scheduler.py 37 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

"""A scheduler that manages a tensor parallel GPU worker."""

18
import json
19
20
import logging
import multiprocessing
21
22
23
24
import os
import time
import warnings
from typing import List, Optional, Union
25

26
import torch
27
28
import zmq

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from sglang.global_config import global_config
from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.constrained.fsm_cache import FSMCache
from sglang.srt.constrained.jump_forward import JumpForwardCache
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.managers.io_struct import (
    AbortReq,
    BatchEmbeddingOut,
    BatchTokenIDOut,
    FlushCacheReq,
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
    TokenizedRewardReqInput,
    UpdateWeightReqInput,
    UpdateWeightReqOutput,
)
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
    BaseFinishReason,
    ImageInputs,
    Req,
    ScheduleBatch,
)
53
54
from sglang.srt.managers.schedule_policy import PrefillAdder, SchedulePolicy
from sglang.srt.managers.tp_worker import TpModelWorker
55
56
from sglang.srt.mem_cache.chunk_cache import ChunkCache
from sglang.srt.mem_cache.radix_cache import RadixCache
57
from sglang.srt.server_args import PortArgs, ServerArgs
58
59
60
61
62
63
64
65
66
from sglang.srt.utils import (
    broadcast_pyobj,
    configure_logger,
    is_generation_model,
    is_multimodal_model,
    kill_parent_process,
    set_random_seed,
    suppress_other_loggers,
)
67
68
69
70
from sglang.utils import get_exception_traceback

logger = logging.getLogger(__name__)

71
72
73
# Crash on warning if we are running CI tests
crash_on_warning = os.getenv("SGLANG_IS_IN_CI", "false") == "true"

74
75
76
77
78
79
80
81
82
83
84
85

class Scheduler:
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
    ):
        # Parse args
86
        self.server_args = server_args
87
88
        self.tp_rank = tp_rank
        self.tp_size = server_args.tp_size
89
90
91
92
        self.schedule_policy = server_args.schedule_policy
        self.disable_regex_jump_forward = server_args.disable_regex_jump_forward
        self.lora_paths = server_args.lora_paths
        self.max_loras_per_batch = server_args.max_loras_per_batch
93
94
95
96
97
98

        # Init inter-process communication
        context = zmq.Context(2)

        if self.tp_rank == 0:
            self.recv_from_tokenizer = context.socket(zmq.PULL)
99
            self.recv_from_tokenizer.bind(f"ipc://{port_args.scheduler_input_ipc_name}")
100
101

            self.send_to_detokenizer = context.socket(zmq.PUSH)
102
            self.send_to_detokenizer.connect(f"ipc://{port_args.detokenizer_ipc_name}")
103
        else:
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
            self.recv_from_tokenizer = self.send_to_detokenizer = None

        # Init tokenizer
        self.model_config = ModelConfig(
            server_args.model_path,
            server_args.trust_remote_code,
            context_length=server_args.context_length,
            model_override_args=json.loads(server_args.json_model_override_args),
        )

        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if is_multimodal_model(self.model_config.hf_config.architectures):
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                )
                self.tokenizer = self.processor.tokenizer
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                )
        self.is_generation = is_generation_model(
            self.model_config.hf_config.architectures, self.server_args.is_embedding
        )
133

134
        # Launch a tensor parallel worker
135
        self.tp_worker = TpModelWorker(
136
137
138
139
140
            gpu_id=gpu_id,
            tp_rank=tp_rank,
            server_args=server_args,
            nccl_port=port_args.nccl_ports[0],
        )
141
142
143
144
145
146
147
148
149
150
151
        self.tp_cpu_group = self.tp_worker.model_runner.tp_group.cpu_group

        # Get token and memory info from the tp worker
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
            self.max_req_input_len,
            self.random_seed,
        ) = self.tp_worker.get_token_and_memory_info()
        set_random_seed(self.random_seed)
152
153
154
        self.pad_input_ids_func = getattr(
            self.tp_worker.model_runner.model, "pad_input_ids", None
        )
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

        # Print debug info
        logger.info(
            f"max_total_num_tokens={self.max_total_num_tokens}, "
            f"max_prefill_tokens={self.max_prefill_tokens}, "
            f"max_running_requests={self.max_running_requests}, "
            f"context_len={self.model_config.context_len}"
        )

