dp_offset = self.attn_dp_rank * self.attn_tp_size
1129
1130
1131
1132
                    if self.attn_tp_rank == 0:
                        point_to_point_pyobj(
                            recv_reqs,
                            self.pp_rank * self.tp_size + dp_offset,
1133
                            self.world_group.device_group,
1134
1135
1136
1137
1138
1139
                            self.pp_rank * self.tp_size + dp_offset,
                            (self.pp_rank + 1) * self.tp_size + dp_offset,
                        )

                    # send out proxy tensors to the next stage
                    if self.cur_batch:
1140
1141
                        # FIXME(lsyin): remove this assert
                        assert result.pp_hidden_states_proxy_tensors.tensors is not None
1142
                        self.pp_group.send_tensor_dict(
1143
                            result.pp_hidden_states_proxy_tensors.tensors,
1144
1145
1146
1147
1148
1149
1150
                            all_gather_group=self.attn_tp_group,
                        )

                pp_outputs = next_pp_outputs

            # When the server is idle, self-check and re-init some states
            if server_is_idle:
1151
1152
                # When the server is idle, do self-check and re-init some states
                self.self_check_during_idle()
1153

1154
1155
    def recv_requests(self) -> List[Req]:
        """Receive results at tp_rank = 0 and broadcast it to all other TP ranks."""
1156
1157
1158
1159
1160
1161
1162
1163

        if self.recv_skipper is not None:
            last_forward_mode = (
                self.last_batch.forward_mode if self.last_batch is not None else None
            )
            if not self.recv_skipper.handle(last_forward_mode):
                return []

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
        if self.pp_rank == 0:
            if self.attn_tp_rank == 0:
                recv_reqs = []

                while True:
                    try:
                        recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                    except zmq.ZMQError:
                        break
                    recv_reqs.append(recv_req)

                while True:
                    try:
                        recv_rpc = self.recv_from_rpc.recv_pyobj(zmq.NOBLOCK)
                    except zmq.ZMQError:
                        break
                    recv_reqs.append(recv_rpc)
            else:
                recv_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1183
        else:
1184
            if self.attn_tp_rank == 0:
1185
                dp_offset = self.attn_dp_rank * self.attn_tp_size
1186
1187
1188
                recv_reqs = point_to_point_pyobj(
                    [],
                    self.pp_rank * self.tp_size + dp_offset,
1189
                    self.world_group.device_group,
1190
1191
1192
1193
1194
                    (self.pp_rank - 1) * self.tp_size + dp_offset,
                    self.pp_rank * self.tp_size + dp_offset,
                )
            else:
                recv_reqs = None
1195

fzyzcjy's avatar
fzyzcjy committed
1196
1197
1198
        if self.input_blocker is not None:
            recv_reqs = self.input_blocker.handle(recv_reqs)

1199
1200
1201
1202
1203
1204
        if self.server_args.enable_dp_attention:
            if self.attn_tp_rank == 0:
                work_reqs = [
                    req
                    for req in recv_reqs
                    if isinstance(
1205
1206
1207
1208
1209
1210
1211
                        req,
                        (
                            TokenizedGenerateReqInput,
                            TokenizedEmbeddingReqInput,
                            BatchTokenizedGenerateReqInput,
                            BatchTokenizedEmbeddingReqInput,
                        ),
1212
1213
1214
1215
1216
1217
                    )
                ]
                control_reqs = [
                    req
                    for req in recv_reqs
                    if not isinstance(
1218
1219
1220
1221
1222
1223
1224
                        req,
                        (
                            TokenizedGenerateReqInput,
                            TokenizedEmbeddingReqInput,
                            BatchTokenizedGenerateReqInput,
                            BatchTokenizedEmbeddingReqInput,
                        ),
1225
1226
1227
1228
1229
1230
1231
1232
1233
                    )
                ]
            else:
                work_reqs = None
                control_reqs = None

            if self.attn_tp_size != 1:
                work_reqs = broadcast_pyobj(
                    work_reqs,
1234
                    self.attn_tp_group.rank,
1235
                    self.attn_tp_cpu_group,
1236
                    src=self.attn_tp_group.ranks[0],
1237
1238
1239
                )
            if self.tp_size != 1:
                control_reqs = broadcast_pyobj(
1240
1241
1242
1243
                    control_reqs,
                    self.tp_group.rank,
                    self.tp_cpu_group,
                    src=self.tp_group.ranks[0],
1244
1245
1246
                )
            recv_reqs = work_reqs + control_reqs
        elif self.tp_size != 1:
1247
1248
1249
1250
1251
1252
            recv_reqs = broadcast_pyobj(
                recv_reqs,
                self.tp_group.rank,
                self.tp_cpu_group,
                src=self.tp_group.ranks[0],
            )
1253

1254
1255
1256
1257
1258
1259
1260
        if self.enable_trace:
            for req in recv_reqs:
                if isinstance(
                    req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                ):
                    trace_set_proc_propagate_context(req.rid, req.trace_context)
                    trace_slice_start("", req.rid, anonymous=True)
1261

1262
1263
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
1264
    def process_input_requests(self, recv_reqs: List):
1265
        for recv_req in recv_reqs:
1266
1267
            # If it is a health check generation request and there are running requests, ignore it.
            if is_health_check_generate_req(recv_req) and (
1268
1269
1270
                self.chunked_req is not None
                or not self.running_batch.is_empty()
                or len(self.offload_tags) > 0
1271
1272
1273
1274
            ):
                self.return_health_check_ct += 1
                continue

1275
1276
            # If it is a MultiTokenizerWrapper, unwrap it and handle the inner request.
            if isinstance(recv_req, MultiTokenizerWrapper):
1277
1278
1279
1280
                worker_id = recv_req.worker_id
                recv_req = recv_req.obj
                output = self._request_dispatcher(recv_req)
                if output is not None:
1281
                    output = MultiTokenizerWrapper(worker_id, output)
1282
1283
1284
                    self.send_to_tokenizer.send_pyobj(output)
                continue

1285
            output = self._request_dispatcher(recv_req)
1286
            if output is not None:
1287
1288
1289
1290
1291
                if isinstance(output, RpcReqOutput):
                    if self.recv_from_rpc is not None:
                        self.recv_from_rpc.send_pyobj(output)
                else:
                    self.send_to_tokenizer.send_pyobj(output)
1292

1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
    def init_req_max_new_tokens(self, req):
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
            self.max_req_len - len(req.origin_input_ids) - 1,
        )

1303
1304
1305
1306
    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
1307
        # Create a new request
1308
1309
1310
1311
1312
        if (
            recv_req.session_params is None
            or recv_req.session_params.id is None
            or recv_req.session_params.id not in self.sessions
        ):
Rin Intachuen's avatar
Rin Intachuen committed
1313
1314
1315
1316
1317
1318
            if recv_req.input_embeds is not None:
                # Generate fake input_ids based on the length of input_embeds
                seq_length = len(recv_req.input_embeds)
                fake_input_ids = [1] * seq_length
                recv_req.input_ids = fake_input_ids

1319
1320
1321
1322
            if recv_req.bootstrap_port is None:
                # Use default bootstrap port
                recv_req.bootstrap_port = self.server_args.disaggregation_bootstrap_port

1323
1324
1325
1326
1327
            req = Req(
                recv_req.rid,
                recv_req.input_text,
                recv_req.input_ids,
                recv_req.sampling_params,
Lianmin Zheng's avatar
Lianmin Zheng committed
1328
1329
                return_logprob=recv_req.return_logprob,
                top_logprobs_num=recv_req.top_logprobs_num,
1330
                token_ids_logprob=recv_req.token_ids_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
1331
                stream=recv_req.stream,
1332
                lora_id=recv_req.lora_id,
Rin Intachuen's avatar
Rin Intachuen committed
1333
                input_embeds=recv_req.input_embeds,
Lianmin Zheng's avatar
Lianmin Zheng committed
1334
                custom_logit_processor=recv_req.custom_logit_processor,
1335
                return_hidden_states=recv_req.return_hidden_states,
1336
                eos_token_ids=self.model_config.hf_eos_token_id,
1337
                bootstrap_host=recv_req.bootstrap_host,
1338
                bootstrap_port=recv_req.bootstrap_port,
1339
                bootstrap_room=recv_req.bootstrap_room,
1340
                disagg_mode=self.disaggregation_mode,
1341
                data_parallel_rank=recv_req.data_parallel_rank,
1342
                vocab_size=self.model_config.vocab_size,
1343
                priority=recv_req.priority,
1344
1345
1346
                metrics_collector=(
                    self.metrics_collector if self.enable_metrics else None
                ),
1347
1348
            )
            req.tokenizer = self.tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
1349

1350
1351
1352
            if self.disaggregation_mode != DisaggregationMode.NULL:
                # Invalid request for disaggregated mode
                if recv_req.bootstrap_room is None:
1353
                    error_msg = (
1354
1355
1356
                        f"Invalid request: Disaggregated request received without "
                        f"boostrap room id. {req.rid=}"
                    )
1357
                    logger.error(error_msg)
1358
                    prepare_abort(req, error_msg, status_code=HTTPStatus.BAD_REQUEST)
1359
1360
1361
                    self.stream_output([req], req.return_logprob)
                    return

1362
1363
1364
1365
            if (
                recv_req.session_params is not None
                and recv_req.session_params.id is not None
            ):
1366
                req.set_finish_with_abort(
1367
                    f"Invalid request: session id {recv_req.session_params.id} does not exist"
1368
                )
1369
                self.init_req_max_new_tokens(req)
1370
                self._add_request_to_queue(req)
1371
1372
                return
        else:
1373
1374
            # Create a new request from a previous session
            session = self.sessions[recv_req.session_params.id]
1375
            req = session.create_req(recv_req, self.tokenizer)
1376
            if isinstance(req.finished_reason, FINISH_ABORT):
1377
                self.init_req_max_new_tokens(req)
1378
                self._add_request_to_queue(req)
1379
                return
1380

