scheduler.py 107 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""A scheduler that manages a tensor parallel GPU worker."""

16
import faulthandler
17
import logging
18
import os
19
import signal
20
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
21
import threading
22
import time
23
from collections import deque
Lianmin Zheng's avatar
Lianmin Zheng committed
24
from concurrent import futures
25
from dataclasses import dataclass
26
from http import HTTPStatus
27
from types import SimpleNamespace
28
from typing import Dict, List, Optional, Tuple, Union
29

30
import psutil
31
import setproctitle
32
import torch
33
import zmq
34
from torch.distributed import barrier
35

36
from sglang.global_config import global_config
Lianmin Zheng's avatar
Lianmin Zheng committed
37
from sglang.srt.configs.model_config import ModelConfig
38
39
40
41
from sglang.srt.constrained.base_grammar_backend import (
    INVALID_GRAMMAR_OBJ,
    create_grammar_backend,
)
Byron Hsu's avatar
Byron Hsu committed
42
43
44
45
46
47
48
49
50
51
52
from sglang.srt.disaggregation.decode import (
    DecodePreallocQueue,
    DecodeTransferQueue,
    SchedulerDisaggregationDecodeMixin,
)
from sglang.srt.disaggregation.prefill import (
    PrefillBootstrapQueue,
    SchedulerDisaggregationPrefillMixin,
)
from sglang.srt.disaggregation.utils import (
    DisaggregationMode,
53
    MetadataBuffers,
Byron Hsu's avatar
Byron Hsu committed
54
    ReqToMetadataIdxAllocator,
55
    TransferBackend,
56
    prepare_abort,
Byron Hsu's avatar
Byron Hsu committed
57
)
58
from sglang.srt.distributed import get_pp_group, get_world_group
fzyzcjy's avatar
fzyzcjy committed
59
from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
xm:D's avatar
xm:D committed
60
61
62
63
64
from sglang.srt.hf_transformers_utils import (
    get_processor,
    get_tokenizer,
    get_tokenizer_from_processor,
)
65
from sglang.srt.layers.dp_attention import compute_dp_attention_world_info
66
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
67
from sglang.srt.layers.moe import initialize_moe_config
68
69
from sglang.srt.managers.io_struct import (
    AbortReq,
70
71
    BatchTokenizedEmbeddingReqInput,
    BatchTokenizedGenerateReqInput,
72
73
    ClearHiCacheReqInput,
    ClearHiCacheReqOutput,
74
    CloseSessionReqInput,
75
    ExpertDistributionReq,
76
    ExpertDistributionReqOutput,
77
78
    FlushCacheReqInput,
    FlushCacheReqOutput,
79
    FreezeGCReq,
80
81
    GetInternalStateReq,
    GetInternalStateReqOutput,
82
    GetWeightsByNameReqInput,
83
    HealthCheckOutput,
84
85
    InitWeightsSendGroupForRemoteInstanceReqInput,
    InitWeightsSendGroupForRemoteInstanceReqOutput,
86
    InitWeightsUpdateGroupReqInput,
87
88
    LoadLoRAAdapterReqInput,
    LoadLoRAAdapterReqOutput,
89
    MultiTokenizerRegisterReq,
90
    MultiTokenizerWrapper,
91
92
    OpenSessionReqInput,
    OpenSessionReqOutput,
93
    ProfileReq,
94
95
    ReleaseMemoryOccupationReqInput,
    ResumeMemoryOccupationReqInput,
96
97
    RpcReqInput,
    RpcReqOutput,
98
99
    SendWeightsToRemoteInstanceReqInput,
    SendWeightsToRemoteInstanceReqOutput,
100
101
    SetInternalStateReq,
    SetInternalStateReqOutput,
102
103
    SlowDownReqInput,
    SlowDownReqOutput,
104
105
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
106
107
    UnloadLoRAAdapterReqInput,
    UnloadLoRAAdapterReqOutput,
Chayenne's avatar
Chayenne committed
108
    UpdateWeightFromDiskReqInput,
109
    UpdateWeightsFromDistributedReqInput,
110
    UpdateWeightsFromTensorReqInput,
111
)
112
from sglang.srt.managers.mm_utils import init_embedding_cache
113
114
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
Mick's avatar
Mick committed
115
    MultimodalInputs,
116
117
    Req,
    ScheduleBatch,
118
    global_server_args_dict,
119
)
120
121
122
123
124
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
fzyzcjy's avatar
fzyzcjy committed
125
from sglang.srt.managers.scheduler_input_blocker import SchedulerInputBlocker
126
127
128
129
from sglang.srt.managers.scheduler_metrics_mixin import (
    RECORD_STEP_TIME,
    SchedulerMetricsMixin,
)
130
131
132
from sglang.srt.managers.scheduler_output_processor_mixin import (
    SchedulerOutputProcessorMixin,
)
133
from sglang.srt.managers.scheduler_profiler_mixin import SchedulerProfilerMixin
134
from sglang.srt.managers.scheduler_recv_skipper import SchedulerRecvSkipper
135
136
137
from sglang.srt.managers.scheduler_update_weights_mixin import (
    SchedulerUpdateWeightsMixin,
)
138
from sglang.srt.managers.session_controller import Session
139
from sglang.srt.managers.tp_worker import TpModelWorker
140
from sglang.srt.managers.tp_worker_overlap_thread import TpModelWorkerClient
141
from sglang.srt.managers.utils import DPBalanceMeta, validate_input_length
tarinkk's avatar
tarinkk committed
142
from sglang.srt.mem_cache.chunk_cache import ChunkCache, SWAChunkCache
143
from sglang.srt.mem_cache.hiradix_cache import HiRadixCache
144
from sglang.srt.mem_cache.lora_radix_cache import LoRARadixCache
145
from sglang.srt.mem_cache.radix_cache import RadixCache
Hanming Lu's avatar
Hanming Lu committed
146
from sglang.srt.mem_cache.swa_radix_cache import SWARadixCache
Lianmin Zheng's avatar
Lianmin Zheng committed
147
from sglang.srt.model_executor.forward_batch_info import ForwardMode, PPProxyTensors
148
from sglang.srt.parser.reasoning_parser import ReasoningParser
149
from sglang.srt.server_args import PortArgs, ServerArgs
150
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
151
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
152
from sglang.srt.two_batch_overlap import TboDPAttentionPreparer
153
from sglang.srt.utils import (
154
    DynamicGradMode,
155
    broadcast_pyobj,
fzyzcjy's avatar
fzyzcjy committed
156
    configure_gc_logger,
157
    configure_logger,
Lianmin Zheng's avatar
Lianmin Zheng committed
158
    disable_request_logging,
159
    freeze_gc,
160
    get_available_gpu_memory,
161
    get_bool_env_var,
162
    get_zmq_socket,
163
    is_cpu,
Lianmin Zheng's avatar
Lianmin Zheng committed
164
    kill_itself_when_parent_died,
165
    numa_bind_to_node,
166
    point_to_point_pyobj,
167
    pyspy_dump_schedulers,
168
169
    require_mlp_sync,
    require_mlp_tp_gather,
170
    set_gpu_proc_affinity,
171
172
173
    set_random_seed,
    suppress_other_loggers,
)
174
from sglang.utils import TypeBasedDispatcher, get_exception_traceback
175
176
177

logger = logging.getLogger(__name__)

178
# Test retract decode for debugging purposes
179
TEST_RETRACT = get_bool_env_var("SGLANG_TEST_RETRACT")
180
GRAMMAR_TIMEOUT = float(os.environ.get("SGLANG_GRAMMAR_TIMEOUT", 300))
181

182
183
_is_cpu = is_cpu()

184

185
186
@dataclass
class GenerationBatchResult:
187
188
189
    logits_output: Optional[LogitsProcessorOutput]
    pp_hidden_states_proxy_tensors: Optional[torch.Tensor]
    next_token_ids: Optional[List[int]]
190
191
    extend_input_len_per_req: List[int]
    extend_logprob_start_len_per_req: List[int]
192
    bid: int
193
    can_run_cuda_graph: bool
194
195
196
197
198
199
200
201


@dataclass
class EmbeddingBatchResult:
    embeddings: torch.Tensor
    bid: int


Byron Hsu's avatar
Byron Hsu committed
202
203
class Scheduler(
    SchedulerOutputProcessorMixin,
204
205
206
    SchedulerUpdateWeightsMixin,
    SchedulerProfilerMixin,
    SchedulerMetricsMixin,
Byron Hsu's avatar
Byron Hsu committed
207
208
209
    SchedulerDisaggregationDecodeMixin,
    SchedulerDisaggregationPrefillMixin,
):
210
211
212
213
214
215
216
217
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
Cheng Wan's avatar
Cheng Wan committed
218
        moe_ep_rank: int,
219
        pp_rank: int,
220
        dp_rank: Optional[int],
221
        dp_balance_meta: Optional[DPBalanceMeta] = None,
222
223
    ):
        # Parse args
224
        self.server_args = server_args
225
        self.tp_rank = tp_rank
Cheng Wan's avatar
Cheng Wan committed
226
        self.moe_ep_rank = moe_ep_rank
227
        self.pp_rank = pp_rank
228
        self.dp_rank = dp_rank
229
        self.tp_size = server_args.tp_size
Cheng Wan's avatar
Cheng Wan committed
230
        self.moe_ep_size = server_args.ep_size
231
232
        self.pp_size = server_args.pp_size
        self.dp_size = server_args.dp_size
233
        self.schedule_policy = server_args.schedule_policy
234
        self.enable_lora = server_args.enable_lora
235
        self.max_loras_per_batch = server_args.max_loras_per_batch
236
        self.enable_overlap = not server_args.disable_overlap_schedule
237
        self.skip_tokenizer_init = server_args.skip_tokenizer_init
238
        self.enable_metrics = server_args.enable_metrics
239
240
241
        self.enable_metrics_for_all_schedulers = (
            server_args.enable_metrics_for_all_schedulers
        )
242
        self.enable_kv_cache_events = server_args.kv_events_config is not None
243
        self.stream_interval = server_args.stream_interval
244
245
246
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
247
248
        self.gpu_id = gpu_id
        self.enable_hierarchical_cache = server_args.enable_hierarchical_cache
249
        self.enable_hicache_storage = server_args.hicache_storage_backend is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
250
        self.page_size = server_args.page_size
251

252
        self.attn_tp_rank, self.attn_tp_size, self.attn_dp_rank = (
253
254
255
256
257
258
259
260
            compute_dp_attention_world_info(
                server_args.enable_dp_attention,
                self.tp_rank,
                self.tp_size,
                self.dp_size,
            )
        )

261
262
263
        # Init model config
        self.model_config = ModelConfig.from_server_args(server_args)

264
265
        # Init inter-process communication
        context = zmq.Context(2)
266
        self.idle_sleeper = None
267
        if self.pp_rank == 0 and self.attn_tp_rank == 0:
268
            self.recv_from_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
269
                context, zmq.PULL, port_args.scheduler_input_ipc_name, False
270
            )
271
272
273
274
            self.recv_from_rpc = get_zmq_socket(
                context, zmq.DEALER, port_args.rpc_ipc_name, False
            )

275
            self.send_to_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
276
                context, zmq.PUSH, port_args.tokenizer_ipc_name, False
277
            )
278
            if server_args.skip_tokenizer_init:
279
                # Directly send to the TokenizerManager
280
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
281
                    context, zmq.PUSH, port_args.tokenizer_ipc_name, False
282
283
                )
            else:
284
                # Send to the DetokenizerManager
285
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
286
                    context, zmq.PUSH, port_args.detokenizer_ipc_name, False
287
                )
288

289
290
291
292
293
294
295
            if self.server_args.sleep_on_idle:
                self.idle_sleeper = IdleSleeper(
                    [
                        self.recv_from_tokenizer,
                        self.recv_from_rpc,
                    ]
                )
296
        else:
297
            self.recv_from_tokenizer = None
298
            self.recv_from_rpc = None
299
300
            self.send_to_tokenizer = SimpleNamespace(send_pyobj=lambda x: None)
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
301

302
303
304
305
306
        if self.current_scheduler_metrics_enabled():
            self.send_metrics_from_scheduler = get_zmq_socket(
                context, zmq.PUSH, port_args.metrics_ipc_name, False
            )

307
        # Init tokenizer
308
        self.init_tokenizer()
309

310
311
312
        # Init moe config
        self.init_moe_config()

313
314
315
316
317
318
319
320
321
        # Set reasoning_parser and think_end_id if --reasoning_parser is enabled
        if self.server_args.reasoning_parser and self.tokenizer:
            reasoning_parser = ReasoningParser(
                model_type=self.server_args.reasoning_parser, stream_reasoning=False
            )
            self.tokenizer.think_end_id = self.tokenizer.encode(
                reasoning_parser.detector.think_end_token, add_special_tokens=False
            )[0]

322
323
324
325
        # Check whether overlap can be enabled
        if not self.is_generation:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for embedding models.")
326

327
        # Launch a tensor parallel worker
328
        if self.enable_overlap:
329
            TpWorkerClass = TpModelWorkerClient
330
331
        else:
            TpWorkerClass = TpModelWorker
332

333
        self.tp_worker = TpWorkerClass(
334
            server_args=server_args,
335
336
            gpu_id=gpu_id,
            tp_rank=tp_rank,
Cheng Wan's avatar
Cheng Wan committed
337
            moe_ep_rank=moe_ep_rank,
338
            pp_rank=pp_rank,
339
            dp_rank=dp_rank,
340
            nccl_port=port_args.nccl_port,
341
        )
342