        # Init cache
        self.req_to_token_pool = self.tp_worker.model_runner.req_to_token_pool
        self.token_to_kv_pool = self.tp_worker.model_runner.token_to_kv_pool

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
            self.tree_cache = ChunkCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool=self.token_to_kv_pool,
            )
        else:
            self.tree_cache = RadixCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool=self.token_to_kv_pool,
                disable=server_args.disable_radix_cache,
            )
        self.tree_cache_metrics = {"total": 0, "hit": 0}
183
        self.policy = SchedulePolicy(self.schedule_policy, self.tree_cache)
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

        # Init running status
        self.waiting_queue: List[Req] = []
        self.running_batch: ScheduleBatch = None
        self.out_pyobjs = []
        self.decode_forward_ct = 0
        self.stream_interval = server_args.stream_interval
        self.num_generated_tokens = 0
        self.last_stats_tic = time.time()

        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
        self.current_inflight_req = None
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

        # Init the FSM cache for constrained generation
        if not server_args.skip_tokenizer_init:
            self.regex_fsm_cache = FSMCache(
                server_args.tokenizer_path,
                {
                    "tokenizer_mode": server_args.tokenizer_mode,
                    "trust_remote_code": server_args.trust_remote_code,
                },
                skip_tokenizer_init=server_args.skip_tokenizer_init,
                constrained_json_whitespace_pattern=server_args.constrained_json_whitespace_pattern,
            )
        self.jump_forward_cache = JumpForwardCache()

        # Init new token estimation
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
        self.min_new_token_ratio = min(
            global_config.base_min_new_token_ratio
            * server_args.schedule_conservativeness,
            1.0,
        )
        self.new_token_ratio = self.min_new_token_ratio
        self.new_token_ratio_decay = global_config.new_token_ratio_decay
225
        self.batch_is_full = False
226
227
228

    def event_loop(self):
        while True:
229
            # Receive requests
230
231
232
233
234
            if self.tp_rank == 0:
                recv_reqs = self.recv_requests_from_zmq()
            else:
                recv_reqs = None

235
            # Process requests
236
            recv_reqs = broadcast_pyobj(recv_reqs, self.tp_rank, self.tp_cpu_group)
237
238
239
240
            self.process_requests(recv_reqs)

            # Forward
            self.forward_step()
241

242
            # Send results
243
            if self.tp_rank == 0:
244
                for obj in self.out_pyobjs:
245
                    self.send_to_detokenizer.send_pyobj(obj)
246
                self.out_pyobjs = []
247
248
249
250
251
252
253
254
255
256
257
258
259

    def recv_requests_from_zmq(self):
        recv_reqs = []

        while True:
            try:
                recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
            except zmq.ZMQError:
                break
            recv_reqs.append(recv_req)

        return recv_reqs

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    def process_requests(self, recv_reqs: List):
        for recv_req in recv_reqs:
            if isinstance(recv_req, TokenizedGenerateReqInput):
                self.handle_generate_request(recv_req)
            elif isinstance(
                recv_req, (TokenizedEmbeddingReqInput, TokenizedRewardReqInput)
            ):
                self.handle_embedding_request(recv_req)
            elif isinstance(recv_req, FlushCacheReq):
                self.flush_cache()
            elif isinstance(recv_req, AbortReq):
                self.abort_request(recv_req)
            elif isinstance(recv_req, UpdateWeightReqInput):
                success, message = self.update_weights(recv_req)
                self.out_pyobjs.append(UpdateWeightReqOutput(success, message))
            else:
                raise ValueError(f"Invalid request: {recv_req}")

    @torch.inference_mode()
    def forward_step(self):
280
281
282
        if (
            self.batch_is_full or len(self.waiting_queue) == 0
        ) and self.current_inflight_req is None:
283
284
285
286
287
288
289
290
291
292
293
294
            new_batch = None
        else:
            new_batch = self.get_new_prefill_batch()

        if new_batch is not None:
            # Run a new prefill batch
            self.forward_prefill_batch(new_batch)

            if not new_batch.is_empty():
                if self.running_batch is None:
                    self.running_batch = new_batch
                else:
295
                    self.running_batch.merge_batch(new_batch)
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
        else:
            # Run a decode batch
            if self.running_batch is not None:
                # Run a few decode batches continuously for reducing overhead
                for _ in range(global_config.num_continue_decode_steps):
                    self.num_generated_tokens += len(self.running_batch.reqs)
                    self.forward_decode_batch(self.running_batch)