1381
        # Handle multimodal inputs
Mick's avatar
Mick committed
1382
1383
        if recv_req.mm_inputs is not None:
            image_inputs = MultimodalInputs.from_dict(recv_req.mm_inputs)
1384
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
1385
            req.origin_input_ids = self.pad_input_ids_func(
1386
                req.origin_input_ids, image_inputs
1387
            )
1388
            req.extend_image_inputs(image_inputs)
1389

1390
            if len(req.origin_input_ids) >= self.max_req_input_len:
1391
1392
1393
1394
1395
                req.set_finish_with_abort(
                    error_msg=(
                        "Multimodal prompt is too long after expanding multimodal tokens. "
                        f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                    )
1396
                )
1397
                self.init_req_max_new_tokens(req)
1398
                self._add_request_to_queue(req)
1399
1400
                return

1401
1402
1403
        # initialize before returning
        self.init_req_max_new_tokens(req)

1404
        # Validate prompt length
1405
1406
1407
1408
1409
1410
        error_msg = validate_input_length(
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
        if error_msg:
1411
            req.set_finish_with_abort(error_msg)
1412
            self._add_request_to_queue(req)
1413
            return
1414

1415
        # Copy more attributes
1416
        if recv_req.logprob_start_len == -1 or not recv_req.return_logprob:
1417
            # By default, only return the logprobs for output tokens
1418
1419
1420
1421
1422
1423
1424
            # For prefill-only requests with logprob_start_len == -1, set logprob_start_len beyond input sequence
            # to skip input logprob computation entirely
            if req.is_prefill_only:
                req.logprob_start_len = len(req.origin_input_ids)
            else:
                # TODO: For text generation, evaluate setting logprob_start_len to len(req.origin_input_ids) as well
                req.logprob_start_len = len(req.origin_input_ids) - 1
1425
1426
1427
        else:
            req.logprob_start_len = recv_req.logprob_start_len

1428
1429
1430
        if not req.is_prefill_only and req.logprob_start_len >= len(
            req.origin_input_ids
        ):
1431
            error_msg = f"{req.logprob_start_len=} is higher than the number of input tokens {len(req.origin_input_ids)=}. Please use a smaller logprob_start_len."
1432
            req.logprob_start_len = len(req.origin_input_ids) - 1
1433
            req.set_finish_with_abort(error_msg)
1434
1435
1436
            self._add_request_to_queue(req)
            return

1437
1438
1439
1440
1441
        # Init grammar cache for this request
        add_to_grammar_queue = False
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
1442
            or req.sampling_params.ebnf is not None
1443
            or req.sampling_params.structural_tag is not None
1444
        ):
1445
1446
1447
            if self.grammar_backend is None:
                error_msg = "Grammar-based generation (json_schema, regex, ebnf, structural_tag) is not supported when the server is launched with --grammar-backend none"
                req.set_finish_with_abort(error_msg)
1448
            else:
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
                if req.sampling_params.json_schema is not None:
                    key = ("json", req.sampling_params.json_schema)
                elif req.sampling_params.regex is not None:
                    key = ("regex", req.sampling_params.regex)
                elif req.sampling_params.ebnf is not None:
                    key = ("ebnf", req.sampling_params.ebnf)
                elif req.sampling_params.structural_tag:
                    key = ("structural_tag", req.sampling_params.structural_tag)

                value, cache_hit = self.grammar_backend.get_cached_or_future_value(key)
                req.grammar = value

                if not cache_hit:
                    req.grammar_key = key
                    add_to_grammar_queue = True
                else:
                    if value is INVALID_GRAMMAR_OBJ:  # We hit a cached invalid grammar.
                        error_msg = f"Invalid grammar request with cache hit: {key=}"
                        req.set_finish_with_abort(error_msg)
1468
1469

        if add_to_grammar_queue:
1470
1471
            self.grammar_queue.append(req)
        else:
1472
1473
            self._add_request_to_queue(req)

1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
    def handle_batch_generate_request(
        self,
        recv_req: BatchTokenizedGenerateReqInput,
    ):
        """Handle optimized batch generate request."""
        logger.debug(f"Processing batch generate request with {len(recv_req)} requests")

        # Process each request in the batch
        for tokenized_req in recv_req:
            self.handle_generate_request(tokenized_req)

1485
1486
1487
    def _prefetch_kvcache(self, req: Req):
        if self.enable_hicache_storage:
            req.init_next_round_input(self.tree_cache)
1488
1489
1490
1491
1492
            if req.last_node.backuped:
                # only to initiate the prefetch if the last node is backuped
                # otherwise, the allocated GPU memory must be locked for integrity
                last_hash = req.last_host_node.get_last_hash_value()
                matched_len = len(req.prefix_indices) + req.host_hit_length
1493
                new_input_tokens = req.fill_ids[matched_len:]
1494
1495
1496
1497
1498
1499

                prefix_keys = (
                    req.last_node.get_prefix_hash_values(req.last_node.parent)
                    if self.tree_cache.hicache_storage_pass_prefix_keys
                    else None
                )
1500
                self.tree_cache.prefetch_from_storage(
1501
1502
1503
1504
1505
                    req.rid,
                    req.last_host_node,
                    new_input_tokens,
                    last_hash,
                    prefix_keys,
1506
1507
                )

1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
    def _add_request_to_queue(self, req: Req, is_retracted: bool = False):
        if self.disaggregation_mode == DisaggregationMode.NULL:
            self._set_or_validate_priority(req)
            if self._abort_on_queued_limit(req):
                return
            self._prefetch_kvcache(req)
            self.waiting_queue.append(req)
            req.time_stats.wait_queue_entry_time = time.perf_counter()
            trace_slice_end("process req", req.rid, auto_next_anon=True)
        elif self.disaggregation_mode == DisaggregationMode.PREFILL:
            self._prefetch_kvcache(req)
            self.disagg_prefill_bootstrap_queue.add(
                req, self.model_config.num_key_value_heads
Byron Hsu's avatar
Byron Hsu committed
1521
            )
1522
            req.time_stats.prefill_bootstrap_queue_entry_time = time.perf_counter()
1523
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
1524
1525
1526
            self.disagg_decode_prealloc_queue.add(req, is_retracted=is_retracted)
            if not is_retracted:
                req.time_stats.decode_prealloc_queue_entry_time = time.perf_counter()
Byron Hsu's avatar
Byron Hsu committed
1527
        else:
1528
            raise ValueError(f"Invalid {self.disaggregation_mode=}")
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543

    def _set_or_validate_priority(self, req: Req):
        """Set the default priority value, or abort the request based on the priority scheduling mode."""
        if self.enable_priority_scheduling and req.priority is None:
            if self.schedule_low_priority_values_first:
                req.priority = sys.maxsize
            else:
                req.priority = -sys.maxsize - 1
        elif not self.enable_priority_scheduling and req.priority is not None:
            abort_req = AbortReq(
                finished_reason={
                    "type": "abort",
                    "status_code": HTTPStatus.SERVICE_UNAVAILABLE,
                    "message": "Using priority is disabled for this server. Please send a new request without a priority.",
                },
1544
                rid=req.rid,
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
            )
            self.send_to_tokenizer.send_pyobj(abort_req)

    def _abort_on_queued_limit(self, recv_req: Req) -> bool:
        """Abort an incoming or existing request if the waiting queue is full. Returns True if the incoming request is aborted."""
        if (
            self.max_queued_requests is None
            or len(self.waiting_queue) + 1 <= self.max_queued_requests
        ):
            return False

        # Reject the incoming request by default.
        req_to_abort = recv_req
        message = "The request queue is full."
        if self.enable_priority_scheduling:
            # With priority scheduling, consider aboritng an existing request based on the priority.
            # direction = 1  => smaller number = higher priority; -1 => larger number = higher priority.
            # max(...) + (direction * priority, queue_time_start) picks the least-preferred request.
            # Tie: later queue_time_start (newer) is evicted first. Preempt only if strictly better.
            direction = 1 if self.schedule_low_priority_values_first else -1
            key_fn = lambda item: (
                direction * item[1].priority,
1567
                item[1].time_stats.wait_queue_entry_time,
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
            )
            idx, candidate_req = max(enumerate(self.waiting_queue), key=key_fn)
            abort_existing_req = (
                direction * recv_req.priority < direction * candidate_req.priority
            )
            if abort_existing_req:
                self.waiting_queue.pop(idx)
                req_to_abort = candidate_req
                message = "The request is aborted by a higher priority request."

        self.send_to_tokenizer.send_pyobj(
            AbortReq(
                finished_reason={
                    "type": "abort",
                    "status_code": HTTPStatus.SERVICE_UNAVAILABLE,
                    "message": message,
                },
1585
                rid=req_to_abort.rid,
1586
1587
1588
            )
        )
        return req_to_abort.rid == recv_req.rid
1589
1590
1591

    def handle_embedding_request(
        self,
1592
        recv_req: TokenizedEmbeddingReqInput,
1593
1594
1595
1596
1597
1598
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
woodx's avatar
woodx committed
1599
            token_type_ids=recv_req.token_type_ids,
1600
            priority=recv_req.priority,
1601
1602
1603
        )
        req.tokenizer = self.tokenizer

1604
1605
        # Handle multimodal inputs
        if recv_req.image_inputs is not None:
Mick's avatar
Mick committed
1606
            image_inputs = MultimodalInputs.from_dict(recv_req.image_inputs)
1607
1608
1609
1610
1611
1612
1613
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
            req.origin_input_ids = self.pad_input_ids_func(
                req.origin_input_ids, image_inputs
            )
            req.extend_image_inputs(image_inputs)

            if len(req.origin_input_ids) >= self.max_req_input_len:
1614
1615
1616
1617
1618
                req.set_finish_with_abort(
                    error_msg=(
                        "Multimodal prompt is too long after expanding multimodal tokens. "
                        f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                    )
1619
                )
1620
                self._add_request_to_queue(req)
1621
1622
                return

1623
        # Validate prompts length
1624
        error_msg = validate_input_length(
1625
1626
1627
1628
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
1629
        if error_msg:
1630
            self._add_request_to_queue(req)
1631
            return
1632

1633
1634
        # Copy more attributes
        req.logprob_start_len = len(req.origin_input_ids) - 1
1635
        self._add_request_to_queue(req)
1636