343
        # Launch a draft worker for speculative decoding
344
345
346
347
348
349
        if self.spec_algorithm.is_eagle():
            from sglang.srt.speculative.eagle_worker import EAGLEWorker

            self.draft_worker = EAGLEWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
Cheng Wan's avatar
Cheng Wan committed
350
                moe_ep_rank=moe_ep_rank,
351
352
353
354
355
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
356
357
358
359
360
361
362
363
364
365
366
367
        elif self.spec_algorithm.is_standalone():
            from sglang.srt.speculative.standalone_worker import StandaloneWorker

            self.draft_worker = StandaloneWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                moe_ep_rank=moe_ep_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
368
369
370
        else:
            self.draft_worker = None

371
        # Get token and memory info from the model worker
372
373
374
375
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
376
            self.max_queued_requests,
377
            self.max_req_len,
378
379
            self.max_req_input_len,
            self.random_seed,
380
            self.device,
381
382
383
384
385
            worker_global_server_args_dict,
            _,
            _,
            _,
        ) = self.tp_worker.get_worker_info()
386
387
388
389
390
391
392
393
        if global_server_args_dict["max_micro_batch_size"] is None:
            global_server_args_dict["max_micro_batch_size"] = max(
                self.max_running_requests // server_args.pp_size, 1
            )

        self.tp_group = self.tp_worker.get_tp_group()
        self.tp_cpu_group = self.tp_group.cpu_group
        self.attn_tp_group = self.tp_worker.get_attention_tp_group()
394
        self.attn_tp_cpu_group = self.tp_worker.get_attention_tp_cpu_group()
395
396
397
        self.pp_group = get_pp_group()
        self.world_group = get_world_group()

398
        self.pad_input_ids_func = self.tp_worker.get_pad_input_ids_func()
399
        global_server_args_dict.update(worker_global_server_args_dict)
400
        set_random_seed(self.random_seed)
401

402
        # Hybrid memory pool
Hanming Lu's avatar
Hanming Lu committed
403
404
405
406
407
408
409
        self.is_hybrid = self.tp_worker.is_hybrid
        if self.is_hybrid:
            self.sliding_window_size = self.tp_worker.sliding_window_size
            self.full_tokens_per_layer, self.swa_tokens_per_layer = (
                self.tp_worker.get_tokens_per_layer_info()
            )

410
        # Print debug info
411
        if tp_rank == 0:
412
413
414
            avail_mem = get_available_gpu_memory(
                self.device, self.gpu_id, empty_cache=False
            )
415
416
417
418
419
            logger.info(
                f"max_total_num_tokens={self.max_total_num_tokens}, "
                f"chunked_prefill_size={server_args.chunked_prefill_size}, "
                f"max_prefill_tokens={self.max_prefill_tokens}, "
                f"max_running_requests={self.max_running_requests}, "
420
                f"context_len={self.model_config.context_len}, "
421
                f"{'available_cpu_mem' if self.device == 'cpu' else 'available_gpu_mem'}={avail_mem:.2f} GB"
422
            )
423

Lianmin Zheng's avatar
Lianmin Zheng committed
424
        # Init memory pool and cache
425
        self.init_memory_pool_and_cache()
426
427
428

        # Init running status
        self.waiting_queue: List[Req] = []
429
        # The running decoding batch for continuous batching
Lianmin Zheng's avatar
Lianmin Zheng committed
430
        self.running_batch: ScheduleBatch = ScheduleBatch(reqs=[], batch_is_full=False)
431
        # The current forward batch
Lianmin Zheng's avatar
Lianmin Zheng committed
432
        self.cur_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
433
        # The last forward batch
434
        self.last_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
435
436
        self.forward_ct = 0
        self.forward_ct_decode = 0
437
        self.num_generated_tokens = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
438
        self.last_prefill_tokens = 0
439
440
        self.last_decode_stats_tic = time.perf_counter()
        self.last_prefill_stats_tic = time.perf_counter()
441
        self.return_health_check_ct = 0
442
443
444
445
446
        self.num_retracted_reqs: int = 0
        self.num_paused_reqs: int = 0
        self.kv_transfer_speed_gb_s: float = 0.0
        self.kv_transfer_latency_ms: float = 0.0
        self.sessions: Dict[str, Session] = {}
447
        self.current_stream = torch.get_device_module(self.device).current_stream()
448
449
        if self.device == "cpu":
            self.current_stream.synchronize = lambda: None  # No-op for CPU
450
        self.forward_sleep_time = None
451

452
453
        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
454
455
        if self.chunked_prefill_size <= 0:  # -1 means disable
            self.chunked_prefill_size = None
456
        self.chunked_req = None
457
458
459
460
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
461
        # Init the grammar backend for constrained generation
462
        self.grammar_queue: List[Req] = []
463
        if not server_args.skip_tokenizer_init:
464
            self.grammar_backend = create_grammar_backend(
465
466
467
468
                server_args,
                self.tokenizer,
                self.model_config.vocab_size,
                self.model_config.hf_eos_token_id,
469
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
470
471
        else:
            self.grammar_backend = None
472

473
        # Init schedule policy and new token estimation
474
        self.policy = SchedulePolicy(
Lianmin Zheng's avatar
Lianmin Zheng committed
475
476
477
            self.schedule_policy,
            self.tree_cache,
            self.enable_hierarchical_cache,
478
        )
479
480
481
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
482
483
        self.init_new_token_ratio = min(
            global_config.default_init_new_token_ratio
484
485
            * server_args.schedule_conservativeness,
            1.0,
486
        )
487
488
489
490
491
492
493
494
495
496
        self.min_new_token_ratio = min(
            self.init_new_token_ratio
            * global_config.default_min_new_token_ratio_factor,
            1.0,
        )
        self.new_token_ratio_decay = (
            self.init_new_token_ratio - self.min_new_token_ratio
        ) / global_config.default_new_token_ratio_decay_steps
        self.new_token_ratio = self.init_new_token_ratio

Lianmin Zheng's avatar
Lianmin Zheng committed
497
498
499
500
        # Init watchdog thread
        self.watchdog_timeout = server_args.watchdog_timeout
        t = threading.Thread(target=self.watchdog_thread, daemon=True)
        t.start()
501
        self.parent_process = psutil.Process().parent()
502
503

        # Init memory saver, profiler and metric stats
504
505
506
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=server_args.enable_memory_saver
        )
507
        self.offload_tags = set()
limingshu's avatar
limingshu committed
508
        self.init_profiler()
509

510
        self.recv_skipper = SchedulerRecvSkipper.maybe_create(server_args)
fzyzcjy's avatar
fzyzcjy committed
511
512
513
514
515
516
        self.input_blocker = (
            SchedulerInputBlocker(noop=self.attn_tp_rank != 0)
            if get_bool_env_var("SGLANG_ENABLE_COLOCATED_BATCH_GEN")
            else None
        )

517
        # Init metrics stats
518
        self.init_metrics(tp_rank, pp_rank, dp_rank)
519
        self.init_kv_events(server_args.kv_events_config)
520
        self.init_dp_balance(dp_balance_meta)
521

522
523
524
525
526
527
528
529
530
        # Init disaggregation
        self.disaggregation_mode = DisaggregationMode(
            self.server_args.disaggregation_mode
        )
        self.init_disaggregation()

        if get_bool_env_var("SGLANG_GC_LOG"):
            configure_gc_logger()

531
532
        # Init request dispatcher
        self._request_dispatcher = TypeBasedDispatcher(
533
534
535
            [
                (TokenizedGenerateReqInput, self.handle_generate_request),
                (TokenizedEmbeddingReqInput, self.handle_embedding_request),
536
537
                (BatchTokenizedGenerateReqInput, self.handle_batch_generate_request),
                (BatchTokenizedEmbeddingReqInput, self.handle_batch_embedding_request),
538
                (FlushCacheReqInput, self.flush_cache_wrapped),
539
                (ClearHiCacheReqInput, self.clear_hicache_storage_wrapped),
540
                (AbortReq, self.abort_request),
541
542
                (OpenSessionReqInput, self.open_session),
                (CloseSessionReqInput, self.close_session),
543
544
                (UpdateWeightFromDiskReqInput, self.update_weights_from_disk),
                (InitWeightsUpdateGroupReqInput, self.init_weights_update_group),
545
546
547
548
549
550
551
552
                (
                    InitWeightsSendGroupForRemoteInstanceReqInput,
                    self.init_weights_send_group_for_remote_instance,
                ),
                (
                    SendWeightsToRemoteInstanceReqInput,
                    self.send_weights_to_remote_instance,
                ),
553
554
555
556
557
558
                (
                    UpdateWeightsFromDistributedReqInput,
                    self.update_weights_from_distributed,
                ),
                (UpdateWeightsFromTensorReqInput, self.update_weights_from_tensor),
                (GetWeightsByNameReqInput, self.get_weights_by_name),
559
560
                (ReleaseMemoryOccupationReqInput, self.release_memory_occupation),
                (ResumeMemoryOccupationReqInput, self.resume_memory_occupation),
561
                (SlowDownReqInput, self.slow_down),
562
                (ProfileReq, self.profile),
563
                (FreezeGCReq, self.handle_freeze_gc),
564
                (GetInternalStateReq, self.get_internal_state),
565
                (SetInternalStateReq, self.set_internal_state),
566
                (RpcReqInput, self.handle_rpc_request),
567
                (ExpertDistributionReq, self.expert_distribution_handle),
568
569
                (LoadLoRAAdapterReqInput, self.load_lora_adapter),
                (UnloadLoRAAdapterReqInput, self.unload_lora_adapter),
570
                (MultiTokenizerRegisterReq, self.register_multi_tokenizer),
571
572
573
            ]
        )

574
575
576
    def init_tokenizer(self):
        server_args = self.server_args
        self.is_generation = self.model_config.is_generation
577

578
579
580
581
582
583
584
585
586
        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if self.model_config.is_multimodal:
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
587
                    use_fast=not server_args.disable_fast_image_processor,
588
                )
xm:D's avatar
xm:D committed
589
                self.tokenizer = get_tokenizer_from_processor(self.processor)
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
                )

    def init_memory_pool_and_cache(self):
        server_args = self.server_args

        self.req_to_token_pool, self.token_to_kv_pool_allocator = (
            self.tp_worker.get_memory_pool()
        )

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
Hanming Lu's avatar
Hanming Lu committed
609
            if self.is_hybrid:
tarinkk's avatar
tarinkk committed
610
611
612
613
                ChunkCacheClass = SWAChunkCache
            else:
                ChunkCacheClass = ChunkCache
            self.tree_cache = ChunkCacheClass(
614
615
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
616
                page_size=self.page_size,
617
618
            )
        else:
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
            if os.environ.get("SGLANG_EXPERIMENTAL_CPP_RADIX_TREE") == "1":
                # lazy import to avoid JIT overhead
                from sglang.srt.mem_cache.radix_cache_cpp import RadixCacheCpp

                self.tree_cache = RadixCacheCpp(
                    disable=False,
                    use_hicache=self.enable_hierarchical_cache,
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool=self.token_to_kv_pool_allocator,
                    tp_cache_group=self.tp_cpu_group,
                    page_size=self.page_size,
                    hicache_ratio=server_args.hicache_ratio,
                    hicache_size=server_args.hicache_size,
                    hicache_write_policy=server_args.hicache_write_policy,
                    enable_kv_cache_events=self.enable_kv_cache_events,
                )
            elif self.enable_hierarchical_cache:
636
637
638
                self.tree_cache = HiRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
639
640
641
642
643
                    tp_cache_group=(
                        self.attn_tp_cpu_group
                        if self.server_args.enable_dp_attention
                        else self.tp_cpu_group
                    ),
644
                    page_size=self.page_size,
645
                    hicache_ratio=server_args.hicache_ratio,
Zhiqiang Xie's avatar
Zhiqiang Xie committed
646
647
                    hicache_size=server_args.hicache_size,
                    hicache_write_policy=server_args.hicache_write_policy,
648
                    hicache_io_backend=server_args.hicache_io_backend,
649
                    hicache_mem_layout=server_args.hicache_mem_layout,
650
                    enable_metrics=self.enable_metrics,
651
                    hicache_storage_backend=server_args.hicache_storage_backend,
pansicheng's avatar
pansicheng committed
652
                    hicache_storage_prefetch_policy=server_args.hicache_storage_prefetch_policy,
653
654
                    model_name=server_args.served_model_name,
                    storage_backend_extra_config=server_args.hicache_storage_backend_extra_config,
655
                )
656
657
658
                self.tp_worker.register_hicache_layer_transfer_counter(
                    self.tree_cache.cache_controller.layer_done_counter
                )
Hanming Lu's avatar
Hanming Lu committed
659
660
661
662
663
664
665
666
667
668
669
            elif self.is_hybrid:
                assert (
                    self.server_args.disaggregation_mode == "null"
                ), "Hybrid mode does not support disaggregation yet"
                self.tree_cache = SWARadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    sliding_window_size=self.sliding_window_size,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
                )
670
671
672
673
674
675
676
677
678
679
680
681
682
            elif self.enable_lora:
                assert (
                    not self.enable_hierarchical_cache
                ), "LoRA radix cache doesn't support hierarchical cache"
                assert (
                    self.schedule_policy == "fcfs"
                ), "LoRA radix cache only supports FCFS policy"
                self.tree_cache = LoRARadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
                )
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
            elif server_args.enable_lmcache:
                from sglang.srt.mem_cache.storage.lmcache.lmc_radix_cache import (
                    LMCRadixCache,
                )

                self.tree_cache = LMCRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
                    model_config=self.model_config,
                    tp_size=self.tp_size,
                    rank=self.tp_rank,
                    tp_group=self.tp_group,
                )
698
699
700
701
            else:
                self.tree_cache = RadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Lianmin Zheng's avatar
Lianmin Zheng committed
702
                    page_size=self.page_size,
703
                    disable=server_args.disable_radix_cache,
704
                    enable_kv_cache_events=self.enable_kv_cache_events,
705
706
707
708
709
710
711
712
713
714
715
716
                )

        self.decode_mem_cache_buf_multiplier = (
            1
            if self.spec_algorithm.is_none()
            else (
                server_args.speculative_num_draft_tokens
                + (
                    server_args.speculative_eagle_topk
                    * server_args.speculative_num_steps
                )
            )
717
        )
718