                    # Print stats
                    if self.tp_rank == 0 and self.decode_forward_ct % 40 == 0:
                        self.print_decode_stats()

                    if self.running_batch.is_empty():
                        self.running_batch = None
                        break

                    if self.out_pyobjs and self.running_batch.has_stream:
                        break
            else:
                self.check_memory()
                self.new_token_ratio = global_config.init_new_token_ratio

    def print_decode_stats(self):
        num_used = self.max_total_num_tokens - (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )
        throughput = self.num_generated_tokens / (time.time() - self.last_stats_tic)
        self.num_generated_tokens = 0
        self.last_stats_tic = time.time()
        logger.info(
            f"Decode batch. "
            f"#running-req: {len(self.running_batch.reqs)}, "
            f"#token: {num_used}, "
            f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
            f"gen throughput (token/s): {throughput:.2f}, "
            f"#queue-req: {len(self.waiting_queue)}"
        )

    def check_memory(self):
        available_size = (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )
        if available_size != self.max_total_num_tokens:
            warnings.warn(
                "Warning: "
                f"available_size={available_size}, max_total_num_tokens={self.max_total_num_tokens}\n"
                "KV cache pool leak detected!"
            )
            exit(1) if crash_on_warning else None

        if len(self.req_to_token_pool.free_slots) != self.req_to_token_pool.size:
            warnings.warn(
                "Warning: "
                f"available req slots={len(self.req_to_token_pool.free_slots)}, "
                f"total slots={self.req_to_token_pool.size}\n"
                "Memory pool leak detected!"
            )
            exit(1) if crash_on_warning else None

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
            lora_path=recv_req.lora_path,
        )
        req.tokenizer = self.tokenizer

        # Image inputs
        if recv_req.image_inputs is not None:
            req.image_inputs = ImageInputs.from_dict(
                recv_req.image_inputs, self.model_config.vocab_size
            )
373
            req.origin_input_ids = self.pad_input_ids_func(
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
                req.origin_input_ids_unpadded, req.image_inputs
            )

        req.return_logprob = recv_req.return_logprob
        req.top_logprobs_num = recv_req.top_logprobs_num
        req.stream = recv_req.stream
        req.logprob_start_len = recv_req.logprob_start_len

        if req.logprob_start_len == -1:
            # By default, only return the logprobs for output tokens
            req.logprob_start_len = len(recv_req.input_ids) - 1

        # Init regex FSM
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
        ):
            if req.sampling_params.json_schema is not None:
                req.regex_fsm, computed_regex_string = self.regex_fsm_cache.query(
                    ("json", req.sampling_params.json_schema)
                )
            elif req.sampling_params.regex is not None:
                req.regex_fsm, computed_regex_string = self.regex_fsm_cache.query(
                    ("regex", req.sampling_params.regex)
                )
            if not self.disable_regex_jump_forward:
                req.jump_forward_map = self.jump_forward_cache.query(
                    computed_regex_string
                )

        # Truncate prompts that are too long
        if len(req.origin_input_ids) >= self.max_req_input_len:
            logger.warning(
                "Request length is longer than the KV cache pool size or "
                "the max context length. Truncated!!!"
            )
            req.origin_input_ids = req.origin_input_ids[: self.max_req_input_len]
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
            self.max_req_input_len - 1 - len(req.origin_input_ids),
        )

        self.waiting_queue.append(req)

    def handle_embedding_request(
        self,
        recv_req: Union[TokenizedEmbeddingReqInput, TokenizedRewardReqInput],
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
        )
        req.tokenizer = self.tokenizer

        # Truncate prompts that are too long
        if len(req.origin_input_ids) >= self.max_req_input_len:
            logger.warning(
                "Request length is longer than the KV cache pool size or "
                "the max context length. Truncated!!!"
            )
            req.origin_input_ids = req.origin_input_ids[: self.max_req_input_len]

        self.waiting_queue.append(req)

    def get_new_prefill_batch(self) -> Optional[ScheduleBatch]:
        running_bs = (
            len(self.running_batch.reqs) if self.running_batch is not None else 0
        )
        if running_bs >= self.max_running_requests:
449
            self.batch_is_full = True
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
            return None