1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
    def handle_batch_embedding_request(
        self,
        recv_req: BatchTokenizedEmbeddingReqInput,
    ):
        """Handle optimized batch embedding request."""
        logger.debug(
            f"Processing batch embedding request with {len(recv_req)} requests"
        )

        # Process each request in the batch
        for tokenized_req in recv_req:
            self.handle_embedding_request(tokenized_req)

1650
1651
1652
1653
1654
    def self_check_during_idle(self):
        self.check_memory()
        self.check_tree_cache()
        self.new_token_ratio = self.init_new_token_ratio
        self.maybe_sleep_on_idle()
1655

Lianmin Zheng's avatar
Lianmin Zheng committed
1656
    def check_memory(self):
Hanming Lu's avatar
Hanming Lu committed
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
        if self.is_hybrid:
            (
                full_num_used,
                swa_num_used,
                _,
                _,
                full_available_size,
                full_evictable_size,
                swa_available_size,
                swa_evictable_size,
            ) = self._get_swa_token_info()
            memory_leak = full_num_used != 0 or swa_num_used != 0
            token_msg = (
                f"{self.full_tokens_per_layer=}, {full_available_size=}, {full_evictable_size=}, {self.tree_cache.full_protected_size()=}\n"
                f"{self.swa_tokens_per_layer=}, {swa_available_size=}, {swa_evictable_size=}, {self.tree_cache.swa_protected_size()=}\n"
            )
tarinkk's avatar
tarinkk committed
1673
        else:
Hanming Lu's avatar
Hanming Lu committed
1674
1675
1676
            _, _, available_size, evictable_size = self._get_token_info()
            protected_size = self.tree_cache.protected_size()
            memory_leak = (available_size + evictable_size) != (
1677
1678
1679
                # self.max_total_num_tokens
                # if not self.enable_hierarchical_cache
                # else self.max_total_num_tokens - protected_size
Hanming Lu's avatar
Hanming Lu committed
1680
                self.max_total_num_tokens
1681
                - protected_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1682
            )
Hanming Lu's avatar
Hanming Lu committed
1683
1684
1685
1686
            token_msg = f"{self.max_total_num_tokens=}, {available_size=}, {evictable_size=}, {protected_size=}\n"

        if memory_leak:
            msg = "token_to_kv_pool_allocator memory leak detected! " f"{token_msg}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1687
            raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1688

1689
1690
1691
1692
1693
1694
1695
1696
        if self.disaggregation_mode == DisaggregationMode.DECODE:
            req_total_size = (
                self.req_to_token_pool.size + self.req_to_token_pool.pre_alloc_size
            )
        else:
            req_total_size = self.req_to_token_pool.size

        if len(self.req_to_token_pool.free_slots) != req_total_size:
1697
            msg = (
1698
                "req_to_token_pool memory leak detected!"
1699
1700
                f"available_size={len(self.req_to_token_pool.free_slots)}, "
                f"total_size={self.req_to_token_pool.size}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1701
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1702
            raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1703

1704
1705
        if (
            self.enable_metrics
1706
            and self.current_scheduler_metrics_enabled()
1707
            and time.perf_counter() > self.metrics_collector.last_log_time + 30
1708
1709
        ):
            # During idle time, also collect metrics every 30 seconds.
Hanming Lu's avatar
Hanming Lu committed
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
            if self.is_hybrid:
                (
                    full_num_used,
                    swa_num_used,
                    full_token_usage,
                    swa_token_usage,
                    _,
                    _,
                    _,
                    _,
                ) = self._get_swa_token_info()
                num_used = max(full_num_used, swa_num_used)
                token_usage = max(full_token_usage, swa_token_usage)
            else:
                num_used, token_usage, _, _ = self._get_token_info()
Lianmin Zheng's avatar
Lianmin Zheng committed
1725
            num_running_reqs = len(self.running_batch.reqs)
1726
1727
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
Hanming Lu's avatar
Hanming Lu committed
1728
            self.stats.token_usage = round(token_usage, 2)
1729
1730
            self.stats.gen_throughput = 0
            self.stats.num_queue_reqs = len(self.waiting_queue)
1731
            self.stats.num_grammar_queue_reqs = len(self.grammar_queue)
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
            if self.disaggregation_mode == DisaggregationMode.PREFILL:
                self.stats.num_prefill_prealloc_queue_reqs = len(
                    self.disagg_prefill_bootstrap_queue.queue
                )
                self.stats.num_prefill_inflight_queue_reqs = len(
                    self.disagg_prefill_inflight_queue
                )
            if self.disaggregation_mode == DisaggregationMode.DECODE:
                self.stats.num_decode_prealloc_queue_reqs = len(
                    self.disagg_decode_prealloc_queue.queue
                )
                self.stats.num_decode_transfer_queue_reqs = len(
                    self.disagg_decode_transfer_queue.queue
                )
1746
            self.metrics_collector.log_stats(self.stats)
1747
        self._publish_kv_events()
1748

Hanming Lu's avatar
Hanming Lu committed
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
    def check_tree_cache(self):
        if self.is_hybrid and isinstance(self.tree_cache, SWARadixCache):
            self.tree_cache.sanity_check()

    def _get_token_info(self):
        available_size = self.token_to_kv_pool_allocator.available_size()
        evictable_size = self.tree_cache.evictable_size()
        num_used = self.max_total_num_tokens - (available_size + evictable_size)
        token_usage = num_used / self.max_total_num_tokens
        return num_used, token_usage, available_size, evictable_size

    def _get_swa_token_info(self):
        full_available_size = self.token_to_kv_pool_allocator.full_available_size()
        full_evictable_size = self.tree_cache.full_evictable_size()
        swa_available_size = self.token_to_kv_pool_allocator.swa_available_size()
        swa_evictable_size = self.tree_cache.swa_evictable_size()
        full_num_used = self.full_tokens_per_layer - (
            full_available_size + full_evictable_size
        )
        swa_num_used = self.swa_tokens_per_layer - (
            swa_available_size + swa_evictable_size
        )
        full_token_usage = full_num_used / self.full_tokens_per_layer
        swa_token_usage = swa_num_used / self.swa_tokens_per_layer
        return (
            full_num_used,
            swa_num_used,
            full_token_usage,
            swa_token_usage,
            full_available_size,
            full_evictable_size,
            swa_available_size,
            swa_evictable_size,
        )

1784
    def get_next_batch_to_run(self) -> Optional[ScheduleBatch]:
1785
        # Merge the prefill batch into the running batch
1786
1787
1788
1789
1790
        chunked_req_to_exclude = set()
        if self.chunked_req:
            # Move the chunked request out of the batch so that we can merge
            # only finished requests to running_batch.
            chunked_req_to_exclude.add(self.chunked_req)
1791
            self.tree_cache.cache_unfinished_req(self.chunked_req, chunked=True)
1792
            # chunked request keeps its rid but will get a new req_pool_idx
1793
            if self.tp_worker.worker.model_runner.mambaish_config is not None:
Yi Zhang's avatar
Yi Zhang committed
1794
1795
1796
1797
1798
                self.req_to_token_pool.free(
                    self.chunked_req.req_pool_idx, free_mamba_cache=False
                )
            else:
                self.req_to_token_pool.free(self.chunked_req.req_pool_idx)
Lianmin Zheng's avatar
Lianmin Zheng committed
1799
        if self.last_batch and self.last_batch.forward_mode.is_extend():
1800
1801
1802
1803
            if self.last_batch.chunked_req is not None:
                # In the context pipeline parallelism, after the last chunk, the current microbatch still track outdated chunked_req.
                # We need to discard it.
                chunked_req_to_exclude.add(self.last_batch.chunked_req)
Lianmin Zheng's avatar
Lianmin Zheng committed
1804

1805
            # Filter batch
1806
            last_bs = self.last_batch.batch_size()
1807
1808
1809
            self.last_batch.filter_batch(
                chunked_req_to_exclude=list(chunked_req_to_exclude)
            )
1810
            if self.last_batch.batch_size() < last_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1811
                self.running_batch.batch_is_full = False
1812

1813
1814
1815
            # Merge the new batch into the running batch.
            # For prefill-only batch, we can avoid going through decoding step.
            if not self.last_batch.is_empty() and not self.last_batch.is_prefill_only:
Lianmin Zheng's avatar
Lianmin Zheng committed
1816
                if self.running_batch.is_empty():
1817
1818
                    self.running_batch = self.last_batch
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1819
                    # Merge running_batch with prefill batch
1820
                    self.running_batch.merge_batch(self.last_batch)
1821

1822
        new_batch = self.get_new_batch_prefill()
1823

1824
1825
1826
1827
1828
        need_dp_attn_preparation = require_mlp_sync(self.server_args)

        if need_dp_attn_preparation and not self.spec_algorithm.is_none():
            # In speculative decoding, prefill batches and decode batches cannot be processed in the same DP attention group.
            # We prepare idle batches in advance to skip preparing decode batches when there are prefill batches in the group.
1829
            new_batch = self.prepare_mlp_sync_batch(new_batch)
1830
1831
1832
            need_dp_attn_preparation = new_batch is None

        if new_batch is not None:
1833
1834
1835
1836
            # Run prefill first if possible
            ret = new_batch
        else:
            # Run decode
Lianmin Zheng's avatar
Lianmin Zheng committed
1837
            if not self.running_batch.is_empty():
1838
                self.running_batch = self.update_running_batch(self.running_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1839
1840
1841
                ret = self.running_batch if not self.running_batch.is_empty() else None
            else:
                ret = None
1842

1843
1844
        # Handle DP attention
        if need_dp_attn_preparation:
1845
            ret = self.prepare_mlp_sync_batch(ret)
1846
1847

        return ret
1848

1849
    def get_num_allocatable_reqs(self, running_bs):
1850
        res = global_server_args_dict["pp_max_micro_batch_size"] - running_bs
1851
1852
1853
1854
        if self.pp_size > 1:
            res = min(res, self.req_to_token_pool.available_size())
        return res

Lianmin Zheng's avatar
Lianmin Zheng committed
1855
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
Lianmin Zheng's avatar
Lianmin Zheng committed
1856
        # Check if the grammar is ready in the grammar queue
1857
        if self.grammar_queue:
1858
            self.move_ready_grammar_requests()
1859