719
720
721
        embedding_cache_size = int(os.environ.get("SGLANG_VLM_CACHE_SIZE_MB", "100"))
        init_embedding_cache(embedding_cache_size * 1024 * 1024)

Byron Hsu's avatar
Byron Hsu committed
722
    def init_disaggregation(self):
723
724
725
726
        self.transfer_backend = TransferBackend(
            self.server_args.disaggregation_transfer_backend
        )

Byron Hsu's avatar
Byron Hsu committed
727
728
729
730
        if (
            self.disaggregation_mode == DisaggregationMode.DECODE
        ):  # *2 for the headroom.
            buffer_size = (self.req_to_token_pool.size) * 2
Byron Hsu's avatar
Byron Hsu committed
731
            self.req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
Byron Hsu's avatar
Byron Hsu committed
732
733
                buffer_size
            )
734
735
            self.disagg_metadata_buffers = MetadataBuffers(
                buffer_size,
736
737
                hidden_size=self.model_config.hf_text_config.hidden_size,
                dtype=self.model_config.dtype,
738
739
                custom_mem_pool=self.token_to_kv_pool_allocator.get_kvcache().maybe_get_custom_mem_pool(),
            )
Byron Hsu's avatar
Byron Hsu committed
740
741
742

            # The decode requests polling kv cache
            self.disagg_decode_transfer_queue = DecodeTransferQueue(
743
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
744
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
745
                tp_rank=self.tp_rank,
746
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
747
748
                scheduler=self,
                tree_cache=self.tree_cache,
Byron Hsu's avatar
Byron Hsu committed
749
750
751
752
753
754
            )

            # The decode requests pending for pre-allocation
            self.disagg_decode_prealloc_queue = DecodePreallocQueue(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Byron Hsu's avatar
Byron Hsu committed
755
756
757
758
759
                draft_token_to_kv_pool=(
                    None
                    if self.draft_worker is None
                    else self.draft_worker.model_runner.token_to_kv_pool
                ),
Byron Hsu's avatar
Byron Hsu committed
760
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
761
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
762
763
764
                scheduler=self,
                transfer_queue=self.disagg_decode_transfer_queue,
                tree_cache=self.tree_cache,
765
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
766
767
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
768
769
                dp_size=self.server_args.dp_size,
                gpu_id=self.gpu_id,
Byron Hsu's avatar
Byron Hsu committed
770
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
771
772
                max_total_num_tokens=self.max_total_num_tokens,
                prefill_pp_size=self.server_args.disaggregation_prefill_pp,
773
                num_reserved_decode_tokens=self.server_args.num_reserved_decode_tokens,
774
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
775
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
776

Byron Hsu's avatar
Byron Hsu committed
777
778
779
        elif self.disaggregation_mode == DisaggregationMode.PREFILL:
            # *2 for the headroom.
            buffer_size = self.max_running_requests * 2
Byron Hsu's avatar
Byron Hsu committed
780
            self.req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
Byron Hsu's avatar
Byron Hsu committed
781
782
                buffer_size
            )
783
784
            self.disagg_metadata_buffers = MetadataBuffers(
                buffer_size,
785
786
                hidden_size=self.model_config.hf_text_config.hidden_size,
                dtype=self.model_config.dtype,
787
788
                custom_mem_pool=self.token_to_kv_pool_allocator.get_kvcache().maybe_get_custom_mem_pool(),
            )
Byron Hsu's avatar
Byron Hsu committed
789

Liangsheng Yin's avatar
Liangsheng Yin committed
790
            self.disagg_prefill_bootstrap_queue = PrefillBootstrapQueue(
Byron Hsu's avatar
Byron Hsu committed
791
                token_to_kv_pool=self.token_to_kv_pool_allocator.get_kvcache(),
Byron Hsu's avatar
Byron Hsu committed
792
793
794
795
796
                draft_token_to_kv_pool=(
                    None
                    if self.draft_worker is None
                    else self.draft_worker.model_runner.token_to_kv_pool
                ),
Byron Hsu's avatar
Byron Hsu committed
797
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
798
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
799
800
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
Byron Hsu's avatar
Byron Hsu committed
801
                gpu_id=self.gpu_id,
Byron Hsu's avatar
Byron Hsu committed
802
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
803
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
804
805
806
                max_total_num_tokens=self.max_total_num_tokens,
                decode_tp_size=self.server_args.disaggregation_decode_tp,
                decode_dp_size=self.server_args.disaggregation_decode_dp,
807
                scheduler=self,
Byron Hsu's avatar
Byron Hsu committed
808
809
810
                pp_rank=self.pp_rank,
                pp_size=self.pp_size,
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
811
812
            )
            # The prefill requests that are in the middle of kv sending
813
            self.disagg_prefill_inflight_queue: List[Req] = []
Byron Hsu's avatar
Byron Hsu committed
814

815
816
817
818
    def init_moe_config(self):
        if hasattr(self.model_config.hf_config, "num_experts_per_tok"):
            initialize_moe_config(self.server_args)

819
    @DynamicGradMode()
820
    def event_loop_normal(self):
821
        """A normal scheduler loop."""
822
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
823
824
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
825

826
            batch = self.get_next_batch_to_run()
Lianmin Zheng's avatar
Lianmin Zheng committed
827
            self.cur_batch = batch
828
829
830
831

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
Lianmin Zheng's avatar
Lianmin Zheng committed
832
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
833
                # When the server is idle, do self-check and re-init some states
834
                self.self_check_during_idle()
835
836

            self.last_batch = batch
837

838
    @DynamicGradMode()
Lianmin Zheng's avatar
Lianmin Zheng committed
839
    def event_loop_overlap(self):
840
        """A scheduler loop that overlaps the CPU processing and GPU computation."""
841
        self.result_queue = deque()
Lianmin Zheng's avatar
Lianmin Zheng committed
842
843
844
845
846
847
848

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)

            batch = self.get_next_batch_to_run()
            self.cur_batch = batch
849

Lianmin Zheng's avatar
Lianmin Zheng committed
850
            if batch:
851
                batch.launch_done = threading.Event()
Lianmin Zheng's avatar
Lianmin Zheng committed
852
                result = self.run_batch(batch)
853
                self.result_queue.append((batch.copy(), result))
Lianmin Zheng's avatar
Lianmin Zheng committed
854

855
                if self.last_batch is None:
856
                    # Create a dummy first batch to start the pipeline for overlap schedule.
857
858
859
860
861
862
                    # It is now used for triggering the sampling_info_done event.
                    tmp_batch = ScheduleBatch(
                        reqs=None,
                        forward_mode=ForwardMode.DUMMY_FIRST,
                        next_batch_sampling_info=self.tp_worker.cur_sampling_info,
                    )
863
                    self.process_batch_result(tmp_batch, None, batch.launch_done)
864

Lianmin Zheng's avatar
Lianmin Zheng committed
865
            if self.last_batch:
866
                # Process the results of the last batch
867
                tmp_batch, tmp_result = self.result_queue.popleft()
868
869
870
                tmp_batch.next_batch_sampling_info = (
                    self.tp_worker.cur_sampling_info if batch else None
                )
871
872
873
874
                # NOTE: we should use current launched batch's launch_done event Instead of the last batch's
                self.process_batch_result(
                    tmp_batch, tmp_result, batch.launch_done if batch else None
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
875
            elif batch is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
876
                # When the server is idle, do self-check and re-init some states
877
                self.self_check_during_idle()
Lianmin Zheng's avatar
Lianmin Zheng committed
878
879
880

            self.last_batch = batch

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
    @DynamicGradMode()
    def event_loop_pp(self):
        """A non-overlap scheduler loop for pipeline parallelism."""
        mbs = [None] * self.pp_size
        last_mbs = [None] * self.pp_size
        self.running_mbs = [
            ScheduleBatch(reqs=[], batch_is_full=False) for _ in range(self.pp_size)
        ]
        bids = [None] * self.pp_size
        pp_outputs: Optional[PPProxyTensors] = None
        while True:
            server_is_idle = True
            for mb_id in range(self.pp_size):
                self.running_batch = self.running_mbs[mb_id]
                self.last_batch = last_mbs[mb_id]

                recv_reqs = self.recv_requests()
                self.process_input_requests(recv_reqs)
                mbs[mb_id] = self.get_next_batch_to_run()
                self.running_mbs[mb_id] = self.running_batch

                self.cur_batch = mbs[mb_id]
                if self.cur_batch:
                    server_is_idle = False
                    result = self.run_batch(self.cur_batch)

907
                # (last rank) send the outputs to the next step
908
909
910
911
912
913
                if self.pp_group.is_last_rank:
                    if self.cur_batch:
                        next_token_ids, bids[mb_id] = (
                            result.next_token_ids,
                            result.bid,
                        )
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
                        if self.cur_batch.return_logprob:
                            pp_outputs = PPProxyTensors(
                                {
                                    "next_token_ids": next_token_ids,
                                    "extend_input_len_per_req": result.extend_input_len_per_req,
                                    "extend_logprob_start_len_per_req": result.extend_logprob_start_len_per_req,
                                }
                                | (
                                    {
                                        f"logits_output.{k}": v
                                        for k, v in result.logits_output.__dict__.items()
                                    }
                                    if result.logits_output is not None
                                    else {}
                                )
                            )
                        else:
                            pp_outputs = PPProxyTensors(
                                {
                                    "next_token_ids": next_token_ids,
                                }
                            )
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
                        # send the output from the last round to let the next stage worker run post processing
                        self.pp_group.send_tensor_dict(
                            pp_outputs.tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                # receive outputs and post-process (filter finished reqs) the coming microbatch
                next_mb_id = (mb_id + 1) % self.pp_size
                next_pp_outputs = None
                if mbs[next_mb_id] is not None:
                    next_pp_outputs: Optional[PPProxyTensors] = PPProxyTensors(
                        self.pp_group.recv_tensor_dict(
                            all_gather_group=self.attn_tp_group
                        )
                    )
                    mbs[next_mb_id].output_ids = next_pp_outputs["next_token_ids"]
952
953
954
955
956
957
958
959
960
                    logits_output_args = {
                        k[len("logits_output.") :]: v
                        for k, v in next_pp_outputs.tensors.items()
                        if k.startswith("logits_output.")
                    }
                    if len(logits_output_args) > 0:
                        logits_output = LogitsProcessorOutput(**logits_output_args)
                    else:
                        logits_output = None
961
                    output_result = GenerationBatchResult(
962
                        logits_output=logits_output,
963
964
                        pp_hidden_states_proxy_tensors=None,
                        next_token_ids=next_pp_outputs["next_token_ids"],
965
966
967
968
969
970
                        extend_input_len_per_req=next_pp_outputs.tensors.get(
                            "extend_input_len_per_req", None
                        ),
                        extend_logprob_start_len_per_req=next_pp_outputs.tensors.get(
                            "extend_logprob_start_len_per_req", None
                        ),
971
                        bid=bids[next_mb_id],
972
                        can_run_cuda_graph=result.can_run_cuda_graph,
973
974
975
976
                    )
                    self.process_batch_result(mbs[next_mb_id], output_result)
                    last_mbs[next_mb_id] = mbs[next_mb_id]

977
                # (not last rank)
978
979
980
                if not self.pp_group.is_last_rank:
                    if self.cur_batch:
                        bids[mb_id] = result.bid
981
982
                    # carry the outputs to the next stage
                    # send the outputs from the last round to let the next stage worker run post processing
983
984
985
986
987
988
989
                    if pp_outputs:
                        self.pp_group.send_tensor_dict(
                            pp_outputs.tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                    # send out reqs to the next stage
990
                    dp_offset = self.attn_dp_rank * self.attn_tp_size
991
992
993
994
                    if self.attn_tp_rank == 0:
                        point_to_point_pyobj(
                            recv_reqs,
                            self.pp_rank * self.tp_size + dp_offset,
995
                            self.world_group.device_group,
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
                            self.pp_rank * self.tp_size + dp_offset,
                            (self.pp_rank + 1) * self.tp_size + dp_offset,
                        )

                    # send out proxy tensors to the next stage
                    if self.cur_batch:
                        self.pp_group.send_tensor_dict(
                            result.pp_hidden_states_proxy_tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                pp_outputs = next_pp_outputs

            # When the server is idle, self-check and re-init some states
            if server_is_idle:
1011
1012
                # When the server is idle, do self-check and re-init some states
                self.self_check_during_idle()
1013

1014
1015
    def recv_requests(self) -> List[Req]:
        """Receive results at tp_rank = 0 and broadcast it to all other TP ranks."""
1016
1017
1018
1019
1020
1021
1022
1023

        if self.recv_skipper is not None:
            last_forward_mode = (
                self.last_batch.forward_mode if self.last_batch is not None else None
            )
            if not self.recv_skipper.handle(last_forward_mode):
                return []

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
        if self.pp_rank == 0:
            if self.attn_tp_rank == 0:
                recv_reqs = []

                while True:
                    try:
                        recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                    except zmq.ZMQError:
                        break
                    recv_reqs.append(recv_req)

                while True:
                    try:
                        recv_rpc = self.recv_from_rpc.recv_pyobj(zmq.NOBLOCK)
                    except zmq.ZMQError:
                        break
                    recv_reqs.append(recv_rpc)
            else:
                recv_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1043
        else:
1044
            if self.attn_tp_rank == 0:
1045
                dp_offset = self.attn_dp_rank * self.attn_tp_size
1046
1047
1048
                recv_reqs = point_to_point_pyobj(
                    [],
                    self.pp_rank * self.tp_size + dp_offset,
1049
                    self.world_group.device_group,
1050
1051
1052
1053
1054
                    (self.pp_rank - 1) * self.tp_size + dp_offset,
                    self.pp_rank * self.tp_size + dp_offset,
                )
            else:
                recv_reqs = None
1055

fzyzcjy's avatar
fzyzcjy committed
1056
1057
1058
        if self.input_blocker is not None:
            recv_reqs = self.input_blocker.handle(recv_reqs)