        # Get priority queue
        prefix_computed = self.policy.calc_priority(self.waiting_queue)

        num_mixed_running = running_bs if self.is_mixed_chunk else 0

        adder = PrefillAdder(
            self.tree_cache,
            self.running_batch,
            self.new_token_ratio,
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size(),
            self.max_prefill_tokens,
            self.chunked_prefill_size,
            num_mixed_running,
        )

        has_inflight = self.current_inflight_req is not None
        if self.current_inflight_req is not None:
            self.current_inflight_req.init_next_round_input(
                None if prefix_computed else self.tree_cache
            )
            self.current_inflight_req = adder.add_inflight_req(
                self.current_inflight_req
            )

        if self.lora_paths is not None:
            lora_set = (
                set([req.lora_path for req in self.running_batch.reqs])
                if self.running_batch is not None
                else set([])
            )

        for req in self.waiting_queue:
            if (
                self.lora_paths is not None
                and len(
                    lora_set
                    | set([req.lora_path for req in adder.can_run_list])
                    | set([req.lora_path])
                )
                > self.max_loras_per_batch
            ):
493
                self.batch_is_full = True
494
495
496
                break

            if adder.no_remaining_tokens():
497
                self.batch_is_full = True
498
499
500
501
502
503
504
                break
            req.init_next_round_input(None if prefix_computed else self.tree_cache)
            res = adder.add_one_req(req)
            if (
                not res
                or running_bs + len(adder.can_run_list) >= self.max_running_requests
            ):
505
                self.batch_is_full = True
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
                break

        can_run_list = adder.can_run_list

        if adder.new_inflight_req is not None:
            assert self.current_inflight_req is None
            self.current_inflight_req = adder.new_inflight_req

        if len(can_run_list) == 0:
            return None

        # Print stats
        if self.tp_rank == 0:
            if isinstance(self.tree_cache, RadixCache):
                self.tree_cache_metrics["total"] += (
                    adder.log_input_tokens + adder.log_hit_tokens
                ) / 10**9
                self.tree_cache_metrics["hit"] += (adder.log_hit_tokens) / 10**9
                tree_cache_hit_rate = (
                    self.tree_cache_metrics["hit"] / self.tree_cache_metrics["total"]
                )
            else:
                tree_cache_hit_rate = 0.0

            num_used = self.max_total_num_tokens - (
                self.token_to_kv_pool.available_size()
                + self.tree_cache.evictable_size()
            )

            if num_mixed_running > 0:
                logger.info(
                    f"Prefill batch"
                    f"(mixed #running-req: {num_mixed_running}). "
                    f"#new-seq: {len(can_run_list)}, "
                    f"#new-token: {adder.log_input_tokens}, "
                    f"#cached-token: {adder.log_hit_tokens}, "
                    f"cache hit rate: {100.0 * tree_cache_hit_rate:.2f}%, "
                    f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
                    f"#queue-req: {len(self.waiting_queue) - len(can_run_list) + has_inflight}"
                )
            else:
                logger.info(
                    f"Prefill batch. "
                    f"#new-seq: {len(can_run_list)}, "
                    f"#new-token: {adder.log_input_tokens}, "
                    f"#cached-token: {adder.log_hit_tokens}, "
                    f"cache hit rate: {100.0 * tree_cache_hit_rate:.2f}%, "
                    f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
                    f"#running-req: {running_bs}, "
                    f"#queue-req: {len(self.waiting_queue) - len(can_run_list) + has_inflight}"
                )

        # Return the new batch
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
            self.token_to_kv_pool,
            self.tree_cache,
        )
        self.waiting_queue = [x for x in self.waiting_queue if x not in can_run_list]
        return new_batch

    def forward_prefill_batch(self, batch: ScheduleBatch):
        # Build batch tensors
        batch.prepare_for_extend(self.model_config.vocab_size)

        decoding_reqs = []
        if self.is_mixed_chunk and self.running_batch is not None:
            self.running_batch.prepare_for_decode()
            batch.mix_with_running(self.running_batch)
            decoding_reqs = self.running_batch.reqs
            self.running_batch = None

        if self.is_generation:
            # Forward and sample the next tokens
            if batch.extend_num_tokens != 0:
582
                model_worker_batch = batch.get_model_worker_batch()
583
                logits_output, next_token_ids = self.tp_worker.forward_batch_generation(
584
                    model_worker_batch
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
                )
                batch.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
                    next_token_ids
                )