1860
1861
1862
1863
        if self.try_preemption:
            # Reset batch_is_full to try preemption with a prefill adder.
            self.running_batch.batch_is_full = False

Lianmin Zheng's avatar
Lianmin Zheng committed
1864
1865
        # Handle the cases where prefill is not allowed
        if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1866
            self.running_batch.batch_is_full or len(self.waiting_queue) == 0
1867
        ) and self.chunked_req is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1868
1869
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
1870
        running_bs = len(self.running_batch.reqs)
1871
        # Ignore the check if self.chunked_req is not None.
1872
1873
1874
1875
        # In the non-PP case, when self.chunked_req is not None, num_allocatable_reqs should always be greater than 0,
        # as the space for the chunked request has just been released.
        # In PP case, a chunked req can start in one microbatch and end in another microbatch, so the max_running_requests per microbatch should not be strict.
        # Instead, we should always allow chunked request to be added, otherwise, there will be a memory leak.
1876
1877
1878
1879
1880
        if (
            self.get_num_allocatable_reqs(running_bs) <= 0
            and not self.chunked_req
            and not self.try_preemption
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1881
            self.running_batch.batch_is_full = True
1882
1883
            return None

1884
        if self.enable_hierarchical_cache:
1885
            self.tree_cache.check_hicache_events()
1886

1887
        # Get priority queue
1888
        self.policy.calc_priority(self.waiting_queue)
1889

Lianmin Zheng's avatar
Lianmin Zheng committed
1890
        # Prefill policy
1891
        adder = PrefillAdder(
1892
            self.page_size,
1893
            self.tree_cache,
1894
            self.token_to_kv_pool_allocator,
1895
1896
1897
1898
            self.running_batch,
            self.new_token_ratio,
            self.max_prefill_tokens,
            self.chunked_prefill_size,
1899
            running_bs if self.is_mixed_chunk else 0,
1900
            self.priority_scheduling_preemption_threshold,
1901
1902
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1903
        if self.chunked_req is not None:
1904
1905
            self.chunked_req.init_next_round_input()
            self.chunked_req = adder.add_chunked_req(self.chunked_req)
1906

1907
        if self.enable_lora:
1908
            lora_set = set([req.lora_id for req in self.running_batch.reqs])
Lianmin Zheng's avatar
Lianmin Zheng committed
1909

1910
        # Get requests from the waiting queue to a new prefill batch
1911
        for req in self.waiting_queue:
1912
1913
1914
1915
1916

            if self.enable_lora and not self.tp_worker.can_run_lora_batch(
                lora_set
                | set([req.lora_id for req in adder.can_run_list])
                | set([req.lora_id])
1917
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1918
                self.running_batch.batch_is_full = True
1919
1920
                break

1921
            running_bs = len(self.running_batch.reqs) - len(adder.preempt_list)
1922
            if len(adder.can_run_list) >= self.get_num_allocatable_reqs(running_bs):
Lianmin Zheng's avatar
Lianmin Zheng committed
1923
                self.running_batch.batch_is_full = True
Byron Hsu's avatar
Byron Hsu committed
1924
1925
1926
1927
1928
            if self.disaggregation_mode == DisaggregationMode.PREFILL:
                # In prefill mode, prealloc queue and transfer queue can also take memory,
                # so we need to check if the available size for the actual available size.
                if len(adder.can_run_list) >= self.req_to_token_pool.available_size():
                    self.running_batch.batch_is_full = True
1929
1930
1931
1932
1933

            if self.running_batch.batch_is_full:
                if not self.try_preemption:
                    break
                if not adder.preempt_to_schedule(req, self.server_args):
Byron Hsu's avatar
Byron Hsu committed
1934
1935
                    break

1936
            if self.enable_hicache_storage:
pansicheng's avatar
pansicheng committed
1937
1938
1939
1940
                prefetch_done = self.tree_cache.check_prefetch_progress(req.rid)
                if not prefetch_done:
                    # skip staging requests that are ongoing prefetch
                    continue
1941

1942
            req.init_next_round_input(self.tree_cache)
1943
1944
1945
1946
1947
            res = adder.add_one_req(
                req,
                has_chunked_req=(self.chunked_req is not None),
                truncation_align_size=self.truncation_align_size,
            )
1948

1949
1950
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
1951
1952
                    if self.enable_hierarchical_cache:
                        # Set batch_is_full after making sure there are requests that can be served
Lianmin Zheng's avatar
Lianmin Zheng committed
1953
1954
                        self.running_batch.batch_is_full = len(
                            adder.can_run_list
1955
                        ) > 0 or (not self.running_batch.is_empty())
1956
                    else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1957
                        self.running_batch.batch_is_full = True
1958
1959
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1960
        # Update waiting queue
1961
        can_run_list: List[Req] = adder.can_run_list
Lianmin Zheng's avatar
Lianmin Zheng committed
1962
1963
        if len(can_run_list) == 0:
            return None
1964
1965
1966
1967

        if self.enable_metrics:
            # only record queue time when enable_metrics is True to avoid overhead
            for req in can_run_list:
1968
                req.add_latency(RequestStage.PREFILL_WAITING)
1969

Lianmin Zheng's avatar
Lianmin Zheng committed
1970
1971
1972
        self.waiting_queue = [
            x for x in self.waiting_queue if x not in set(can_run_list)
        ]
1973
        if adder.preempt_list:
1974
1975
            for req in adder.preempt_list:
                self._add_request_to_queue(req)
1976

1977
1978
1979
        if adder.new_chunked_req is not None:
            assert self.chunked_req is None
            self.chunked_req = adder.new_chunked_req
1980

1981
1982
        if self.chunked_req:
            self.chunked_req.is_chunked += 1
Lianmin Zheng's avatar
Lianmin Zheng committed
1983

1984
        # Print stats
1985
        if self.current_scheduler_metrics_enabled():
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
            self.log_prefill_stats(adder, can_run_list, running_bs, 0)

        for req in can_run_list:
            if req.time_stats.forward_entry_time == 0:
                # Avoid update chunked request many times
                req.time_stats.forward_entry_time = time.perf_counter()
                if self.enable_metrics:
                    self.metrics_collector.observe_queue_time(
                        req.time_stats.get_queueing_time(),
                    )
1996

Lianmin Zheng's avatar
Lianmin Zheng committed
1997
        # Create a new batch
1998
1999
2000
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
2001
            self.token_to_kv_pool_allocator,
2002
            self.tree_cache,
2003
            self.model_config,
2004
            self.enable_overlap,
2005
            self.spec_algorithm,
2006
            chunked_req=self.chunked_req,
2007
        )
2008
2009
        if self.enable_hierarchical_cache:
            # todo (zhiqiang): disable cuda graph execution if hicache loading triggered
2010
2011
2012
            new_batch.hicache_consumer_index = (
                self.tree_cache.ready_to_load_host_cache()
            )
2013

2014
        new_batch.prepare_for_extend()
2015

Lianmin Zheng's avatar
Lianmin Zheng committed
2016
        # Mixed-style chunked prefill
2017
2018
        if (
            self.is_mixed_chunk
Lianmin Zheng's avatar
Lianmin Zheng committed
2019
            and not self.running_batch.is_empty()
2020
2021
2022
            and not (new_batch.return_logprob or self.running_batch.return_logprob)
        ):
            # TODO (lianmin): support return_logprob + mixed chunked prefill
2023
2024
            self.running_batch.filter_batch()
            if not self.running_batch.is_empty():
2025
                self.running_batch.prepare_for_decode()
2026
2027
                new_batch.mix_with_running(self.running_batch)
                new_batch.decoding_reqs = self.running_batch.reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
2028
2029
2030
            self.running_batch = ScheduleBatch(
                reqs=[], batch_is_full=self.running_batch.batch_is_full
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
2031
2032
        else:
            new_batch.decoding_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
2033
2034
2035

        return new_batch

Lianmin Zheng's avatar
Lianmin Zheng committed
2036
    def update_running_batch(self, batch: ScheduleBatch) -> Optional[ScheduleBatch]:
2037
        """Update the current running decoding batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
2038
        initial_bs = batch.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
2039

2040
2041
        batch.filter_batch()
        if batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
2042
2043
            batch.batch_is_full = False
            return batch
2044

Lianmin Zheng's avatar
Lianmin Zheng committed
2045
        # Check if decode out of memory
2046
        if not batch.check_decode_mem(self.decode_mem_cache_buf_multiplier) or (
2047
            TEST_RETRACT and batch.batch_size() > 10
2048
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
2049
            old_ratio = self.new_token_ratio
2050
2051
2052
2053
            retracted_reqs, new_token_ratio, reqs_to_abort = batch.retract_decode(
                self.server_args
            )
            self.num_retracted_reqs = len(retracted_reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
2054
            self.new_token_ratio = new_token_ratio
2055
2056
            for req in reqs_to_abort:
                self.send_to_tokenizer.send_pyobj(
2057
                    AbortReq(abort_reason=req.to_abort_message, rid=req.rid)
2058
                )
2059

Lianmin Zheng's avatar
Lianmin Zheng committed
2060
            logger.info(
2061
                "KV cache pool is full. Retract requests. "
2062
2063
2064
                f"#retracted_reqs: {len(retracted_reqs)}, "
                f"#aborted_retracted_reqs: {len(reqs_to_abort)}, "
                f"#new_token_ratio: {old_ratio:.4f} -> {new_token_ratio:.4f}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2065
            )
2066

2067
2068
            for req in retracted_reqs:
                self._add_request_to_queue(req, is_retracted=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
2069
2070
        else:
            self.new_token_ratio = max(
2071
                self.new_token_ratio - self.new_token_ratio_decay,
Lianmin Zheng's avatar
Lianmin Zheng committed
2072
2073
2074
                self.min_new_token_ratio,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
2075
        if batch.batch_size() < initial_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
2076
            batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
2077
2078

        # Update batch tensors
2079
        batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
2080
        return batch
Lianmin Zheng's avatar
Lianmin Zheng committed
2081