1059
1060
1061
1062
1063
1064
        if self.server_args.enable_dp_attention:
            if self.attn_tp_rank == 0:
                work_reqs = [
                    req
                    for req in recv_reqs
                    if isinstance(
1065
1066
1067
1068
1069
1070
1071
                        req,
                        (
                            TokenizedGenerateReqInput,
                            TokenizedEmbeddingReqInput,
                            BatchTokenizedGenerateReqInput,
                            BatchTokenizedEmbeddingReqInput,
                        ),
1072
1073
1074
1075
1076
1077
                    )
                ]
                control_reqs = [
                    req
                    for req in recv_reqs
                    if not isinstance(
1078
1079
1080
1081
1082
1083
1084
                        req,
                        (
                            TokenizedGenerateReqInput,
                            TokenizedEmbeddingReqInput,
                            BatchTokenizedGenerateReqInput,
                            BatchTokenizedEmbeddingReqInput,
                        ),
1085
1086
1087
1088
1089
1090
1091
1092
1093
                    )
                ]
            else:
                work_reqs = None
                control_reqs = None

            if self.attn_tp_size != 1:
                work_reqs = broadcast_pyobj(
                    work_reqs,
1094
                    self.attn_tp_group.rank,
1095
                    self.attn_tp_cpu_group,
1096
                    src=self.attn_tp_group.ranks[0],
1097
1098
1099
                )
            if self.tp_size != 1:
                control_reqs = broadcast_pyobj(
1100
1101
1102
1103
                    control_reqs,
                    self.tp_group.rank,
                    self.tp_cpu_group,
                    src=self.tp_group.ranks[0],
1104
1105
1106
                )
            recv_reqs = work_reqs + control_reqs
        elif self.tp_size != 1:
1107
1108
1109
1110
1111
1112
            recv_reqs = broadcast_pyobj(
                recv_reqs,
                self.tp_group.rank,
                self.tp_cpu_group,
                src=self.tp_group.ranks[0],
            )
1113
1114
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
1115
    def process_input_requests(self, recv_reqs: List):
1116
        for recv_req in recv_reqs:
1117
1118
            # If it is a health check generation request and there are running requests, ignore it.
            if is_health_check_generate_req(recv_req) and (
1119
1120
1121
                self.chunked_req is not None
                or not self.running_batch.is_empty()
                or len(self.offload_tags) > 0
1122
1123
1124
1125
            ):
                self.return_health_check_ct += 1
                continue

1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
            # If it is a work request, accept or reject the request based on the request queue size.
            if is_work_request(recv_req):
                if len(self.waiting_queue) + 1 > self.max_queued_requests:
                    abort_req = AbortReq(
                        recv_req.rid,
                        finished_reason={
                            "type": "abort",
                            "status_code": HTTPStatus.SERVICE_UNAVAILABLE,
                            "message": "The request queue is full.",
                        },
                    )
                    self.send_to_tokenizer.send_pyobj(abort_req)
                    continue
1139

1140
1141
            # If it is a MultiTokenizerWrapper, unwrap it and handle the inner request.
            if isinstance(recv_req, MultiTokenizerWrapper):
1142
1143
1144
1145
                worker_id = recv_req.worker_id
                recv_req = recv_req.obj
                output = self._request_dispatcher(recv_req)
                if output is not None:
1146
                    output = MultiTokenizerWrapper(worker_id, output)
1147
1148
1149
                    self.send_to_tokenizer.send_pyobj(output)
                continue

1150
            output = self._request_dispatcher(recv_req)
1151
            if output is not None:
1152
1153
1154
1155
1156
                if isinstance(output, RpcReqOutput):
                    if self.recv_from_rpc is not None:
                        self.recv_from_rpc.send_pyobj(output)
                else:
                    self.send_to_tokenizer.send_pyobj(output)
1157
1158
1159
1160
1161

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
1162
        self.maybe_update_dp_balance_data(recv_req)
1163

1164
        # Create a new request
1165
1166
1167
1168
1169
        if (
            recv_req.session_params is None
            or recv_req.session_params.id is None
            or recv_req.session_params.id not in self.sessions
        ):
Rin Intachuen's avatar
Rin Intachuen committed
1170
1171
1172
1173
1174
1175
            if recv_req.input_embeds is not None:
                # Generate fake input_ids based on the length of input_embeds
                seq_length = len(recv_req.input_embeds)
                fake_input_ids = [1] * seq_length
                recv_req.input_ids = fake_input_ids

1176
1177
1178
1179
            if recv_req.bootstrap_port is None:
                # Use default bootstrap port
                recv_req.bootstrap_port = self.server_args.disaggregation_bootstrap_port

1180
1181
1182
1183
1184
            req = Req(
                recv_req.rid,
                recv_req.input_text,
                recv_req.input_ids,
                recv_req.sampling_params,
Lianmin Zheng's avatar
Lianmin Zheng committed
1185
1186
                return_logprob=recv_req.return_logprob,
                top_logprobs_num=recv_req.top_logprobs_num,
1187
                token_ids_logprob=recv_req.token_ids_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
1188
                stream=recv_req.stream,
1189
                lora_id=recv_req.lora_id,
Rin Intachuen's avatar
Rin Intachuen committed
1190
                input_embeds=recv_req.input_embeds,
Lianmin Zheng's avatar
Lianmin Zheng committed
1191
                custom_logit_processor=recv_req.custom_logit_processor,
1192
                return_hidden_states=recv_req.return_hidden_states,
1193
                eos_token_ids=self.model_config.hf_eos_token_id,
1194
                bootstrap_host=recv_req.bootstrap_host,
1195
                bootstrap_port=recv_req.bootstrap_port,
1196
                bootstrap_room=recv_req.bootstrap_room,
1197
                data_parallel_rank=recv_req.data_parallel_rank,
1198
                vocab_size=self.model_config.vocab_size,
1199
1200
            )
            req.tokenizer = self.tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
1201

1202
1203
1204
            if self.disaggregation_mode != DisaggregationMode.NULL:
                # Invalid request for disaggregated mode
                if recv_req.bootstrap_room is None:
1205
                    error_msg = (
1206
1207
1208
                        f"Invalid request: Disaggregated request received without "
                        f"boostrap room id. {req.rid=}"
                    )
1209
                    logger.error(error_msg)
1210
                    prepare_abort(req, error_msg, status_code=HTTPStatus.BAD_REQUEST)
1211
1212
1213
                    self.stream_output([req], req.return_logprob)
                    return

1214
1215
1216
1217
            if (
                recv_req.session_params is not None
                and recv_req.session_params.id is not None
            ):
1218
                req.set_finish_with_abort(
1219
                    f"Invalid request: session id {recv_req.session_params.id} does not exist"
1220
                )
1221
                self._add_request_to_queue(req)
1222
1223
                return
        else:
1224
1225
            # Create a new request from a previous session
            session = self.sessions[recv_req.session_params.id]
1226
            req = session.create_req(recv_req, self.tokenizer)
1227
            if isinstance(req.finished_reason, FINISH_ABORT):
1228
                self._add_request_to_queue(req)
1229
                return
1230

1231
        # Handle multimodal inputs
Mick's avatar
Mick committed
1232
1233
        if recv_req.mm_inputs is not None:
            image_inputs = MultimodalInputs.from_dict(recv_req.mm_inputs)
1234
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
1235
            req.origin_input_ids = self.pad_input_ids_func(
1236
                req.origin_input_ids, image_inputs
1237
            )
1238
            req.extend_image_inputs(image_inputs)
1239

1240
            if len(req.origin_input_ids) >= self.max_req_input_len:
1241
1242
1243
1244
1245
                req.set_finish_with_abort(
                    error_msg=(
                        "Multimodal prompt is too long after expanding multimodal tokens. "
                        f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                    )
1246
                )
1247
                self._add_request_to_queue(req)
1248
1249
                return

1250
        # Validate prompt length
1251
1252
1253
1254
1255
1256
        error_msg = validate_input_length(
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
        if error_msg:
1257
            req.set_finish_with_abort(error_msg)
1258
            self._add_request_to_queue(req)
1259
            return
1260

1261
        # Copy more attributes
1262
        if recv_req.logprob_start_len == -1 or not recv_req.return_logprob:
1263
1264
1265
1266
1267
            # By default, only return the logprobs for output tokens
            req.logprob_start_len = len(req.origin_input_ids) - 1
        else:
            req.logprob_start_len = recv_req.logprob_start_len

1268
        if req.logprob_start_len >= len(req.origin_input_ids):
1269
            error_msg = f"{req.logprob_start_len=} is higher than the number of input tokens {len(req.origin_input_ids)=}. Please use a smaller logprob_start_len."
1270
            req.logprob_start_len = len(req.origin_input_ids) - 1
1271
            req.set_finish_with_abort(error_msg)
1272
1273
1274
            self._add_request_to_queue(req)
            return

1275
1276
1277
1278
1279
1280
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
1281
            self.max_req_len - len(req.origin_input_ids) - 1,
1282
1283
        )

1284
1285
1286
1287
1288
        # Init grammar cache for this request
        add_to_grammar_queue = False
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
1289
            or req.sampling_params.ebnf is not None
1290
            or req.sampling_params.structural_tag is not None
1291
1292
1293
1294
1295
1296
        ):
            assert self.grammar_backend is not None
            if req.sampling_params.json_schema is not None:
                key = ("json", req.sampling_params.json_schema)
            elif req.sampling_params.regex is not None:
                key = ("regex", req.sampling_params.regex)
1297
1298
            elif req.sampling_params.ebnf is not None:
                key = ("ebnf", req.sampling_params.ebnf)
1299
1300
            elif req.sampling_params.structural_tag:
                key = ("structural_tag", req.sampling_params.structural_tag)
1301

1302
1303
1304
1305
1306
            value, cache_hit = self.grammar_backend.get_cached_or_future_value(key)
            req.grammar = value

            if not cache_hit:
                req.grammar_key = key
1307
                add_to_grammar_queue = True
1308
1309
1310
1311
            else:
                if value is INVALID_GRAMMAR_OBJ:  # We hit a cached invalid grammar.
                    error_msg = f"Invalid grammar request with cache hit: {key=}"
                    req.set_finish_with_abort(error_msg)
1312
1313

        if add_to_grammar_queue:
1314
            req.queue_time_start = time.perf_counter()
1315
1316
            self.grammar_queue.append(req)
        else:
1317
1318
            self._add_request_to_queue(req)

1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
    def handle_batch_generate_request(
        self,
        recv_req: BatchTokenizedGenerateReqInput,
    ):
        """Handle optimized batch generate request."""
        logger.debug(f"Processing batch generate request with {len(recv_req)} requests")

        # Process each request in the batch
        for tokenized_req in recv_req:
            self.handle_generate_request(tokenized_req)

1330
    def _add_request_to_queue(self, req: Req):
1331
        req.queue_time_start = time.perf_counter()
Byron Hsu's avatar
Byron Hsu committed
1332
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
1333
            self._prefetch_kvcache(req)
Byron Hsu's avatar
Byron Hsu committed
1334
1335
1336
            self.disagg_prefill_bootstrap_queue.add(
                req, self.model_config.num_key_value_heads
            )
Byron Hsu's avatar
Byron Hsu committed
1337
1338
1339
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            self.disagg_decode_prealloc_queue.add(req)
        else:
1340
            self._prefetch_kvcache(req)
Byron Hsu's avatar
Byron Hsu committed
1341
1342
            self.waiting_queue.append(req)

1343
1344
1345
    def _prefetch_kvcache(self, req: Req):
        if self.enable_hicache_storage:
            req.init_next_round_input(self.tree_cache)
1346
1347
1348
1349
1350
            if req.last_node.backuped:
                # only to initiate the prefetch if the last node is backuped
                # otherwise, the allocated GPU memory must be locked for integrity
                last_hash = req.last_host_node.get_last_hash_value()
                matched_len = len(req.prefix_indices) + req.host_hit_length
1351
1352
1353
1354
1355
                new_input_tokens = req.fill_ids[matched_len:]
                self.tree_cache.prefetch_from_storage(
                    req.rid, req.last_host_node, new_input_tokens, last_hash
                )

1356
    def _extend_requests_to_queue(self, reqs: List[Req], is_retracted: bool = False):
1357
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
Byron Hsu's avatar
Byron Hsu committed
1358
1359
1360
            self.disagg_prefill_bootstrap_queue.extend(
                reqs, self.model_config.num_key_value_heads
            )
1361
1362
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            # If this is a decode server, we put the request to the decode pending prealloc queue
1363
            self.disagg_decode_prealloc_queue.extend(reqs, is_retracted)
Byron Hsu's avatar
Byron Hsu committed
1364
1365
        else:
            self.waiting_queue.extend(reqs)
1366
1367
1368

    def handle_embedding_request(
        self,
1369
        recv_req: TokenizedEmbeddingReqInput,
1370
1371
1372
1373
1374
1375
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
woodx's avatar
woodx committed
1376
            token_type_ids=recv_req.token_type_ids,
1377
1378
1379
        )
        req.tokenizer = self.tokenizer

1380
1381
        # Handle multimodal inputs
        if recv_req.image_inputs is not None:
Mick's avatar
Mick committed
1382
            image_inputs = MultimodalInputs.from_dict(recv_req.image_inputs)
1383
1384
1385
1386
1387
1388
1389
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
            req.origin_input_ids = self.pad_input_ids_func(
                req.origin_input_ids, image_inputs
            )
            req.extend_image_inputs(image_inputs)

            if len(req.origin_input_ids) >= self.max_req_input_len:
1390
1391
1392
1393
1394
                req.set_finish_with_abort(
                    error_msg=(
                        "Multimodal prompt is too long after expanding multimodal tokens. "
                        f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                    )
1395
                )
1396
                self._add_request_to_queue(req)
1397
1398
                return