                # Move logprobs to cpu
                if logits_output.next_token_logprobs is not None:
                    logits_output.next_token_logprobs = (
                        logits_output.next_token_logprobs[
                            torch.arange(
                                len(next_token_ids), device=next_token_ids.device
                            ),
                            next_token_ids,
                        ].tolist()
                    )
                    logits_output.input_token_logprobs = (
                        logits_output.input_token_logprobs.tolist()
                    )
                    logits_output.normalized_prompt_logprobs = (
                        logits_output.normalized_prompt_logprobs.tolist()
                    )

                next_token_ids = next_token_ids.tolist()
            else:
                if self.tokenizer is None:
                    next_token_ids = []
                    for req in batch.reqs:
                        next_token_ids.append(
                            next(iter(req.sampling_params.stop_token_ids))
                        )
                else:
                    next_token_ids = [self.tokenizer.eos_token_id] * len(batch.reqs)

            # Check finish conditions
            logprob_pt = 0
            for i, req in enumerate(batch.reqs):
                if req is not self.current_inflight_req:
                    # Inflight reqs' prefill is not finished
                    req.completion_tokens_wo_jump_forward += 1
                    req.output_ids.append(next_token_ids[i])
                    req.check_finished()

                if req.regex_fsm is not None:
                    req.regex_fsm_state = req.regex_fsm.get_next_state(
                        req.regex_fsm_state, next_token_ids[i]
                    )

                if req.finished():
                    self.tree_cache.cache_finished_req(req)
                elif req not in decoding_reqs:
                    # To reduce overhead, only cache prefill reqs
                    self.tree_cache.cache_unfinished_req(req)

                if req is self.current_inflight_req:
                    # Inflight request would get a new req idx
                    self.req_to_token_pool.free(req.req_pool_idx)

                if req.return_logprob:
                    logprob_pt += self.add_logprob_return_values(
                        i, req, logprob_pt, next_token_ids, logits_output
                    )
        else:
            assert batch.extend_num_tokens != 0
648
649
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

            # Check finish conditions
            for i, req in enumerate(batch.reqs):
                req.embedding = embeddings[i]
                if req is not self.current_inflight_req:
                    # Inflight reqs' prefill is not finished
                    # dummy output token for embedding models
                    req.output_ids.append(0)
                    req.check_finished()

                if req.finished():
                    self.tree_cache.cache_finished_req(req)
                else:
                    self.tree_cache.cache_unfinished_req(req)

                if req is self.current_inflight_req:
                    # Inflight request would get a new req idx
                    self.req_to_token_pool.free(req.req_pool_idx)

        self.handle_finished_requests(batch)

    def add_logprob_return_values(
        self,
        i: int,
        req: Req,
        pt: int,
        next_token_ids: List[int],
        output: LogitsProcessorOutput,
    ):
        """Attach logprobs to the return values."""
        req.output_token_logprobs.append(
            (output.next_token_logprobs[i], next_token_ids[i])
        )

        # If logprob_start_len > 0, then first logprob_start_len prompt tokens will be ignored.
        num_input_logprobs = req.extend_input_len - req.extend_logprob_start_len

        if req.normalized_prompt_logprob is None:
            req.normalized_prompt_logprob = output.normalized_prompt_logprobs[i]

        if req.input_token_logprobs is None:
            input_token_logprobs = output.input_token_logprobs[
                pt : pt + num_input_logprobs - 1 - req.last_update_decode_tokens
            ]
            input_token_ids = req.fill_ids[
                len(req.fill_ids)
                - num_input_logprobs
                + 1 : len(req.fill_ids)
                - req.last_update_decode_tokens
            ]
            req.input_token_logprobs = list(zip(input_token_logprobs, input_token_ids))