2082
2083
2084
    def run_batch(
        self, batch: ScheduleBatch
    ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
2085
        """Run a batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
2086
2087
        self.forward_ct += 1

2088
2089
        # Whether to run the profiler
        self._profile_batch_predicate(batch)
2090
2091
2092
2093
        if self.forward_sleep_time is not None:
            logger.info(f"Scheduler.run_batch sleep {self.forward_sleep_time}s")
            time.sleep(self.forward_sleep_time)

2094
        # Run forward
2095
        if self.is_generation:
2096
2097
2098

            batch_or_worker_batch = batch

2099
            if self.spec_algorithm.is_none():
2100
2101
                # FIXME(lsyin): remove this if and finally unify the abstraction
                batch_or_worker_batch = batch.get_model_worker_batch()
2102

2103
2104
2105
2106
2107
2108
2109
            if self.enable_overlap:
                # FIXME: remove this assert
                assert isinstance(batch_or_worker_batch, ModelWorkerBatch)
                model_worker_batch = batch_or_worker_batch
                self.record_batch_in_overlap(model_worker_batch)

                # Sampling info will be modified during forward
2110
                model_worker_batch.sampling_info = (
2111
2112
2113
2114
                    model_worker_batch.sampling_info.copy_for_forward()
                )

                bs = len(model_worker_batch.seq_lens)
2115
                future_indices = self.future_map.alloc_future_indices(bs)
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130

                with self.forward_stream_ctx:
                    self.forward_stream.wait_stream(self.default_stream)
                    self.future_map.resolve_future(model_worker_batch)
                    if batch.sampling_info.grammars is not None:
                        model_worker_batch.delay_sample_launch = True
                    batch_result = self.model_worker.forward_batch_generation(
                        batch_or_worker_batch
                    )
                    # FIXME(lsyin): maybe move this to forward_batch_generation
                    batch_result.copy_done = torch.get_device_module(
                        self.device
                    ).Event()
                    if not model_worker_batch.delay_sample_launch:
                        self.future_map.store_to_map(
2131
                            future_indices, batch_result.next_token_ids
2132
2133
2134
                        )
                        batch_result.copy_to_cpu()
                    else:
2135
                        batch_result.future_indices = future_indices
2136
2137

                # FIXME(lsyin): move this assignment elsewhere
2138
                maybe_future_next_token_ids = -future_indices.indices
2139
2140
2141
2142
2143
            else:
                batch_result = self.model_worker.forward_batch_generation(
                    batch_or_worker_batch
                )
                maybe_future_next_token_ids = batch_result.next_token_ids
2144
2145
2146

            if not self.spec_algorithm.is_none():
                # TODO(lsyin): unify this metric-updating logic with non-spec, and move it to decode processing
2147
2148
                self.update_spec_metrics(
                    batch.batch_size(), batch_result.num_accepted_tokens
2149
2150
                )

2151
2152
2153
2154
2155
            # NOTE: maybe_future_next_token_ids is used in ScheduleBatch,
            #       which can probably be replaced by future_indices later [TODO(lsyin)].
            #       we shall still keep the original outputs, e.g. next_token_ids
            #       in the GenerationBatchOutput for processing after copy_done.
            batch.output_ids = maybe_future_next_token_ids
2156

2157
2158
2159
            # These 2 values are needed for processing the output, but the values can be
            # modified by overlap schedule. So we have to copy them here so that
            # we can use the correct values in output processing.
2160
            if batch.return_logprob or self.spec_algorithm.is_eagle():
2161
                extend_input_len_per_req = [req.extend_input_len for req in batch.reqs]
2162
2163
            else:
                extend_input_len_per_req = None
2164

2165
            if batch.return_logprob:
2166
2167
2168
2169
2170
2171
                extend_logprob_start_len_per_req = [
                    req.extend_logprob_start_len for req in batch.reqs
                ]
            else:
                extend_logprob_start_len_per_req = None

2172
2173
2174
            batch_result.extend_input_len_per_req = extend_input_len_per_req
            batch_result.extend_logprob_start_len_per_req = (
                extend_logprob_start_len_per_req
2175
            )
2176
            return batch_result
Lianmin Zheng's avatar
Lianmin Zheng committed
2177
2178
2179
        else:  # embedding or reward model
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
2180
            ret = EmbeddingBatchResult(embeddings=embeddings)
2181
        return ret
Chayenne's avatar
Chayenne committed
2182

2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
    def launch_last_batch_sample_if_needed(
        self,
    ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
        if len(self.result_queue) == 0:
            return

        tmp_batch, tmp_result = self.result_queue.popleft()

        tmp_result: GenerationBatchResult
        if not tmp_result.delay_sample_launch:
            self.result_queue.appendleft((tmp_batch, tmp_result))
            return

        with self.forward_stream_ctx:
            self.forward_stream.wait_stream(self.default_stream)
            tmp_result.next_token_ids = self.model_worker.model_runner.sample(
                tmp_result.logits_output,
                tmp_result.forward_batch,
            )
2202
2203
            future_indices = tmp_result.future_indices
            self.future_map.store_to_map(future_indices, tmp_result.next_token_ids)
2204
2205
2206
            tmp_result.copy_to_cpu()
            self.result_queue.appendleft((tmp_batch, tmp_result))

2207
2208
2209
2210
2211
    def process_batch_result(
        self,
        batch: ScheduleBatch,
        result: Union[GenerationBatchResult, EmbeddingBatchResult],
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
2212
        if batch.forward_mode.is_decode():
2213
            self.process_batch_result_decode(batch, result)
2214
2215
            if self.enable_trace:
                trace_slice_batch("decode loop", batch.reqs)
2216

2217
        elif batch.forward_mode.is_extend():
2218
            self.process_batch_result_prefill(batch, result)
2219
2220
2221
            if self.enable_trace:
                trace_slice_batch("prefill", batch.reqs)

2222
2223
        elif batch.forward_mode.is_idle():
            if self.enable_overlap:
2224
2225
                if result.copy_done is not None:
                    result.copy_done.synchronize()
Lianmin Zheng's avatar
Lianmin Zheng committed
2226

2227
2228
2229
        self.maybe_send_health_check_signal()

    def maybe_send_health_check_signal(self):
2230
2231
2232
2233
2234
2235
2236
        if self.return_health_check_ct:
            # Return some signal for the health check.
            # This is used to prevent the health check signal being blocked by long context prefill.
            # However, one minor issue is that this code path does not check the status of detokenizer manager.
            self.return_health_check_ct -= 1
            self.send_to_tokenizer.send_pyobj(HealthCheckOutput())

2237
2238
    def prepare_mlp_sync_batch(self, local_batch: ScheduleBatch):
        return self.prepare_mlp_sync_batch_raw(
2239
2240
2241
            local_batch,
            dp_size=self.server_args.dp_size,
            attn_tp_size=self.attn_tp_size,
2242
            tp_group=self.tp_group,
2243
2244
2245
2246
            get_idle_batch=self.get_idle_batch,
            disable_cuda_graph=self.server_args.disable_cuda_graph,
            spec_algorithm=self.spec_algorithm,
            speculative_num_draft_tokens=self.server_args.speculative_num_draft_tokens,
2247
            require_mlp_tp_gather=require_mlp_tp_gather(self.server_args),
2248
            disable_overlap_schedule=self.server_args.disable_overlap_schedule,
2249
2250
2251
        )

    @staticmethod
2252
    def prepare_mlp_sync_batch_raw(
2253
2254
2255
        local_batch: ScheduleBatch,
        dp_size,
        attn_tp_size: int,
2256
        tp_group,
2257
2258
2259
2260
        get_idle_batch,
        disable_cuda_graph: bool,
        spec_algorithm,
        speculative_num_draft_tokens,
2261
        require_mlp_tp_gather: bool,
2262
        disable_overlap_schedule: bool,
2263
    ):
2264
2265
2266
        # Check if other DP workers have running batches
        if local_batch is None:
            num_tokens = 0
2267
            num_tokens_for_logprob = 0
2268
2269
        elif local_batch.forward_mode.is_decode():
            num_tokens = local_batch.batch_size()
2270
            num_tokens_for_logprob = num_tokens
2271
2272
        else:
            num_tokens = local_batch.extend_num_tokens
2273
            num_tokens_for_logprob = sum(
Lianmin Zheng's avatar
Lianmin Zheng committed
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
                [
                    # We should have at least 1 token for sample in every case.
                    max(extend_len - logprob_start_len, 1)
                    for logprob_start_len, extend_len in zip(
                        local_batch.extend_logprob_start_lens, local_batch.extend_lens
                    )
                ]
            )

        if local_batch is None or local_batch.forward_mode.is_decode_or_idle():
            can_cuda_graph = 1
        else:
            can_cuda_graph = 0

        is_extend_in_batch = (
            local_batch.forward_mode.is_extend() if local_batch else False
        )
2291
2292

        tbo_preparer = TboDPAttentionPreparer()
2293
2294
2295
2296
2297
2298
        if disable_overlap_schedule:
            group = tp_group.device_group
            device = tp_group.device
        else:
            group = tp_group.cpu_group
            device = "cpu"
2299

Lianmin Zheng's avatar
Lianmin Zheng committed
2300
2301
2302
2303
        local_info = torch.tensor(
            [
                num_tokens,
                can_cuda_graph,
2304
                num_tokens_for_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
2305
                is_extend_in_batch,
2306
2307
2308
                *tbo_preparer.prepare_all_gather(
                    local_batch,
                ),
Lianmin Zheng's avatar
Lianmin Zheng committed
2309
2310
            ],
            dtype=torch.int64,
2311
            device=device,
Lianmin Zheng's avatar
Lianmin Zheng committed
2312
2313
        )
        global_info = torch.empty(
2314
            (dp_size, attn_tp_size, 6),
Lianmin Zheng's avatar
Lianmin Zheng committed
2315
            dtype=torch.int64,
2316
            device=device,
Lianmin Zheng's avatar
Lianmin Zheng committed
2317
        )
2318
        torch.distributed.all_gather_into_tensor(
Lianmin Zheng's avatar
Lianmin Zheng committed
2319
2320
            global_info.flatten(),
            local_info,
2321
            group=group,
2322
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2323
2324
2325
2326
        global_num_tokens = global_info[:, 0, 0].tolist()
        can_cuda_graph = min(global_info[:, 0, 1].tolist())
        global_num_tokens_for_logprob = global_info[:, 0, 2].tolist()
        is_extend_in_batch = global_info[:, 0, 3].tolist()
2327