1399
        # Validate prompts length
1400
        error_msg = validate_input_length(
1401
1402
1403
1404
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
1405
        if error_msg:
1406
            self._add_request_to_queue(req)
1407
            return
1408

1409
1410
        # Copy more attributes
        req.logprob_start_len = len(req.origin_input_ids) - 1
1411
        self._add_request_to_queue(req)
1412

1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
    def handle_batch_embedding_request(
        self,
        recv_req: BatchTokenizedEmbeddingReqInput,
    ):
        """Handle optimized batch embedding request."""
        logger.debug(
            f"Processing batch embedding request with {len(recv_req)} requests"
        )

        # Process each request in the batch
        for tokenized_req in recv_req:
            self.handle_embedding_request(tokenized_req)

1426
1427
1428
1429
1430
    def self_check_during_idle(self):
        self.check_memory()
        self.check_tree_cache()
        self.new_token_ratio = self.init_new_token_ratio
        self.maybe_sleep_on_idle()
1431

Lianmin Zheng's avatar
Lianmin Zheng committed
1432
    def check_memory(self):
Hanming Lu's avatar
Hanming Lu committed
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
        if self.is_hybrid:
            (
                full_num_used,
                swa_num_used,
                _,
                _,
                full_available_size,
                full_evictable_size,
                swa_available_size,
                swa_evictable_size,
            ) = self._get_swa_token_info()
            memory_leak = full_num_used != 0 or swa_num_used != 0
            token_msg = (
                f"{self.full_tokens_per_layer=}, {full_available_size=}, {full_evictable_size=}, {self.tree_cache.full_protected_size()=}\n"
                f"{self.swa_tokens_per_layer=}, {swa_available_size=}, {swa_evictable_size=}, {self.tree_cache.swa_protected_size()=}\n"
            )
tarinkk's avatar
tarinkk committed
1449
        else:
Hanming Lu's avatar
Hanming Lu committed
1450
1451
1452
            _, _, available_size, evictable_size = self._get_token_info()
            protected_size = self.tree_cache.protected_size()
            memory_leak = (available_size + evictable_size) != (
1453
1454
1455
                # self.max_total_num_tokens
                # if not self.enable_hierarchical_cache
                # else self.max_total_num_tokens - protected_size
Hanming Lu's avatar
Hanming Lu committed
1456
                self.max_total_num_tokens
1457
                - protected_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1458
            )
Hanming Lu's avatar
Hanming Lu committed
1459
1460
1461
1462
            token_msg = f"{self.max_total_num_tokens=}, {available_size=}, {evictable_size=}, {protected_size=}\n"

        if memory_leak:
            msg = "token_to_kv_pool_allocator memory leak detected! " f"{token_msg}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1463
            raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1464

1465
1466
1467
1468
1469
1470
1471
1472
        if self.disaggregation_mode == DisaggregationMode.DECODE:
            req_total_size = (
                self.req_to_token_pool.size + self.req_to_token_pool.pre_alloc_size
            )
        else:
            req_total_size = self.req_to_token_pool.size

        if len(self.req_to_token_pool.free_slots) != req_total_size:
1473
            msg = (
1474
                "req_to_token_pool memory leak detected!"
1475
1476
                f"available_size={len(self.req_to_token_pool.free_slots)}, "
                f"total_size={self.req_to_token_pool.size}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1477
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1478
            raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1479

1480
1481
        if (
            self.enable_metrics
1482
            and self.current_scheduler_metrics_enabled()
1483
            and time.perf_counter() > self.metrics_collector.last_log_time + 30
1484
1485
        ):
            # During idle time, also collect metrics every 30 seconds.
Hanming Lu's avatar
Hanming Lu committed
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
            if self.is_hybrid:
                (
                    full_num_used,
                    swa_num_used,
                    full_token_usage,
                    swa_token_usage,
                    _,
                    _,
                    _,
                    _,
                ) = self._get_swa_token_info()
                num_used = max(full_num_used, swa_num_used)
                token_usage = max(full_token_usage, swa_token_usage)
            else:
                num_used, token_usage, _, _ = self._get_token_info()
Lianmin Zheng's avatar
Lianmin Zheng committed
1501
            num_running_reqs = len(self.running_batch.reqs)
1502
1503
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
Hanming Lu's avatar
Hanming Lu committed
1504
            self.stats.token_usage = round(token_usage, 2)
1505
1506
            self.stats.gen_throughput = 0
            self.stats.num_queue_reqs = len(self.waiting_queue)
1507
            self.stats.num_grammar_queue_reqs = len(self.grammar_queue)
1508
            self.metrics_collector.log_stats(self.stats)
1509
        self._publish_kv_events()
1510

Hanming Lu's avatar
Hanming Lu committed
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
    def check_tree_cache(self):
        if self.is_hybrid and isinstance(self.tree_cache, SWARadixCache):
            self.tree_cache.sanity_check()

    def _get_token_info(self):
        available_size = self.token_to_kv_pool_allocator.available_size()
        evictable_size = self.tree_cache.evictable_size()
        num_used = self.max_total_num_tokens - (available_size + evictable_size)
        token_usage = num_used / self.max_total_num_tokens
        return num_used, token_usage, available_size, evictable_size

    def _get_swa_token_info(self):
        full_available_size = self.token_to_kv_pool_allocator.full_available_size()
        full_evictable_size = self.tree_cache.full_evictable_size()
        swa_available_size = self.token_to_kv_pool_allocator.swa_available_size()
        swa_evictable_size = self.tree_cache.swa_evictable_size()
        full_num_used = self.full_tokens_per_layer - (
            full_available_size + full_evictable_size
        )
        swa_num_used = self.swa_tokens_per_layer - (
            swa_available_size + swa_evictable_size
        )
        full_token_usage = full_num_used / self.full_tokens_per_layer
        swa_token_usage = swa_num_used / self.swa_tokens_per_layer
        return (
            full_num_used,
            swa_num_used,
            full_token_usage,
            swa_token_usage,
            full_available_size,
            full_evictable_size,
            swa_available_size,
            swa_evictable_size,
        )

1546
    def get_next_batch_to_run(self) -> Optional[ScheduleBatch]:
1547
        # Merge the prefill batch into the running batch
1548
1549
1550
1551
1552
        chunked_req_to_exclude = set()
        if self.chunked_req:
            # Move the chunked request out of the batch so that we can merge
            # only finished requests to running_batch.
            chunked_req_to_exclude.add(self.chunked_req)
1553
            self.tree_cache.cache_unfinished_req(self.chunked_req, chunked=True)
1554
            # chunked request keeps its rid but will get a new req_pool_idx
Yi Zhang's avatar
Yi Zhang committed
1555
1556
1557
1558
1559
1560
            if self.tp_worker.worker.model_runner.is_hybrid_gdn:
                self.req_to_token_pool.free(
                    self.chunked_req.req_pool_idx, free_mamba_cache=False
                )
            else:
                self.req_to_token_pool.free(self.chunked_req.req_pool_idx)
Lianmin Zheng's avatar
Lianmin Zheng committed
1561
        if self.last_batch and self.last_batch.forward_mode.is_extend():
1562
1563
1564
1565
            if self.last_batch.chunked_req is not None:
                # In the context pipeline parallelism, after the last chunk, the current microbatch still track outdated chunked_req.
                # We need to discard it.
                chunked_req_to_exclude.add(self.last_batch.chunked_req)
Lianmin Zheng's avatar
Lianmin Zheng committed
1566

1567
            # Filter batch
1568
            last_bs = self.last_batch.batch_size()
1569
1570
1571
            self.last_batch.filter_batch(
                chunked_req_to_exclude=list(chunked_req_to_exclude)
            )
1572
            if self.last_batch.batch_size() < last_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1573
                self.running_batch.batch_is_full = False
1574

1575
1576
1577
            # Merge the new batch into the running batch.
            # For prefill-only batch, we can avoid going through decoding step.
            if not self.last_batch.is_empty() and not self.last_batch.is_prefill_only:
Lianmin Zheng's avatar
Lianmin Zheng committed
1578
                if self.running_batch.is_empty():
1579
1580
                    self.running_batch = self.last_batch
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1581
                    # Merge running_batch with prefill batch
1582
                    self.running_batch.merge_batch(self.last_batch)
1583

1584
        new_batch = self.get_new_batch_prefill()
1585

1586
1587
1588
1589
1590
        need_dp_attn_preparation = require_mlp_sync(self.server_args)

        if need_dp_attn_preparation and not self.spec_algorithm.is_none():
            # In speculative decoding, prefill batches and decode batches cannot be processed in the same DP attention group.
            # We prepare idle batches in advance to skip preparing decode batches when there are prefill batches in the group.
1591
            new_batch = self.prepare_mlp_sync_batch(new_batch)
1592
1593
1594
            need_dp_attn_preparation = new_batch is None

        if new_batch is not None:
1595
1596
1597
1598
            # Run prefill first if possible
            ret = new_batch
        else:
            # Run decode
Lianmin Zheng's avatar
Lianmin Zheng committed
1599
            if not self.running_batch.is_empty():
1600
                self.running_batch = self.update_running_batch(self.running_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1601
1602
1603
                ret = self.running_batch if not self.running_batch.is_empty() else None
            else:
                ret = None
1604

1605
1606
        # Handle DP attention
        if need_dp_attn_preparation:
1607
            self.maybe_handle_dp_balance_data()
1608
            ret = self.prepare_mlp_sync_batch(ret)
1609
1610

        return ret
1611

1612
1613
1614
1615
1616
1617
    def get_num_allocatable_reqs(self, running_bs):
        res = global_server_args_dict["max_micro_batch_size"] - running_bs
        if self.pp_size > 1:
            res = min(res, self.req_to_token_pool.available_size())
        return res

Lianmin Zheng's avatar
Lianmin Zheng committed
1618
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
Lianmin Zheng's avatar
Lianmin Zheng committed
1619
        # Check if the grammar is ready in the grammar queue
1620
        if self.grammar_queue:
1621
            self.move_ready_grammar_requests()
1622

Lianmin Zheng's avatar
Lianmin Zheng committed
1623
1624
        # Handle the cases where prefill is not allowed
        if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1625
            self.running_batch.batch_is_full or len(self.waiting_queue) == 0
1626
        ) and self.chunked_req is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1627
1628
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
1629
        running_bs = len(self.running_batch.reqs)
1630
        # Ignore the check if self.chunked_req is not None.
1631
1632
1633
1634
1635
        # In the non-PP case, when self.chunked_req is not None, num_allocatable_reqs should always be greater than 0,
        # as the space for the chunked request has just been released.
        # In PP case, a chunked req can start in one microbatch and end in another microbatch, so the max_running_requests per microbatch should not be strict.
        # Instead, we should always allow chunked request to be added, otherwise, there will be a memory leak.
        if self.get_num_allocatable_reqs(running_bs) <= 0 and not self.chunked_req:
Lianmin Zheng's avatar
Lianmin Zheng committed
1636
            self.running_batch.batch_is_full = True
1637
1638
            return None

1639
        if self.enable_hierarchical_cache:
1640
            self.tree_cache.check_hicache_events()
1641

1642
        # Get priority queue
1643
        self.policy.calc_priority(self.waiting_queue)
1644

Lianmin Zheng's avatar
Lianmin Zheng committed
1645
        # Prefill policy
1646
        adder = PrefillAdder(
1647
            self.page_size,
1648
            self.tree_cache,
1649
            self.token_to_kv_pool_allocator,
1650
1651
1652
1653
            self.running_batch,
            self.new_token_ratio,
            self.max_prefill_tokens,
            self.chunked_prefill_size,
1654
            running_bs if self.is_mixed_chunk else 0,
1655
1656
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1657
        if self.chunked_req is not None:
1658
1659
            self.chunked_req.init_next_round_input()
            self.chunked_req = adder.add_chunked_req(self.chunked_req)
1660

1661
        if self.enable_lora:
1662
            lora_set = set([req.lora_id for req in self.running_batch.reqs])
Lianmin Zheng's avatar
Lianmin Zheng committed
1663

1664
        # Get requests from the waiting queue to a new prefill batch
1665
        for req in self.waiting_queue:
1666
1667
1668
1669
1670

            if self.enable_lora and not self.tp_worker.can_run_lora_batch(
                lora_set
                | set([req.lora_id for req in adder.can_run_list])
                | set([req.lora_id])
1671
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1672
                self.running_batch.batch_is_full = True
1673
1674
                break

1675
            if len(adder.can_run_list) >= self.get_num_allocatable_reqs(running_bs):
Lianmin Zheng's avatar
Lianmin Zheng committed
1676
                self.running_batch.batch_is_full = True
1677
                break
1678

Byron Hsu's avatar
Byron Hsu committed
1679
1680
1681
1682
1683
1684
1685
            if self.disaggregation_mode == DisaggregationMode.PREFILL:
                # In prefill mode, prealloc queue and transfer queue can also take memory,
                # so we need to check if the available size for the actual available size.
                if len(adder.can_run_list) >= self.req_to_token_pool.available_size():
                    self.running_batch.batch_is_full = True
                    break

1686
            if self.enable_hicache_storage:
pansicheng's avatar
pansicheng committed
1687
1688
1689
1690
                prefetch_done = self.tree_cache.check_prefetch_progress(req.rid)
                if not prefetch_done:
                    # skip staging requests that are ongoing prefetch
                    continue
1691

1692
1693
            req.init_next_round_input(self.tree_cache)
            res = adder.add_one_req(req, has_chunked_req=(self.chunked_req is not None))
1694