            if (
                req.logprob_start_len == 0
            ):  # The first token does not have logprob, pad it.
                req.input_token_logprobs = [
                    (None, req.fill_ids[0])
                ] + req.input_token_logprobs

        if req.last_update_decode_tokens != 0:
            # Some decode tokens are re-computed in an extend batch
            req.output_token_logprobs.extend(
                list(
                    zip(
                        output.input_token_logprobs[
                            pt
                            + num_input_logprobs
                            - 1
                            - req.last_update_decode_tokens : pt
                            + num_input_logprobs
                            - 1
                        ],
                        req.fill_ids[
                            len(req.fill_ids)
                            - req.last_update_decode_tokens : len(req.fill_ids)
                        ],
                    )
                )
            )

        if req.top_logprobs_num > 0:
            if req.input_top_logprobs is None:
                req.input_top_logprobs = output.input_top_logprobs[i]
                if req.logprob_start_len == 0:
                    req.input_top_logprobs = [None] + req.input_top_logprobs

            if req.last_update_decode_tokens != 0:
                req.output_top_logprobs.extend(
                    output.input_top_logprobs[i][-req.last_update_decode_tokens :]
                )
            req.output_top_logprobs.append(output.output_top_logprobs[i])

        return num_input_logprobs

    def forward_decode_batch(self, batch: ScheduleBatch):
        # Check if decode out of memory
        if not batch.check_decode_mem():
            old_ratio = self.new_token_ratio

            retracted_reqs, new_token_ratio = batch.retract_decode()
            self.new_token_ratio = new_token_ratio

            logger.info(
                "Decode out of memory happened. "
                f"#retracted_reqs: {len(retracted_reqs)}, "
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
            self.waiting_queue.extend(retracted_reqs)
        else:
            self.new_token_ratio = max(
                self.new_token_ratio - self.new_token_ratio_decay,
                self.min_new_token_ratio,
            )

        # Check for jump-forward
        if not self.disable_regex_jump_forward:
766
            jump_forward_reqs = batch.check_for_jump_forward(self.pad_input_ids_func)
767
768
769
770
771
772
773
774
775
            self.waiting_queue.extend(jump_forward_reqs)
            if batch.is_empty():
                return

        # Update batch tensors
        self.decode_forward_ct = (self.decode_forward_ct + 1) % (1 << 30)
        batch.prepare_for_decode()

        # Forward and sample the next tokens
776
        model_worker_batch = batch.get_model_worker_batch()
777
        logits_output, next_token_ids = self.tp_worker.forward_batch_generation(
778
            model_worker_batch
779
        )
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
        batch.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
            next_token_ids
        )

        # Move logprobs to cpu
        if logits_output.next_token_logprobs is not None:
            next_token_logprobs = logits_output.next_token_logprobs[
                torch.arange(len(next_token_ids), device=next_token_ids.device),
                next_token_ids,
            ].tolist()

        next_token_ids = next_token_ids.tolist()

        # Check finish condition
        has_finished = False
        for i, (req, next_token_id) in enumerate(zip(batch.reqs, next_token_ids)):
            req.completion_tokens_wo_jump_forward += 1
            req.output_ids.append(next_token_id)
            req.check_finished()

            if req.regex_fsm is not None:
                req.regex_fsm_state = req.regex_fsm.get_next_state(
                    req.regex_fsm_state, next_token_id
                )

            if req.finished():
                self.tree_cache.cache_finished_req(req)
                has_finished = True

            if req.return_logprob:
                req.output_token_logprobs.append(
                    (next_token_logprobs[i], next_token_id)
                )
                if req.top_logprobs_num > 0:
                    req.output_top_logprobs.append(logits_output.output_top_logprobs[i])

        self.handle_finished_requests(batch)

    def handle_finished_requests(self, batch: ScheduleBatch):
        output_rids = []
        output_meta_info = []
        output_finished_reason: List[BaseFinishReason] = []
        if self.is_generation:
            output_vids = []
            decoded_texts = []
            output_read_ids = []
            output_read_offsets = []
            output_skip_special_tokens = []
            output_spaces_between_special_tokens = []
        else:  # for embedding model
            output_embeddings = []
        unfinished_indices = []

        for i, req in enumerate(batch.reqs):
            if not req.finished() and req is not self.current_inflight_req:
                unfinished_indices.append(i)
836
837
            else:
                self.batch_is_full = False
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