2328
2329
2330
2331
        tbo_split_seq_index, global_forward_mode = tbo_preparer.compute_output(
            global_info[:, :, 4:6]
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2332
        if local_batch is None and max(global_num_tokens) > 0:
2333
            local_batch = get_idle_batch()
2334
2335

        if local_batch is not None:
2336
            # TODO: handle the case when moe_dense_tp_size != 1
2337
            if not require_mlp_tp_gather:
2338
2339
2340
2341
2342
2343
2344
                local_batch.global_num_tokens = [num_tokens]
                local_batch.global_num_tokens_for_logprob = [num_tokens_for_logprob]
            else:
                local_batch.global_num_tokens = global_num_tokens
                local_batch.global_num_tokens_for_logprob = (
                    global_num_tokens_for_logprob
                )
2345
            local_batch.is_extend_in_batch = any(is_extend_in_batch)
2346
2347
            local_batch.tbo_split_seq_index = tbo_split_seq_index
            local_batch.global_forward_mode = global_forward_mode
2348

2349
            # Check forward mode for cuda graph
2350
            if not disable_cuda_graph:
Lianmin Zheng's avatar
Lianmin Zheng committed
2351
                local_batch.can_run_dp_cuda_graph = can_cuda_graph
2352

2353
        return local_batch
2354
2355
2356
2357
2358

    def get_idle_batch(self):
        idle_batch = ScheduleBatch.init_new(
            [],
            self.req_to_token_pool,
2359
            self.token_to_kv_pool_allocator,
2360
2361
2362
            self.tree_cache,
            self.model_config,
            self.enable_overlap,
2363
            self.spec_algorithm,
2364
2365
2366
2367
        )
        idle_batch.prepare_for_idle()
        return idle_batch

2368
2369
    def move_ready_grammar_requests(self):
        """Move requests whose grammar objects are ready from grammar_queue to waiting_queue."""
2370

2371
        num_ready_reqs = 0
2372
        num_timeout_reqs = 0
2373
2374
        for req in self.grammar_queue:
            try:
2375
2376
2377
                if req.finished():  # It is aborted by AbortReq
                    num_ready_reqs += 1
                    continue
2378

2379
                req.grammar = req.grammar.result(timeout=0.03)
2380
2381
                self.grammar_backend.set_cache(req.grammar_key, req.grammar.copy())
                if req.grammar is INVALID_GRAMMAR_OBJ:
2382
2383
2384
                    error_msg = f"Invalid grammar request: {req.grammar_key=}"
                    req.set_finish_with_abort(error_msg)

2385
2386
                num_ready_reqs += 1
            except futures._base.TimeoutError:
2387
                req.grammar_wait_ct += 1
2388
2389
                # NOTE(lianmin): this timeout is the waiting time of the above line. It is
                # not the waiting time from it enters the grammar queue.
2390
                if req.grammar_wait_ct > GRAMMAR_TIMEOUT / 0.03:
2391
                    num_timeout_reqs = 1
2392
2393
                break

2394
        if self.server_args.enable_dp_attention:
2395
2396
            tp_size = self.attn_tp_size
            tp_group = self.attn_tp_cpu_group
2397
        else:
2398
2399
2400
2401
2402
            tp_size = self.tp_size
            tp_group = self.tp_cpu_group

        if tp_size > 1:
            # Sync across TP ranks to make sure they have the same number of ready requests
2403
            tensor = torch.tensor([num_ready_reqs, num_timeout_reqs], dtype=torch.int32)
2404
2405
2406
            torch.distributed.all_reduce(
                tensor, op=torch.distributed.ReduceOp.MAX, group=tp_group
            )
2407
            num_ready_reqs_max, num_timeout_reqs_max = tensor.tolist()
2408

2409
            for i in range(num_ready_reqs, num_ready_reqs_max):
2410
                req = self.grammar_queue[i]
2411
2412
                if req.finished():  # It is aborted by AbortReq
                    continue
2413
                req.grammar = req.grammar.result()
2414
2415
                self.grammar_backend.set_cache(req.grammar_key, req.grammar.copy())
                if req.grammar is INVALID_GRAMMAR_OBJ:
2416
2417
                    error_msg = f"Invalid grammar request: {req.grammar_key=}"
                    req.set_finish_with_abort(error_msg)
2418
2419
2420
        else:
            num_ready_reqs_max = num_ready_reqs
            num_timeout_reqs_max = num_timeout_reqs
2421

2422
2423
2424
        for i in range(num_ready_reqs, num_ready_reqs + num_timeout_reqs_max):
            req = self.grammar_queue[i]
            req.grammar.cancel()
2425
            self.grammar_backend.set_cache(req.grammar_key, INVALID_GRAMMAR_OBJ)
2426
2427
            error_msg = f"Grammar preprocessing timed out for {req.grammar_key=}"
            req.set_finish_with_abort(error_msg)
2428

2429
        num_ready_reqs = num_ready_reqs_max + num_timeout_reqs_max
2430

2431
2432
        for req in self.grammar_queue[:num_ready_reqs]:
            self._add_request_to_queue(req)
2433
2434
        self.grammar_queue = self.grammar_queue[num_ready_reqs:]

2435
2436
2437
    def watchdog_thread(self):
        """A watch dog thread that will try to kill the server itself if one forward batch takes too long."""
        self.watchdog_last_forward_ct = 0
2438
        self.watchdog_last_time = time.perf_counter()
2439
2440

        while True:
2441
            current = time.perf_counter()
2442
2443
2444
2445
2446
2447
2448
2449
2450
            if self.cur_batch is not None:
                if self.watchdog_last_forward_ct == self.forward_ct:
                    if current > self.watchdog_last_time + self.watchdog_timeout:
                        break
                else:
                    self.watchdog_last_forward_ct = self.forward_ct
                    self.watchdog_last_time = current
            time.sleep(self.watchdog_timeout // 2)

Lianmin Zheng's avatar
Lianmin Zheng committed
2451
2452
        if not disable_request_logging():
            # Print batch size and memory pool info to check whether there are de-sync issues.
Hanming Lu's avatar
Hanming Lu committed
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
            if self.is_hybrid:
                (
                    _,
                    _,
                    _,
                    _,
                    full_available_size,
                    full_evictable_size,
                    swa_available_size,
                    swa_evictable_size,
                ) = self._get_swa_token_info()
                info_msg = (
                    f"{full_available_size=}, "
                    f"{full_evictable_size=}, "
                    f"{swa_available_size=}, "
                    f"{swa_evictable_size=}, "
                )
            else:
                _, _, available_size, evictable_size = self._get_token_info()
                info_msg = f"{available_size=}, " f"{evictable_size=}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
2473
2474
2475
            logger.error(
                f"{self.cur_batch.batch_size()=}, "
                f"{self.cur_batch.reqs=}, "
Hanming Lu's avatar
Hanming Lu committed
2476
                f"{info_msg}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2477
2478
            )

2479
        pyspy_dump_schedulers()
Lianmin Zheng's avatar
Lianmin Zheng committed
2480
        logger.error(f"Watchdog timeout ({self.watchdog_timeout=})")
2481
2482
        print(file=sys.stderr, flush=True)
        print(file=sys.stdout, flush=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
2483
2484

        # Wait for some time so that the parent process can print the error.
2485
2486
2487
        time.sleep(5)
        self.parent_process.send_signal(signal.SIGQUIT)

2488
2489
2490
    def flush_cache_wrapped(self, recv_req: FlushCacheReqInput):
        success = self.flush_cache()
        return FlushCacheReqOutput(success=success)
2491

2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
    def clear_hicache_storage_wrapped(self, recv_req: ClearHiCacheReqInput):
        if self.enable_hierarchical_cache:
            self.tree_cache.clear_storage_backend()
            logger.info("Hierarchical cache cleared successfully!")
            if_success = True
        else:
            logging.warning("Hierarchical cache is not enabled.")
            if_success = False
        return ClearHiCacheReqOutput(success=if_success)

2502
    def flush_cache(self):
2503
        """Flush the memory pool and cache."""
2504
2505
2506
2507
2508
        if (
            len(self.waiting_queue) == 0
            and self.running_batch.is_empty()
            and (self.pp_size == 1 or all(x.is_empty() for x in self.running_mbs))
        ):
2509
2510
            self.cur_batch = None
            self.last_batch = None
2511
            self.tree_cache.reset()
2512
            if self.grammar_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
2513
                self.grammar_backend.reset()
2514
            self.req_to_token_pool.clear()
2515
            self.token_to_kv_pool_allocator.clear()
2516

2517
2518
            if self.draft_worker:
                self.draft_worker.clear_cache_pool()
2519
2520
2521
2522
2523

            self.num_generated_tokens = 0
            self.forward_ct_decode = 0
            self.spec_num_total_accepted_tokens = 0
            self.spec_num_total_forward_ct = 0
2524
2525
            self.cum_spec_accept_length = 0
            self.cum_spec_accept_count = 0
2526
2527
2528
2529
2530
2531
2532
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
2533
                f"#running-req: {len(self.running_batch.reqs)}"
2534
2535
2536
2537
            )
            if_success = False
        return if_success

2538
    def get_load(self, recv_req: GetLoadReqInput = None) -> GetLoadReqOutput:
Liangsheng Yin's avatar
Liangsheng Yin committed
2539
        # TODO(lsyin): use dynamically maintained num_waiting_tokens
2540