1695
1696
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
1697
1698
                    if self.enable_hierarchical_cache:
                        # Set batch_is_full after making sure there are requests that can be served
Lianmin Zheng's avatar
Lianmin Zheng committed
1699
1700
                        self.running_batch.batch_is_full = len(
                            adder.can_run_list
1701
                        ) > 0 or (not self.running_batch.is_empty())
1702
                    else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1703
                        self.running_batch.batch_is_full = True
1704
1705
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1706
        # Update waiting queue
1707
        can_run_list: List[Req] = adder.can_run_list
Lianmin Zheng's avatar
Lianmin Zheng committed
1708
1709
        if len(can_run_list) == 0:
            return None
1710
1711
1712
1713

        if self.enable_metrics:
            # only record queue time when enable_metrics is True to avoid overhead
            for req in can_run_list:
1714
                req.queue_time_end = time.perf_counter()
1715

Lianmin Zheng's avatar
Lianmin Zheng committed
1716
1717
1718
        self.waiting_queue = [
            x for x in self.waiting_queue if x not in set(can_run_list)
        ]
1719

1720
1721
1722
        if adder.new_chunked_req is not None:
            assert self.chunked_req is None
            self.chunked_req = adder.new_chunked_req
1723

1724
1725
        if self.chunked_req:
            self.chunked_req.is_chunked += 1
Lianmin Zheng's avatar
Lianmin Zheng committed
1726

1727
        # Print stats
1728
        if self.current_scheduler_metrics_enabled():
1729
            self.log_prefill_stats(adder, can_run_list, running_bs)
1730

Lianmin Zheng's avatar
Lianmin Zheng committed
1731
        # Create a new batch
1732
1733
1734
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
1735
            self.token_to_kv_pool_allocator,
1736
            self.tree_cache,
1737
            self.model_config,
1738
            self.enable_overlap,
1739
            self.spec_algorithm,
1740
            chunked_req=self.chunked_req,
1741
        )
1742
1743
        if self.enable_hierarchical_cache:
            # todo (zhiqiang): disable cuda graph execution if hicache loading triggered
1744
1745
1746
            new_batch.hicache_consumer_index = (
                self.tree_cache.ready_to_load_host_cache()
            )
1747

1748
        new_batch.prepare_for_extend()
1749

Lianmin Zheng's avatar
Lianmin Zheng committed
1750
        # Mixed-style chunked prefill
1751
1752
        if (
            self.is_mixed_chunk
Lianmin Zheng's avatar
Lianmin Zheng committed
1753
            and not self.running_batch.is_empty()
1754
1755
1756
            and not (new_batch.return_logprob or self.running_batch.return_logprob)
        ):
            # TODO (lianmin): support return_logprob + mixed chunked prefill
1757
1758
            self.running_batch.filter_batch()
            if not self.running_batch.is_empty():
1759
                self.running_batch.prepare_for_decode()
1760
1761
                new_batch.mix_with_running(self.running_batch)
                new_batch.decoding_reqs = self.running_batch.reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
1762
1763
1764
            self.running_batch = ScheduleBatch(
                reqs=[], batch_is_full=self.running_batch.batch_is_full
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1765
1766
        else:
            new_batch.decoding_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1767
1768
1769

        return new_batch

Lianmin Zheng's avatar
Lianmin Zheng committed
1770
    def update_running_batch(self, batch: ScheduleBatch) -> Optional[ScheduleBatch]:
1771
        """Update the current running decoding batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1772
        initial_bs = batch.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1773

1774
1775
        batch.filter_batch()
        if batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1776
1777
            batch.batch_is_full = False
            return batch
1778

Lianmin Zheng's avatar
Lianmin Zheng committed
1779
        # Check if decode out of memory
1780
        if not batch.check_decode_mem(self.decode_mem_cache_buf_multiplier) or (
1781
            TEST_RETRACT and batch.batch_size() > 10
1782
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1783
1784
            old_ratio = self.new_token_ratio

1785
            retracted_reqs, new_token_ratio = batch.retract_decode(self.server_args)
1786
            num_retracted_reqs = len(retracted_reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1787
            self.new_token_ratio = new_token_ratio
1788

Lianmin Zheng's avatar
Lianmin Zheng committed
1789
            logger.info(
1790
                "KV cache pool is full. Retract requests. "
1791
                f"#retracted_reqs: {num_retracted_reqs}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
1792
1793
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
1794

1795
            self._extend_requests_to_queue(retracted_reqs, is_retracted=True)
1796
            self.total_retracted_reqs += num_retracted_reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
1797
1798
        else:
            self.new_token_ratio = max(
1799
                self.new_token_ratio - self.new_token_ratio_decay,
Lianmin Zheng's avatar
Lianmin Zheng committed
1800
1801
1802
                self.min_new_token_ratio,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
1803
        if batch.batch_size() < initial_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1804
            batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
1805
1806

        # Update batch tensors
1807
        batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
1808
        return batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1809

1810
1811
1812
    def run_batch(
        self, batch: ScheduleBatch
    ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
1813
        """Run a batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1814
1815
        self.forward_ct += 1

1816
1817
        # Whether to run the profiler
        self._profile_batch_predicate(batch)
1818
1819
1820
1821
        if self.forward_sleep_time is not None:
            logger.info(f"Scheduler.run_batch sleep {self.forward_sleep_time}s")
            time.sleep(self.forward_sleep_time)

1822
        # Run forward
1823
        if self.is_generation:
1824
1825
            if self.spec_algorithm.is_none():
                model_worker_batch = batch.get_model_worker_batch()
1826

1827
                if self.pp_group.is_last_rank:
1828
                    logits_output, next_token_ids, can_run_cuda_graph = (
1829
1830
1831
                        self.tp_worker.forward_batch_generation(model_worker_batch)
                    )
                else:
1832
                    pp_hidden_states_proxy_tensors, _, can_run_cuda_graph = (
1833
1834
                        self.tp_worker.forward_batch_generation(model_worker_batch)
                    )
1835
                bid = model_worker_batch.bid
Lianmin Zheng's avatar
Lianmin Zheng committed
1836
            else:
1837
1838
1839
                (
                    logits_output,
                    next_token_ids,
1840
                    bid,
1841
                    num_accepted_tokens,
1842
                    can_run_cuda_graph,
1843
                ) = self.draft_worker.forward_batch_speculative_generation(batch)
1844
1845
1846
                bs = batch.batch_size()
                self.spec_num_total_accepted_tokens += num_accepted_tokens + bs
                self.spec_num_total_forward_ct += bs
1847
                self.num_generated_tokens += num_accepted_tokens
1848
1849
1850

            if self.pp_group.is_last_rank:
                batch.output_ids = next_token_ids
1851

1852
1853
1854
            # These 2 values are needed for processing the output, but the values can be
            # modified by overlap schedule. So we have to copy them here so that
            # we can use the correct values in output processing.
1855
            if batch.return_logprob or self.spec_algorithm.is_eagle():
1856
                extend_input_len_per_req = [req.extend_input_len for req in batch.reqs]
1857
1858
1859
            else:
                extend_input_len_per_req = None
            if batch.return_logprob:
1860
1861
1862
1863
1864
1865
                extend_logprob_start_len_per_req = [
                    req.extend_logprob_start_len for req in batch.reqs
                ]
            else:
                extend_logprob_start_len_per_req = None

1866
            ret = GenerationBatchResult(
1867
1868
1869
1870
1871
1872
1873
                logits_output=logits_output if self.pp_group.is_last_rank else None,
                pp_hidden_states_proxy_tensors=(
                    pp_hidden_states_proxy_tensors
                    if not self.pp_group.is_last_rank
                    else None
                ),
                next_token_ids=next_token_ids if self.pp_group.is_last_rank else None,
1874
1875
                extend_input_len_per_req=extend_input_len_per_req,
                extend_logprob_start_len_per_req=extend_logprob_start_len_per_req,
1876
                bid=bid,
1877
                can_run_cuda_graph=can_run_cuda_graph,
1878
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1879
1880
1881
        else:  # embedding or reward model
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
1882
1883
1884
            ret = EmbeddingBatchResult(
                embeddings=embeddings, bid=model_worker_batch.bid
            )
1885
        return ret
Chayenne's avatar
Chayenne committed
1886

1887
1888
1889
1890
    def process_batch_result(
        self,
        batch: ScheduleBatch,
        result: Union[GenerationBatchResult, EmbeddingBatchResult],
1891
        launch_done: Optional[threading.Event] = None,
1892
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1893
        if batch.forward_mode.is_decode():
1894
            self.process_batch_result_decode(batch, result, launch_done)
1895
        elif batch.forward_mode.is_extend():
1896
            self.process_batch_result_prefill(batch, result, launch_done)
1897
1898
        elif batch.forward_mode.is_idle():
            if self.enable_overlap:
1899
                self.tp_worker.resolve_last_batch_result(launch_done)
1900
                self.set_next_batch_sampling_info_done(batch)
1901
        elif batch.forward_mode.is_dummy_first():
1902
            self.set_next_batch_sampling_info_done(batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1903

1904
1905
1906
        self.maybe_send_health_check_signal()

    def maybe_send_health_check_signal(self):
1907
1908
1909
1910
1911
1912
1913
        if self.return_health_check_ct:
            # Return some signal for the health check.
            # This is used to prevent the health check signal being blocked by long context prefill.
            # However, one minor issue is that this code path does not check the status of detokenizer manager.
            self.return_health_check_ct -= 1
            self.send_to_tokenizer.send_pyobj(HealthCheckOutput())

1914
1915
    def prepare_mlp_sync_batch(self, local_batch: ScheduleBatch):
        return self.prepare_mlp_sync_batch_raw(
1916
1917
1918
            local_batch,
            dp_size=self.server_args.dp_size,
            attn_tp_size=self.attn_tp_size,
1919
            tp_group=self.tp_group,
1920
1921
1922
1923
            get_idle_batch=self.get_idle_batch,
            disable_cuda_graph=self.server_args.disable_cuda_graph,
            spec_algorithm=self.spec_algorithm,
            speculative_num_draft_tokens=self.server_args.speculative_num_draft_tokens,
1924
            require_mlp_tp_gather=require_mlp_tp_gather(self.server_args),
1925
            disable_overlap_schedule=self.server_args.disable_overlap_schedule,
1926
1927
1928
        )

    @staticmethod
1929
    def prepare_mlp_sync_batch_raw(
1930
1931
1932
        local_batch: ScheduleBatch,
        dp_size,
        attn_tp_size: int,
1933
        tp_group,
1934
1935
1936
1937
        get_idle_batch,
        disable_cuda_graph: bool,
        spec_algorithm,
        speculative_num_draft_tokens,
1938
        require_mlp_tp_gather: bool,
1939
        disable_overlap_schedule: bool,
1940
    ):
1941
1942
1943
        # Check if other DP workers have running batches
        if local_batch is None:
            num_tokens = 0
1944
            num_tokens_for_logprob = 0
1945
1946
        elif local_batch.forward_mode.is_decode():
            num_tokens = local_batch.batch_size()
1947
            num_tokens_for_logprob = num_tokens
1948
1949
        else:
            num_tokens = local_batch.extend_num_tokens
1950
            num_tokens_for_logprob = sum(
Lianmin Zheng's avatar
Lianmin Zheng committed
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
                [
                    # We should have at least 1 token for sample in every case.
                    max(extend_len - logprob_start_len, 1)
                    for logprob_start_len, extend_len in zip(
                        local_batch.extend_logprob_start_lens, local_batch.extend_lens
                    )
                ]
            )

        if local_batch is None or local_batch.forward_mode.is_decode_or_idle():
            can_cuda_graph = 1
        else:
            can_cuda_graph = 0

        is_extend_in_batch = (
            local_batch.forward_mode.is_extend() if local_batch else False
        )
1968
1969

        tbo_preparer = TboDPAttentionPreparer()
1970
1971
1972
1973
1974
1975
        if disable_overlap_schedule:
            group = tp_group.device_group
            device = tp_group.device
        else:
            group = tp_group.cpu_group
            device = "cpu"
1976

Lianmin Zheng's avatar
Lianmin Zheng committed
1977
1978
1979
1980
        local_info = torch.tensor(
            [
                num_tokens,
                can_cuda_graph,
1981
                num_tokens_for_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
1982
                is_extend_in_batch,
1983
1984
1985
                *tbo_preparer.prepare_all_gather(
                    local_batch,
                ),
Lianmin Zheng's avatar
Lianmin Zheng committed
1986
1987
            ],
            dtype=torch.int64,
1988
            device=device,
Lianmin Zheng's avatar
Lianmin Zheng committed
1989
1990
        )
        global_info = torch.empty(
1991
            (dp_size, attn_tp_size, 6),
Lianmin Zheng's avatar
Lianmin Zheng committed
1992
            dtype=torch.int64,
1993
            device=device,
Lianmin Zheng's avatar
Lianmin Zheng committed
1994
        )
1995
        torch.distributed.all_gather_into_tensor(
Lianmin Zheng's avatar
Lianmin Zheng committed
1996
1997
            global_info.flatten(),
            local_info,
1998
            group=group,
1999
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2000
2001
2002
2003
        global_num_tokens = global_info[:, 0, 0].tolist()
        can_cuda_graph = min(global_info[:, 0, 1].tolist())
        global_num_tokens_for_logprob = global_info[:, 0, 2].tolist()
        is_extend_in_batch = global_info[:, 0, 3].tolist()
2004

2005
2006
2007
2008
        tbo_split_seq_index, global_forward_mode = tbo_preparer.compute_output(
            global_info[:, :, 4:6]
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2009
        if local_batch is None and max(global_num_tokens) > 0:
2010
            local_batch = get_idle_batch()
2011
2012

        if local_batch is not None:
2013
            # TODO: handle the case when moe_dense_tp_size != 1
2014
            if not require_mlp_tp_gather:
2015
2016
2017
2018
2019
2020
2021
                local_batch.global_num_tokens = [num_tokens]
                local_batch.global_num_tokens_for_logprob = [num_tokens_for_logprob]
            else:
                local_batch.global_num_tokens = global_num_tokens
                local_batch.global_num_tokens_for_logprob = (
                    global_num_tokens_for_logprob
                )
2022
            local_batch.is_extend_in_batch = any(is_extend_in_batch)
2023
2024
            local_batch.tbo_split_seq_index = tbo_split_seq_index
            local_batch.global_forward_mode = global_forward_mode
2025