            if req.finished() or (
                req.stream
                and (
                    self.decode_forward_ct % self.stream_interval == 0
                    or len(req.output_ids) == 1
                )
            ):
                output_rids.append(req.rid)
                output_finished_reason.append(req.finished_reason)
                if self.is_generation:
                    output_vids.append(req.vid)
                    decoded_texts.append(req.decoded_text)
                    read_ids, read_offset = req.init_incremental_detokenize()
                    output_read_ids.append(read_ids)
                    output_read_offsets.append(read_offset)
                    output_skip_special_tokens.append(
                        req.sampling_params.skip_special_tokens
                    )
                    output_spaces_between_special_tokens.append(
                        req.sampling_params.spaces_between_special_tokens
                    )

                    meta_info = {
                        "prompt_tokens": len(req.origin_input_ids),
                        "completion_tokens": len(req.output_ids),
                        "completion_tokens_wo_jump_forward": req.completion_tokens_wo_jump_forward,
                        "finish_reason": (
                            req.finished_reason.to_json()
                            if req.finished_reason is not None
                            else None
                        ),
                    }
                    if req.return_logprob:
                        (
                            meta_info["input_token_logprobs"],
                            meta_info["output_token_logprobs"],
                            meta_info["input_top_logprobs"],
                            meta_info["output_top_logprobs"],
                            meta_info["normalized_prompt_logprob"],
                        ) = (
                            req.input_token_logprobs,
                            req.output_token_logprobs,
                            req.input_top_logprobs,
                            req.output_top_logprobs,
                            req.normalized_prompt_logprob,
                        )
                    output_meta_info.append(meta_info)
                else:  # for embedding model
                    output_embeddings.append(req.embedding)
                    meta_info = {
                        "prompt_tokens": len(req.origin_input_ids),
                    }
                    output_meta_info.append(meta_info)

        # Send to detokenizer
        if output_rids:
            if self.is_generation:
                self.out_pyobjs.append(
                    BatchTokenIDOut(
                        output_rids,
                        output_vids,
                        decoded_texts,
                        output_read_ids,
                        output_read_offsets,
                        output_skip_special_tokens,
                        output_spaces_between_special_tokens,
                        output_meta_info,
                        output_finished_reason,
                    )
                )
            else:  # for embedding model
                self.out_pyobjs.append(
                    BatchEmbeddingOut(
                        output_rids,
                        output_embeddings,
                        output_meta_info,
                        output_finished_reason,
                    )
                )

        # Remove finished reqs: update batch tensors
        batch.filter_batch(unfinished_indices)

    def flush_cache(self):
        if len(self.waiting_queue) == 0 and (
            self.running_batch is None or len(self.running_batch.reqs) == 0
        ):
            self.tree_cache.reset()
            self.tree_cache_metrics = {"total": 0, "hit": 0}
            self.regex_fsm_cache.reset()
            self.req_to_token_pool.clear()
            self.token_to_kv_pool.clear()
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
                f"#running-req: {0 if self.running_batch is None else len(self.running_batch.reqs)}"
            )
            if_success = False
        return if_success

    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
        to_del = None
        for i, req in enumerate(self.waiting_queue):
            if req.rid == recv_req.rid:
                to_del = i
                break

        if to_del is not None:
            del self.waiting_queue[to_del]

        # Delete requests in the running batch
        if self.running_batch:
            for req in self.running_batch.reqs:
                if req.rid == recv_req.rid:
                    req.finished_reason = FINISH_ABORT()
                    break

    def update_weights(self, recv_req: UpdateWeightReqInput):
        success, message = self.tp_worker.update_weights(recv_req)
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
        return success, message

970
971
972
973
974
975
976
977
978

def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
    pipe_writer: multiprocessing.connection.Connection,
):
    configure_logger(server_args, prefix=f" TP{tp_rank}")
979
    suppress_other_loggers()
980
981
982
983
984
985
986
987
988

    try:
        scheduler = Scheduler(server_args, port_args, gpu_id, tp_rank)
        pipe_writer.send("ready")
        scheduler.event_loop()
    except Exception:
        msg = get_exception_traceback()
        logger.error(msg)
        kill_parent_process()