Hanming Lu's avatar
Hanming Lu committed
2541
        if self.is_hybrid:
2542
            num_tokens_full = (
Hanming Lu's avatar
Hanming Lu committed
2543
2544
2545
2546
                self.full_tokens_per_layer
                - self.token_to_kv_pool_allocator.full_available_size()
                - self.tree_cache.full_evictable_size()
            )
2547
            num_tokens_swa = (
Hanming Lu's avatar
Hanming Lu committed
2548
2549
2550
2551
                self.swa_tokens_per_layer
                - self.token_to_kv_pool_allocator.swa_available_size()
                - self.tree_cache.swa_evictable_size()
            )
2552
            num_tokens = max(num_tokens_full, num_tokens_swa)
Hanming Lu's avatar
Hanming Lu committed
2553
        else:
2554
            num_tokens = (
Hanming Lu's avatar
Hanming Lu committed
2555
2556
2557
2558
                self.max_total_num_tokens
                - self.token_to_kv_pool_allocator.available_size()
                - self.tree_cache.evictable_size()
            )
2559
2560
2561
2562

        # Tokens in waiting queue, bootstrap queue, prealloc queue
        num_tokens += sum(len(req.origin_input_ids) for req in self.waiting_queue)
        num_waiting_reqs = len(self.waiting_queue)
Liangsheng Yin's avatar
Liangsheng Yin committed
2563
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
2564
            num_tokens += sum(
Liangsheng Yin's avatar
Liangsheng Yin committed
2565
2566
2567
                len(req.origin_input_ids)
                for req in self.disagg_prefill_bootstrap_queue.queue
            )
2568
            num_waiting_reqs += len(self.disagg_prefill_bootstrap_queue.queue)
Liangsheng Yin's avatar
Liangsheng Yin committed
2569
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
2570
            num_tokens += sum(
Liangsheng Yin's avatar
Liangsheng Yin committed
2571
2572
2573
                len(req.req.origin_input_ids)
                for req in self.disagg_decode_prealloc_queue.queue
            )
2574
            num_waiting_reqs += len(self.disagg_decode_prealloc_queue.queue)
Liangsheng Yin's avatar
Liangsheng Yin committed
2575

2576
2577
2578
2579
2580
2581
        return GetLoadReqOutput(
            dp_rank=self.dp_rank,
            num_reqs=len(self.running_batch.reqs) + num_waiting_reqs,
            num_waiting_reqs=num_waiting_reqs,
            num_tokens=num_tokens,
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
2582

2583
2584
2585
    def get_internal_state(self, recv_req: GetInternalStateReq):
        ret = dict(global_server_args_dict)
        ret["last_gen_throughput"] = self.last_gen_throughput
2586
2587
2588
2589
2590
2591
2592
2593
2594
        ret["memory_usage"] = {
            "weight": round(
                self.tp_worker.worker.model_runner.weight_load_mem_usage, 2
            ),
            "kvcache": round(
                self.token_to_kv_pool_allocator.get_kvcache().mem_usage, 2
            ),
            "token_capacity": int(self.max_total_num_tokens),
        }
2595

2596
2597
2598
        ret["memory_usage"]["graph"] = round(
            self.tp_worker.worker.model_runner.graph_mem_usage, 2
        )
2599

2600
2601
2602
2603
2604
2605
        if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
            ret["avg_spec_accept_length"] = (
                self.cum_spec_accept_length / self.cum_spec_accept_count
            )
        if RECORD_STEP_TIME:
            ret["step_time_dict"] = self.step_time_dict
Liangsheng Yin's avatar
Liangsheng Yin committed
2606
2607

        return GetInternalStateReqOutput(internal_state=ret)
2608
2609
2610
2611
2612

    def set_internal_state(self, recv_req: SetInternalStateReq):
        server_args_dict = recv_req.server_args
        args_allow_update = set(
            [
2613
                "pp_max_micro_batch_size",
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
                "speculative_accept_threshold_single",
                "speculative_accept_threshold_acc",
            ]
        )
        if_success = True
        for k, v in server_args_dict.items():
            if k not in args_allow_update:
                logging.warning(f"Updating {k} is not supported.")
                if_success = False
                break
2624
            elif k == "pp_max_micro_batch_size" and (
2625
2626
2627
2628
2629
2630
2631
                v > self.max_running_requests // self.pp_size or v < 1
            ):
                logging.warning(
                    f"Updating {k} to {v} is rejected because it is out of the valid range [1, {self.max_running_requests // self.pp_size}]."
                )
                if_success = False
                break
2632
2633
2634
2635
2636
2637
2638
2639
2640
        if if_success:
            if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
                avg_spec_accept_length = (
                    self.cum_spec_accept_length / self.cum_spec_accept_count
                )
                logger.info(f"{avg_spec_accept_length=}")
            self.cum_spec_accept_length = self.cum_spec_accept_count = 0
            for k, v in server_args_dict.items():
                global_server_args_dict[k] = v
2641
            logger.info(f"Global server args updated! {global_server_args_dict=}")
2642
2643
2644
2645
2646
        return SetInternalStateReqOutput(
            updated=True,
            server_args=global_server_args_dict,
        )

2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
    def handle_rpc_request(self, recv_req: RpcReqInput):
        # Handle RPC requests
        logger.info(
            f"handle_rpc_request: {recv_req.method}, param: {recv_req.parameters}"
        )

        success = True
        exec = None
        try:
            func = getattr(self, recv_req.method)
            func(recv_req.parameters)
        except Exception as e:
            success = False
            exec = e
            logger.error(f"Failed to call rpc {recv_req.method}: {str(e)}")

        barrier()
        return RpcReqOutput(success, "" if not exec else str(exec))

2666
2667
    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
Lianmin Zheng's avatar
Lianmin Zheng committed
2668
        to_del = []
2669
        for i, req in enumerate(self.waiting_queue):
2670
            if recv_req.abort_all or req.rid.startswith(recv_req.rid):
Lianmin Zheng's avatar
Lianmin Zheng committed
2671
                to_del.append(i)
2672

Lianmin Zheng's avatar
Lianmin Zheng committed
2673
        # Sort in reverse order to avoid index issues when deleting
Lianmin Zheng's avatar
Lianmin Zheng committed
2674
        for i in reversed(to_del):
2675
2676
2677
            # Abort method 1: directly pop from the queue
            # This only works for requests that have not started anything.
            # We still need to send something back to TokenizerManager to clean up the state.
Lianmin Zheng's avatar
Lianmin Zheng committed
2678
            req = self.waiting_queue.pop(i)
2679
2680
2681
            if self.enable_hicache_storage:
                # to release prefetch events associated with the request
                self.tree_cache.release_aborted_request(req.rid)
2682
            self.send_to_tokenizer.send_pyobj(AbortReq(rid=req.rid))
2683
2684
2685
2686
            # For disaggregation decode mode, the request in the waiting queue has KV cache allocated.
            if self.disaggregation_mode == DisaggregationMode.DECODE:
                self.tree_cache.cache_finished_req(req)

2687
            logger.debug(f"Abort queued request. {req.rid=}")
2688

2689
2690
2691
2692
2693
        # Delete the requests in the grammar queue
        for req in self.grammar_queue:
            # Abort method 2: call `set_finish_with_abort`
            # The request will still run one prefill forward pass.
            # In this case, we change the input_ids to be only one token to make this prefill cheap.
2694
            if recv_req.abort_all or req.rid.startswith(recv_req.rid):
2695
                logger.debug(f"Abort grammar queue request. {req.rid=}")
2696
2697
                if req.grammar:
                    req.grammar.cancel()
2698
2699
                req.set_finish_with_abort("Aborted by AbortReq.")

2700
2701
2702
        # Delete requests not in the waiting queue when PD disaggregation is enabled
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            # Abort requests that have not yet been bootstrapped
2703
            for req in self.disagg_prefill_bootstrap_queue.queue:
2704
                if recv_req.abort_all or req.rid.startswith(recv_req.rid):
2705
                    logger.debug(f"Abort bootstrap queue request. {req.rid=}")
2706
2707
2708
2709
                    if hasattr(req.disagg_kv_sender, "abort"):
                        req.disagg_kv_sender.abort()

            # Abort in-flight requests
2710
            for req in self.disagg_prefill_inflight_queue:
2711
                if recv_req.abort_all or req.rid.startswith(recv_req.rid):
2712
                    logger.debug(f"Abort inflight queue request. {req.rid=}")
2713
2714
2715
2716
2717
                    if hasattr(req.disagg_kv_sender, "abort"):
                        req.disagg_kv_sender.abort()

        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            # Abort requests that have not yet finished preallocation
2718
            for decode_req in self.disagg_decode_prealloc_queue.queue:
2719
                if recv_req.abort_all or decode_req.req.rid.startswith(recv_req.rid):
2720
                    logger.debug(f"Abort prealloc queue request. {decode_req.req.rid=}")
2721
2722
2723
2724
                    if hasattr(decode_req.kv_receiver, "abort"):
                        decode_req.kv_receiver.abort()

            # Abort requests waiting for kvcache to release tree cache
2725
            for decode_req in self.disagg_decode_transfer_queue.queue:
2726
                if recv_req.abort_all or decode_req.req.rid.startswith(recv_req.rid):
2727
                    logger.debug(f"Abort transfer queue request. {decode_req.req.rid=}")
2728
2729
2730
                    if hasattr(decode_req.kv_receiver, "abort"):
                        decode_req.kv_receiver.abort()

2731
        # Delete requests in the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
2732
2733
2734
2735
2736
2737
        if self.cur_batch is self.running_batch or self.cur_batch is None:
            reqs = self.running_batch.reqs
        else:
            reqs = self.running_batch.reqs + self.cur_batch.reqs

        for req in reqs:
2738
2739
2740
            if not req.finished() and (
                recv_req.abort_all or req.rid.startswith(recv_req.rid)
            ):
2741
2742
2743
                # Abort method 3: set `to_abort=True`
                # The request will still run one decode forward pass.
                # Then we reuse all existing code to clean up the KV cache allocation.
Lianmin Zheng's avatar
Lianmin Zheng committed
2744
2745
                logger.debug(f"Abort running request. {req.rid=}")
                req.to_abort = True
2746

2747
2748
2749
    def _pause_engine(self) -> Tuple[List[Req], int]:
        raise NotImplementedError()

2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
    def load_lora_adapter(
        self, recv_req: LoadLoRAAdapterReqInput
    ) -> LoadLoRAAdapterReqOutput:
        """In-place loading a new lora adapter from disk or huggingface."""