2026
            # Check forward mode for cuda graph
2027
            if not disable_cuda_graph:
Lianmin Zheng's avatar
Lianmin Zheng committed
2028
                local_batch.can_run_dp_cuda_graph = can_cuda_graph
2029

2030
        return local_batch
2031
2032
2033
2034
2035

    def get_idle_batch(self):
        idle_batch = ScheduleBatch.init_new(
            [],
            self.req_to_token_pool,
2036
            self.token_to_kv_pool_allocator,
2037
2038
2039
            self.tree_cache,
            self.model_config,
            self.enable_overlap,
2040
            self.spec_algorithm,
2041
2042
2043
2044
        )
        idle_batch.prepare_for_idle()
        return idle_batch

2045
2046
    def move_ready_grammar_requests(self):
        """Move requests whose grammar objects are ready from grammar_queue to waiting_queue."""
2047

2048
        num_ready_reqs = 0
2049
        num_timeout_reqs = 0
2050
2051
        for req in self.grammar_queue:
            try:
2052
2053
2054
                if req.finished():  # It is aborted by AbortReq
                    num_ready_reqs += 1
                    continue
2055
                req.grammar = req.grammar.result(timeout=0.03)
2056
2057
2058
2059
2060
                self.grammar_backend.set_cache(req.grammar_key, req.grammar.copy())
                if req.grammar is INVALID_GRAMMAR_OBJ:
                    req.set_finish_with_abort(
                        f"Invalid grammar request: {req.grammar_key=}"
                    )
2061
2062
                num_ready_reqs += 1
            except futures._base.TimeoutError:
2063
                req.grammar_wait_ct += 1
2064
2065
                # NOTE(lianmin): this timeout is the waiting time of the above line. It is
                # not the waiting time from it enters the grammar queue.
2066
                if req.grammar_wait_ct > GRAMMAR_TIMEOUT / 0.03:
2067
                    num_timeout_reqs = 1
2068
2069
                break

2070
        if self.server_args.enable_dp_attention:
2071
2072
            tp_size = self.attn_tp_size
            tp_group = self.attn_tp_cpu_group
2073
        else:
2074
2075
2076
2077
2078
            tp_size = self.tp_size
            tp_group = self.tp_cpu_group

        if tp_size > 1:
            # Sync across TP ranks to make sure they have the same number of ready requests
2079
            tensor = torch.tensor([num_ready_reqs, num_timeout_reqs], dtype=torch.int32)
2080
2081
2082
            torch.distributed.all_reduce(
                tensor, op=torch.distributed.ReduceOp.MAX, group=tp_group
            )
2083
            num_ready_reqs_max, num_timeout_reqs_max = tensor.tolist()
2084

2085
            for i in range(num_ready_reqs, num_ready_reqs_max):
2086
                req = self.grammar_queue[i]
2087
2088
                if req.finished():  # It is aborted by AbortReq
                    continue
2089
                req.grammar = req.grammar.result()
2090
2091
2092
2093
2094
2095
2096
2097
                self.grammar_backend.set_cache(req.grammar_key, req.grammar.copy())
                if req.grammar is INVALID_GRAMMAR_OBJ:
                    req.set_finish_with_abort(
                        f"Invalid grammar request: {req.grammar_key=}"
                    )
        else:
            num_ready_reqs_max = num_ready_reqs
            num_timeout_reqs_max = num_timeout_reqs
2098

2099
2100
2101
2102
2103
2104
2105
        for i in range(num_ready_reqs, num_ready_reqs + num_timeout_reqs_max):
            req = self.grammar_queue[i]
            req.grammar.cancel()
            error_msg = f"Grammar preprocessing timed out for {req.grammar_key=}"
            req.set_finish_with_abort(error_msg)
            self.grammar_backend.set_cache(req.grammar_key, INVALID_GRAMMAR_OBJ)
        num_ready_reqs = num_ready_reqs_max + num_timeout_reqs_max
2106

2107
        self._extend_requests_to_queue(self.grammar_queue[:num_ready_reqs])
2108
2109
        self.grammar_queue = self.grammar_queue[num_ready_reqs:]

2110
2111
2112
2113
2114
2115
2116
    def set_next_batch_sampling_info_done(self, batch: ScheduleBatch):
        if batch.next_batch_sampling_info:
            if batch.next_batch_sampling_info.grammars is not None:
                batch.next_batch_sampling_info.update_regex_vocab_mask()
                self.current_stream.synchronize()
            batch.next_batch_sampling_info.sampling_info_done.set()

2117
2118
2119
    def watchdog_thread(self):
        """A watch dog thread that will try to kill the server itself if one forward batch takes too long."""
        self.watchdog_last_forward_ct = 0
2120
        self.watchdog_last_time = time.perf_counter()
2121
2122

        while True:
2123
            current = time.perf_counter()
2124
2125
2126
2127
2128
2129
2130
2131
2132
            if self.cur_batch is not None:
                if self.watchdog_last_forward_ct == self.forward_ct:
                    if current > self.watchdog_last_time + self.watchdog_timeout:
                        break
                else:
                    self.watchdog_last_forward_ct = self.forward_ct
                    self.watchdog_last_time = current
            time.sleep(self.watchdog_timeout // 2)

Lianmin Zheng's avatar
Lianmin Zheng committed
2133
2134
        if not disable_request_logging():
            # Print batch size and memory pool info to check whether there are de-sync issues.
Hanming Lu's avatar
Hanming Lu committed
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
            if self.is_hybrid:
                (
                    _,
                    _,
                    _,
                    _,
                    full_available_size,
                    full_evictable_size,
                    swa_available_size,
                    swa_evictable_size,
                ) = self._get_swa_token_info()
                info_msg = (
                    f"{full_available_size=}, "
                    f"{full_evictable_size=}, "
                    f"{swa_available_size=}, "
                    f"{swa_evictable_size=}, "
                )
            else:
                _, _, available_size, evictable_size = self._get_token_info()
                info_msg = f"{available_size=}, " f"{evictable_size=}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
2155
2156
2157
            logger.error(
                f"{self.cur_batch.batch_size()=}, "
                f"{self.cur_batch.reqs=}, "
Hanming Lu's avatar
Hanming Lu committed
2158
                f"{info_msg}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2159
2160
            )

2161
        pyspy_dump_schedulers()
Lianmin Zheng's avatar
Lianmin Zheng committed
2162
        logger.error(f"Watchdog timeout ({self.watchdog_timeout=})")
2163
2164
        print(file=sys.stderr, flush=True)
        print(file=sys.stdout, flush=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
2165
2166

        # Wait for some time so that the parent process can print the error.
2167
2168
2169
        time.sleep(5)
        self.parent_process.send_signal(signal.SIGQUIT)

2170
2171
2172
    def flush_cache_wrapped(self, recv_req: FlushCacheReqInput):
        success = self.flush_cache()
        return FlushCacheReqOutput(success=success)
2173

2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
    def clear_hicache_storage_wrapped(self, recv_req: ClearHiCacheReqInput):
        if self.enable_hierarchical_cache:
            self.tree_cache.clear_storage_backend()
            logger.info("Hierarchical cache cleared successfully!")
            if_success = True
        else:
            logging.warning("Hierarchical cache is not enabled.")
            if_success = False
        return ClearHiCacheReqOutput(success=if_success)

2184
    def flush_cache(self):
2185
        """Flush the memory pool and cache."""
2186
2187
2188
2189
2190
        if (
            len(self.waiting_queue) == 0
            and self.running_batch.is_empty()
            and (self.pp_size == 1 or all(x.is_empty() for x in self.running_mbs))
        ):
2191
2192
            self.cur_batch = None
            self.last_batch = None
2193
            self.tree_cache.reset()
2194
            if self.grammar_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
2195
                self.grammar_backend.reset()
2196
            self.req_to_token_pool.clear()
2197
            self.token_to_kv_pool_allocator.clear()
2198
2199
2200

            if not self.spec_algorithm.is_none():
                self.draft_worker.model_runner.req_to_token_pool.clear()
2201
                self.draft_worker.model_runner.token_to_kv_pool_allocator.clear()
2202
2203
2204
2205
2206

            self.num_generated_tokens = 0
            self.forward_ct_decode = 0
            self.spec_num_total_accepted_tokens = 0
            self.spec_num_total_forward_ct = 0
2207
2208
            self.cum_spec_accept_length = 0
            self.cum_spec_accept_count = 0
2209
2210
2211
2212
2213
2214
2215
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
2216
                f"#running-req: {len(self.running_batch.reqs)}"
2217
2218
2219
2220
            )
            if_success = False
        return if_success

Liangsheng Yin's avatar
Liangsheng Yin committed
2221
2222
    def get_load(self):
        # TODO(lsyin): use dynamically maintained num_waiting_tokens
Hanming Lu's avatar
Hanming Lu committed
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
        if self.is_hybrid:
            load_full = (
                self.full_tokens_per_layer
                - self.token_to_kv_pool_allocator.full_available_size()
                - self.tree_cache.full_evictable_size()
            )
            load_swa = (
                self.swa_tokens_per_layer
                - self.token_to_kv_pool_allocator.swa_available_size()
                - self.tree_cache.swa_evictable_size()
            )
            load = max(load_full, load_swa)
        else:
            load = (
                self.max_total_num_tokens
                - self.token_to_kv_pool_allocator.available_size()
                - self.tree_cache.evictable_size()
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
        load += sum(len(req.origin_input_ids) for req in self.waiting_queue)
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            load += sum(
                len(req.origin_input_ids)
                for req in self.disagg_prefill_bootstrap_queue.queue
            )
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            load += sum(
                len(req.req.origin_input_ids)
                for req in self.disagg_decode_prealloc_queue.queue
            )

        return load

2255
2256
2257
    def get_internal_state(self, recv_req: GetInternalStateReq):
        ret = dict(global_server_args_dict)
        ret["last_gen_throughput"] = self.last_gen_throughput
2258
2259
2260
2261
2262
2263
2264
2265
2266
        ret["memory_usage"] = {
            "weight": round(
                self.tp_worker.worker.model_runner.weight_load_mem_usage, 2
            ),
            "kvcache": round(
                self.token_to_kv_pool_allocator.get_kvcache().mem_usage, 2
            ),
            "token_capacity": int(self.max_total_num_tokens),
        }
2267

2268
2269
2270
        ret["memory_usage"]["graph"] = round(
            self.tp_worker.worker.model_runner.graph_mem_usage, 2
        )
2271

2272
2273
2274
2275
2276
2277
        if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
            ret["avg_spec_accept_length"] = (
                self.cum_spec_accept_length / self.cum_spec_accept_count
            )
        if RECORD_STEP_TIME:
            ret["step_time_dict"] = self.step_time_dict
Liangsheng Yin's avatar
Liangsheng Yin committed
2278
2279
2280
2281

        ret["load"] = self.get_load()

        return GetInternalStateReqOutput(internal_state=ret)
2282
2283
2284
2285
2286

    def set_internal_state(self, recv_req: SetInternalStateReq):
        server_args_dict = recv_req.server_args
        args_allow_update = set(
            [
2287
                "max_micro_batch_size",
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
                "speculative_accept_threshold_single",
                "speculative_accept_threshold_acc",
            ]
        )
        if_success = True
        for k, v in server_args_dict.items():
            if k not in args_allow_update:
                logging.warning(f"Updating {k} is not supported.")
                if_success = False
                break
2298
2299
2300
2301
2302
2303
2304
2305
            elif k == "max_micro_batch_size" and (
                v > self.max_running_requests // self.pp_size or v < 1
            ):
                logging.warning(
                    f"Updating {k} to {v} is rejected because it is out of the valid range [1, {self.max_running_requests // self.pp_size}]."
                )
                if_success = False
                break
2306
2307
2308
2309
2310
2311
2312
2313
2314
        if if_success:
            if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
                avg_spec_accept_length = (
                    self.cum_spec_accept_length / self.cum_spec_accept_count
                )
                logger.info(f"{avg_spec_accept_length=}")
            self.cum_spec_accept_length = self.cum_spec_accept_count = 0
            for k, v in server_args_dict.items():
                global_server_args_dict[k] = v
2315
            logger.info(f"Global server args updated! {global_server_args_dict=}")
2316
2317
2318
2319
2320
        return SetInternalStateReqOutput(
            updated=True,
            server_args=global_server_args_dict,
        )

2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
    def handle_rpc_request(self, recv_req: RpcReqInput):
        # Handle RPC requests
        logger.info(
            f"handle_rpc_request: {recv_req.method}, param: {recv_req.parameters}"
        )

        success = True
        exec = None
        try:
            func = getattr(self, recv_req.method)
            func(recv_req.parameters)
        except Exception as e:
            success = False
            exec = e
            logger.error(f"Failed to call rpc {recv_req.method}: {str(e)}")

        barrier()
        return RpcReqOutput(success, "" if not exec else str(exec))

2340
2341
    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
Lianmin Zheng's avatar
Lianmin Zheng committed
2342
        to_del = []
2343
        for i, req in enumerate(self.waiting_queue):
2344
            if recv_req.abort_all or req.rid.startswith(recv_req.rid):
Lianmin Zheng's avatar
Lianmin Zheng committed
2345
                to_del.append(i)
2346

Lianmin Zheng's avatar
Lianmin Zheng committed
2347
        # Sort in reverse order to avoid index issues when deleting
Lianmin Zheng's avatar
Lianmin Zheng committed
2348
        for i in reversed(to_del):
2349
2350
2351
            # Abort method 1: directly pop from the queue
            # This only works for requests that have not started anything.
            # We still need to send something back to TokenizerManager to clean up the state.
Lianmin Zheng's avatar
Lianmin Zheng committed
2352
            req = self.waiting_queue.pop(i)
2353
2354
2355
            if self.enable_hicache_storage:
                # to release prefetch events associated with the request
                self.tree_cache.release_aborted_request(req.rid)
Lianmin Zheng's avatar
Lianmin Zheng committed
2356
            self.send_to_tokenizer.send_pyobj(AbortReq(req.rid))
2357
2358
2359
2360
            # For disaggregation decode mode, the request in the waiting queue has KV cache allocated.
            if self.disaggregation_mode == DisaggregationMode.DECODE:
                self.tree_cache.cache_finished_req(req)

2361
            logger.debug(f"Abort queued request. {req.rid=}")
2362

2363
2364
2365
2366
2367
        # Delete the requests in the grammar queue
        for req in self.grammar_queue:
            # Abort method 2: call `set_finish_with_abort`
            # The request will still run one prefill forward pass.
            # In this case, we change the input_ids to be only one token to make this prefill cheap.
2368
            if recv_req.abort_all or req.rid.startswith(recv_req.rid):
2369
                logger.debug(f"Abort grammar queue request. {req.rid=}")
2370
2371
                if req.grammar:
                    req.grammar.cancel()
2372
2373
                req.set_finish_with_abort("Aborted by AbortReq.")

2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
        # Delete requests not in the waiting queue when PD disaggregation is enabled
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            # Abort requests that have not yet been bootstrapped
            for i, req in enumerate(self.disagg_prefill_bootstrap_queue.queue):
                logger.debug(f"Abort bootstrap queue request. {req.rid=}")
                if recv_req.abort_all or req.rid.startswith(recv_req.rid):
                    if hasattr(req.disagg_kv_sender, "abort"):
                        req.disagg_kv_sender.abort()

            # Abort in-flight requests
            for i, req in enumerate(self.disagg_prefill_inflight_queue):
                logger.debug(f"Abort inflight queue request. {req.rid=}")
                if recv_req.abort_all or req.rid.startswith(recv_req.rid):
                    if hasattr(req.disagg_kv_sender, "abort"):
                        req.disagg_kv_sender.abort()

        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            # Abort requests that have not yet finished preallocation
            for i, decode_req in enumerate(self.disagg_decode_prealloc_queue.queue):
                logger.debug(f"Abort prealloc queue request. {decode_req.req.rid=}")
                if recv_req.abort_all or decode_req.req.rid.startswith(recv_req.rid):
                    if hasattr(decode_req.kv_receiver, "abort"):
                        decode_req.kv_receiver.abort()

            # Abort requests waiting for kvcache to release tree cache
            for i, decode_req in enumerate(self.disagg_decode_transfer_queue.queue):
                logger.debug(f"Abort transfer queue request. {decode_req.req.rid=}")
                if recv_req.abort_all or decode_req.req.rid.startswith(recv_req.rid):
                    if hasattr(decode_req.kv_receiver, "abort"):
                        decode_req.kv_receiver.abort()

2405
        # Delete requests in the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
2406
2407
2408
2409
2410
2411
        if self.cur_batch is self.running_batch or self.cur_batch is None:
            reqs = self.running_batch.reqs
        else:
            reqs = self.running_batch.reqs + self.cur_batch.reqs

        for req in reqs:
2412
2413
2414
            if not req.finished() and (
                recv_req.abort_all or req.rid.startswith(recv_req.rid)
            ):
2415
2416
2417
                # Abort method 3: set `to_abort=True`
                # The request will still run one decode forward pass.
                # Then we reuse all existing code to clean up the KV cache allocation.
Lianmin Zheng's avatar
Lianmin Zheng committed
2418
2419
                logger.debug(f"Abort running request. {req.rid=}")
                req.to_abort = True
2420

2421
2422
2423
    def _pause_engine(self) -> Tuple[List[Req], int]:
        raise NotImplementedError()

2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
    def load_lora_adapter(
        self, recv_req: LoadLoRAAdapterReqInput
    ) -> LoadLoRAAdapterReqOutput:
        """In-place loading a new lora adapter from disk or huggingface."""

        result = self.tp_worker.load_lora_adapter(recv_req)
        return result

    def unload_lora_adapter(
        self, recv_req: UnloadLoRAAdapterReqInput
    ) -> UnloadLoRAAdapterReqOutput:
        """Unload the lora adapter."""

        result = self.tp_worker.unload_lora_adapter(recv_req)
        return result

2440
2441
2442
2443
    def register_multi_tokenizer(self, recv_req: MultiTokenizerRegisterReq):
        self.send_to_detokenizer.send_pyobj(recv_req)
        return recv_req

2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
    def init_weights_send_group_for_remote_instance(
        self, recv_req: InitWeightsSendGroupForRemoteInstanceReqInput
    ):
        """Init the seed and client instance communication group."""
        success, message = self.tp_worker.init_weights_send_group_for_remote_instance(
            recv_req
        )
        return InitWeightsSendGroupForRemoteInstanceReqOutput(success, message)

    def send_weights_to_remote_instance(
        self, recv_req: SendWeightsToRemoteInstanceReqInput
    ):
        """Send the seed instance weights to the destination instance."""
        success, message = self.tp_worker.send_weights_to_remote_instance(recv_req)
        return SendWeightsToRemoteInstanceReqOutput(success, message)

2460
2461
2462
2463
2464
2465
2466
    def slow_down(self, recv_req: SlowDownReqInput):
        t = recv_req.forward_sleep_time
        if t is not None and t <= 0:
            t = None
        self.forward_sleep_time = t
        return SlowDownReqOutput()

2467
2468
    def expert_distribution_handle(self, recv_req: ExpertDistributionReq):
        if recv_req == ExpertDistributionReq.START_RECORD:
2469
            get_global_expert_distribution_recorder().start_record()
2470
        elif recv_req == ExpertDistributionReq.STOP_RECORD:
2471
            get_global_expert_distribution_recorder().stop_record()
2472
        elif recv_req == ExpertDistributionReq.DUMP_RECORD:
2473
            get_global_expert_distribution_recorder().dump_record()
2474
        else:
2475
            raise ValueError(f"Unrecognized ExpertDistributionReq value: {recv_req=}")
2476
        return ExpertDistributionReqOutput()
2477

2478
    def open_session(self, recv_req: OpenSessionReqInput):
2479
2480
2481
2482
        # handle error
        session_id = recv_req.session_id
        if session_id in self.sessions:
            logger.warning(f"session id {session_id} already exist, cannot open.")
2483
            return OpenSessionReqOutput(session_id, False)
2484
        elif session_id is None:
2485
            logger.warning("session id is None, cannot open.")
2486
            return OpenSessionReqOutput(session_id, False)
2487
2488
2489
2490
        else:
            self.sessions[session_id] = Session(
                recv_req.capacity_of_str_len, session_id
            )
2491
            return OpenSessionReqOutput(session_id, True)
2492
2493
2494
2495
2496
2497
2498
2499
2500

    def close_session(self, recv_req: CloseSessionReqInput):
        # handle error
        session_id = recv_req.session_id
        if session_id not in self.sessions:
            logger.warning(f"session id {session_id} does not exist, cannot delete.")
        else:
            del self.sessions[session_id]

2501
2502
    def get_print_prefix(self):
        prefix = ""
2503
2504
        if self.attn_dp_rank is not None:
            prefix += f" DP{self.attn_dp_rank}"
2505
2506
2507
2508
2509
2510
        if self.server_args.tp_size > 1:
            prefix += f" TP{self.tp_rank}"
        if self.pp_size > 1:
            prefix += f" PP{self.pp_rank}"
        return prefix

2511
2512
    def current_scheduler_metrics_enabled(self):
        return self.attn_tp_rank == 0 or self.enable_metrics_for_all_schedulers
2513

2514
2515
2516
    def maybe_sleep_on_idle(self):
        if self.idle_sleeper is not None:
            self.idle_sleeper.maybe_sleep()
2517

2518
2519
2520
2521
2522
2523
    def handle_freeze_gc(self, recv_req: FreezeGCReq):
        """Handle freeze_gc request: freeze scheduler's GC and forward to detokenizer."""
        freeze_gc("Scheduler")
        self.send_to_detokenizer.send_pyobj(recv_req)
        return None

2524

2525
2526
2527
2528
2529
2530
2531
class IdleSleeper:
    """
    In setups which have long inactivity periods it is desirable to reduce
    system power consumption when sglang does nothing. This would lead not only
    to power savings, but also to more CPU thermal headroom when a request
    eventually comes. This is important in cases when multiple GPUs are connected
    as each GPU would otherwise pin one thread at 100% CPU usage.
2532

2533
2534
2535
    The simplest solution is to use zmq.Poller on all sockets that may receive
    data that needs handling immediately.
    """
2536

2537
2538
    def __init__(self, sockets):
        self.poller = zmq.Poller()
2539
        self.last_empty_time = time.time()
2540
2541
2542
2543
2544
        for s in sockets:
            self.poller.register(s, zmq.POLLIN)

    def maybe_sleep(self):
        self.poller.poll(1000)
2545
2546
2547
2548
2549
2550
2551
        if (
            global_config.torch_empty_cache_interval > 0
            and time.time() - self.last_empty_time
            > global_config.torch_empty_cache_interval
        ):
            self.last_empty_time = time.time()
            torch.cuda.empty_cache()
2552

2553

2554
2555
def is_health_check_generate_req(recv_req):
    return getattr(recv_req, "rid", "").startswith("HEALTH_CHECK")
2556

2557
2558

def is_work_request(recv_req):
2559
2560
2561
2562
2563
2564
2565
2566
2567
    return isinstance(
        recv_req,
        (
            TokenizedGenerateReqInput,
            TokenizedEmbeddingReqInput,
            BatchTokenizedGenerateReqInput,
            BatchTokenizedEmbeddingReqInput,
        ),
    )
2568
2569


2570
2571
2572
2573
2574
def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
Cheng Wan's avatar
Cheng Wan committed
2575
    moe_ep_rank: int,
2576
    pp_rank: int,
2577
    dp_rank: Optional[int],
2578
    pipe_writer,
2579
    balance_meta: Optional[DPBalanceMeta] = None,
2580
):
2581
2582
2583
    if (numa_node := server_args.numa_node) is not None:
        numa_bind_to_node(numa_node[gpu_id])

2584
    # Generate the prefix
2585
2586
2587
2588
2589
    prefix = ""
    if dp_rank is not None:
        prefix += f" DP{dp_rank}"
    if server_args.tp_size > 1:
        prefix += f" TP{tp_rank}"
Cheng Wan's avatar
Cheng Wan committed
2590
2591
    if server_args.ep_size > 1:
        prefix += f" EP{moe_ep_rank}"
2592
2593
    if server_args.pp_size > 1:
        prefix += f" PP{pp_rank}"
2594

2595
    # Config the process
2596
    setproctitle.setproctitle(f"sglang::scheduler{prefix.replace(' ', '_')}")
2597
    faulthandler.enable()
2598
    kill_itself_when_parent_died()
2599
    parent_process = psutil.Process().parent()
2600

2601
2602
2603
    # [For Router] if env var "SGLANG_DP_RANK" exist, set dp_rank to the value of the env var
    if dp_rank is None and "SGLANG_DP_RANK" in os.environ:
        dp_rank = int(os.environ["SGLANG_DP_RANK"])
2604

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
2605
    # Configure the logger
2606
    configure_logger(server_args, prefix=prefix)
2607
    suppress_other_loggers()
2608

2609
    # Set cpu affinity to this gpu process
2610
2611
2612
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
        set_gpu_proc_affinity(server_args.tp_size, server_args.nnodes, gpu_id)

2613
    # Create a scheduler and run the event loop
2614
    try:
Cheng Wan's avatar
Cheng Wan committed
2615
        scheduler = Scheduler(
2616
2617
2618
2619
2620
2621
2622
2623
            server_args,
            port_args,
            gpu_id,
            tp_rank,
            moe_ep_rank,
            pp_rank,
            dp_rank,
            dp_balance_meta=balance_meta,
Cheng Wan's avatar
Cheng Wan committed
2624
        )
2625
        pipe_writer.send(
Mick's avatar
Mick committed
2626
2627
2628
2629
2630
            {
                "status": "ready",
                "max_total_num_tokens": scheduler.max_total_num_tokens,
                "max_req_input_len": scheduler.max_req_input_len,
            }
2631
        )
Byron Hsu's avatar
Byron Hsu committed
2632

2633
        disaggregation_mode: DisaggregationMode = scheduler.disaggregation_mode
Byron Hsu's avatar
Byron Hsu committed
2634
        if disaggregation_mode == DisaggregationMode.NULL:
2635
2636
2637
            if server_args.pp_size > 1:
                scheduler.event_loop_pp()
            elif scheduler.enable_overlap:
Byron Hsu's avatar
Byron Hsu committed
2638
2639
2640
2641
                scheduler.event_loop_overlap()
            else:
                scheduler.event_loop_normal()
        elif disaggregation_mode == DisaggregationMode.PREFILL:
2642
2643
2644
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_prefill()
            else:
2645
2646
2647
2648
                if server_args.pp_size > 1:
                    scheduler.event_loop_pp_disagg_prefill()
                else:
                    scheduler.event_loop_normal_disagg_prefill()
2649

Byron Hsu's avatar
Byron Hsu committed
2650
        elif disaggregation_mode == DisaggregationMode.DECODE:
2651
2652
2653
2654
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_decode()
            else:
                scheduler.event_loop_normal_disagg_decode()
Byron Hsu's avatar
Byron Hsu committed
2655

2656
    except Exception:
2657
2658
2659
        traceback = get_exception_traceback()
        logger.error(f"Scheduler hit an exception: {traceback}")
        parent_process.send_signal(signal.SIGQUIT)