        result = self.tp_worker.load_lora_adapter(recv_req)
        return result

    def unload_lora_adapter(
        self, recv_req: UnloadLoRAAdapterReqInput
    ) -> UnloadLoRAAdapterReqOutput:
        """Unload the lora adapter."""

        result = self.tp_worker.unload_lora_adapter(recv_req)
        return result

2766
2767
2768
2769
    def register_multi_tokenizer(self, recv_req: MultiTokenizerRegisterReq):
        self.send_to_detokenizer.send_pyobj(recv_req)
        return recv_req

2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
    def init_weights_send_group_for_remote_instance(
        self, recv_req: InitWeightsSendGroupForRemoteInstanceReqInput
    ):
        """Init the seed and client instance communication group."""
        success, message = self.tp_worker.init_weights_send_group_for_remote_instance(
            recv_req
        )
        return InitWeightsSendGroupForRemoteInstanceReqOutput(success, message)

    def send_weights_to_remote_instance(
        self, recv_req: SendWeightsToRemoteInstanceReqInput
    ):
        """Send the seed instance weights to the destination instance."""
        success, message = self.tp_worker.send_weights_to_remote_instance(recv_req)
        return SendWeightsToRemoteInstanceReqOutput(success, message)

2786
2787
2788
2789
2790
2791
2792
    def slow_down(self, recv_req: SlowDownReqInput):
        t = recv_req.forward_sleep_time
        if t is not None and t <= 0:
            t = None
        self.forward_sleep_time = t
        return SlowDownReqOutput()

2793
    def expert_distribution_handle(self, recv_req: ExpertDistributionReq):
2794
2795
        action = recv_req.action
        if action == ExpertDistributionReqType.START_RECORD:
2796
            get_global_expert_distribution_recorder().start_record()
2797
        elif action == ExpertDistributionReqType.STOP_RECORD:
2798
            get_global_expert_distribution_recorder().stop_record()
2799
        elif action == ExpertDistributionReqType.DUMP_RECORD:
2800
            get_global_expert_distribution_recorder().dump_record()
2801
        else:
2802
            raise ValueError(f"Unrecognized ExpertDistributionReq value: {recv_req=}")
2803
        return ExpertDistributionReqOutput()
2804

2805
    def open_session(self, recv_req: OpenSessionReqInput):
2806
2807
2808
2809
        # handle error
        session_id = recv_req.session_id
        if session_id in self.sessions:
            logger.warning(f"session id {session_id} already exist, cannot open.")
2810
            return OpenSessionReqOutput(session_id, False)
2811
        elif session_id is None:
2812
            logger.warning("session id is None, cannot open.")
2813
            return OpenSessionReqOutput(session_id, False)
2814
2815
2816
2817
        else:
            self.sessions[session_id] = Session(
                recv_req.capacity_of_str_len, session_id
            )
2818
            return OpenSessionReqOutput(session_id, True)
2819
2820
2821
2822
2823
2824
2825
2826
2827

    def close_session(self, recv_req: CloseSessionReqInput):
        # handle error
        session_id = recv_req.session_id
        if session_id not in self.sessions:
            logger.warning(f"session id {session_id} does not exist, cannot delete.")
        else:
            del self.sessions[session_id]

2828
2829
    def get_print_prefix(self):
        prefix = ""
2830
2831
        if self.attn_dp_rank is not None:
            prefix += f" DP{self.attn_dp_rank}"
2832
2833
2834
2835
2836
2837
        if self.server_args.tp_size > 1:
            prefix += f" TP{self.tp_rank}"
        if self.pp_size > 1:
            prefix += f" PP{self.pp_rank}"
        return prefix

2838
2839
    def current_scheduler_metrics_enabled(self):
        return self.attn_tp_rank == 0 or self.enable_metrics_for_all_schedulers
2840

2841
2842
2843
    def maybe_sleep_on_idle(self):
        if self.idle_sleeper is not None:
            self.idle_sleeper.maybe_sleep()
2844

2845
2846
2847
2848
2849
2850
    def handle_freeze_gc(self, recv_req: FreezeGCReq):
        """Handle freeze_gc request: freeze scheduler's GC and forward to detokenizer."""
        freeze_gc("Scheduler")
        self.send_to_detokenizer.send_pyobj(recv_req)
        return None

2851

2852
2853
2854
2855
2856
2857
2858
class IdleSleeper:
    """
    In setups which have long inactivity periods it is desirable to reduce
    system power consumption when sglang does nothing. This would lead not only
    to power savings, but also to more CPU thermal headroom when a request
    eventually comes. This is important in cases when multiple GPUs are connected
    as each GPU would otherwise pin one thread at 100% CPU usage.
2859

2860
2861
2862
    The simplest solution is to use zmq.Poller on all sockets that may receive
    data that needs handling immediately.
    """
2863

2864
2865
    def __init__(self, sockets):
        self.poller = zmq.Poller()
2866
        self.last_empty_time = time.time()
2867
2868
2869
2870
2871
        for s in sockets:
            self.poller.register(s, zmq.POLLIN)

    def maybe_sleep(self):
        self.poller.poll(1000)
2872
2873
2874
2875
2876
2877
2878
        if (
            global_config.torch_empty_cache_interval > 0
            and time.time() - self.last_empty_time
            > global_config.torch_empty_cache_interval
        ):
            self.last_empty_time = time.time()
            torch.cuda.empty_cache()
2879

2880

2881
def is_health_check_generate_req(recv_req):
2882
2883
    rid = getattr(recv_req, "rid", None)
    return rid is not None and rid.startswith("HEALTH_CHECK")
2884

2885
2886

def is_work_request(recv_req):
2887
2888
2889
2890
2891
2892
2893
2894
2895
    return isinstance(
        recv_req,
        (
            TokenizedGenerateReqInput,
            TokenizedEmbeddingReqInput,
            BatchTokenizedGenerateReqInput,
            BatchTokenizedEmbeddingReqInput,
        ),
    )
2896
2897


2898
2899
2900
2901
2902
def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
Cheng Wan's avatar
Cheng Wan committed
2903
    moe_ep_rank: int,
2904
    pp_rank: int,
2905
    dp_rank: Optional[int],
2906
    pipe_writer,
2907
):
2908
    # Generate the logger prefix
2909
    prefix = ""
2910
2911
2912
    if dp_rank is None and "SGLANG_DP_RANK" in os.environ:
        # [For Router] if env var "SGLANG_DP_RANK" exist, set dp_rank to the value of the env var
        dp_rank = int(os.environ["SGLANG_DP_RANK"])
2913
2914
2915
2916
    if dp_rank is not None:
        prefix += f" DP{dp_rank}"
    if server_args.tp_size > 1:
        prefix += f" TP{tp_rank}"
Cheng Wan's avatar
Cheng Wan committed
2917
2918
    if server_args.ep_size > 1:
        prefix += f" EP{moe_ep_rank}"
2919
2920
    if server_args.pp_size > 1:
        prefix += f" PP{pp_rank}"
2921

2922
    # Config the process
2923
    setproctitle.setproctitle(f"sglang::scheduler{prefix.replace(' ', '_')}")
2924
    faulthandler.enable()
2925
    kill_itself_when_parent_died()
2926
    parent_process = psutil.Process().parent()
2927

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
2928
    # Configure the logger
2929
    configure_logger(server_args, prefix=prefix)
2930
    suppress_other_loggers()
2931

2932
    # Set cpu affinity to this gpu process
2933
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
2934
2935
2936
        set_gpu_proc_affinity(
            server_args.pp_size, server_args.tp_size, server_args.nnodes, gpu_id
        )
2937
2938
2939
2940
2941
2942
2943
2944
2945
    if (numa_node := server_args.numa_node) is not None:
        numa_bind_to_node(numa_node[gpu_id])

    # Set up tracing
    if server_args.enable_trace:
        process_tracing_init(server_args.oltp_traces_endpoint, "sglang")
        if server_args.disaggregation_mode == "null":
            thread_label = "Scheduler"
            trace_set_thread_info(thread_label, tp_rank, dp_rank)
2946

2947
    # Create a scheduler and run the event loop
2948
    try:
Cheng Wan's avatar
Cheng Wan committed
2949
        scheduler = Scheduler(
2950
2951
2952
2953
2954
2955
2956
            server_args,
            port_args,
            gpu_id,
            tp_rank,
            moe_ep_rank,
            pp_rank,
            dp_rank,
Cheng Wan's avatar
Cheng Wan committed
2957
        )
2958
        pipe_writer.send(
Mick's avatar
Mick committed
2959
2960
2961
2962
2963
            {
                "status": "ready",
                "max_total_num_tokens": scheduler.max_total_num_tokens,
                "max_req_input_len": scheduler.max_req_input_len,
            }
2964
        )
Byron Hsu's avatar
Byron Hsu committed
2965

2966
        disaggregation_mode: DisaggregationMode = scheduler.disaggregation_mode
Byron Hsu's avatar
Byron Hsu committed
2967
        if disaggregation_mode == DisaggregationMode.NULL:
2968
2969
2970
            if server_args.pp_size > 1:
                scheduler.event_loop_pp()
            elif scheduler.enable_overlap:
Byron Hsu's avatar
Byron Hsu committed
2971
2972
2973
2974
                scheduler.event_loop_overlap()
            else:
                scheduler.event_loop_normal()
        elif disaggregation_mode == DisaggregationMode.PREFILL:
2975
2976
2977
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_prefill()
            else:
2978
2979
2980
2981
                if server_args.pp_size > 1:
                    scheduler.event_loop_pp_disagg_prefill()
                else:
                    scheduler.event_loop_normal_disagg_prefill()
2982

Byron Hsu's avatar
Byron Hsu committed
2983
        elif disaggregation_mode == DisaggregationMode.DECODE:
2984
2985
2986
2987
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_decode()
            else:
                scheduler.event_loop_normal_disagg_decode()
Byron Hsu's avatar
Byron Hsu committed
2988

2989
    except Exception:
2990
2991
2992
        traceback = get_exception_traceback()
        logger.error(f"Scheduler hit an exception: {traceback}")
        parent_process.send_signal(signal.SIGQUIT)