scheduler.py 106 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""A scheduler that manages a tensor parallel GPU worker."""

16
import faulthandler
17
import logging
18
import os
19
import signal
20
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
21
import threading
22
import time
23
from collections import deque
Lianmin Zheng's avatar
Lianmin Zheng committed
24
from concurrent import futures
25
from dataclasses import dataclass
26
from http import HTTPStatus
27
from types import SimpleNamespace
28
from typing import Dict, List, Optional, Tuple, Union
29

30
import psutil
31
import setproctitle
32
import torch
33
import zmq
34
from torch.distributed import barrier
35

36
from sglang.global_config import global_config
Lianmin Zheng's avatar
Lianmin Zheng committed
37
from sglang.srt.configs.model_config import ModelConfig
38
39
40
41
from sglang.srt.constrained.base_grammar_backend import (
    INVALID_GRAMMAR_OBJ,
    create_grammar_backend,
)
Byron Hsu's avatar
Byron Hsu committed
42
43
44
45
46
47
48
49
50
51
52
from sglang.srt.disaggregation.decode import (
    DecodePreallocQueue,
    DecodeTransferQueue,
    SchedulerDisaggregationDecodeMixin,
)
from sglang.srt.disaggregation.prefill import (
    PrefillBootstrapQueue,
    SchedulerDisaggregationPrefillMixin,
)
from sglang.srt.disaggregation.utils import (
    DisaggregationMode,
53
    MetadataBuffers,
Byron Hsu's avatar
Byron Hsu committed
54
    ReqToMetadataIdxAllocator,
55
    TransferBackend,
56
    prepare_abort,
Byron Hsu's avatar
Byron Hsu committed
57
)
58
from sglang.srt.distributed import get_pp_group, get_world_group
fzyzcjy's avatar
fzyzcjy committed
59
from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
xm:D's avatar
xm:D committed
60
61
62
63
64
from sglang.srt.hf_transformers_utils import (
    get_processor,
    get_tokenizer,
    get_tokenizer_from_processor,
)
65
from sglang.srt.layers.dp_attention import compute_dp_attention_world_info
66
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
67
from sglang.srt.layers.moe import initialize_moe_config
68
69
from sglang.srt.managers.io_struct import (
    AbortReq,
70
71
    BatchTokenizedEmbeddingReqInput,
    BatchTokenizedGenerateReqInput,
72
73
    ClearHiCacheReqInput,
    ClearHiCacheReqOutput,
74
    CloseSessionReqInput,
75
    ExpertDistributionReq,
76
    ExpertDistributionReqOutput,
77
78
    FlushCacheReqInput,
    FlushCacheReqOutput,
79
    FreezeGCReq,
80
81
    GetInternalStateReq,
    GetInternalStateReqOutput,
82
    GetWeightsByNameReqInput,
83
    HealthCheckOutput,
84
    InitWeightsUpdateGroupReqInput,
85
86
    LoadLoRAAdapterReqInput,
    LoadLoRAAdapterReqOutput,
87
    MultiTokenizerRegisterReq,
88
    MultiTokenizerWrapper,
89
90
    OpenSessionReqInput,
    OpenSessionReqOutput,
91
    ProfileReq,
92
93
    ReleaseMemoryOccupationReqInput,
    ResumeMemoryOccupationReqInput,
94
95
    RpcReqInput,
    RpcReqOutput,
96
97
    SetInternalStateReq,
    SetInternalStateReqOutput,
98
99
    SlowDownReqInput,
    SlowDownReqOutput,
100
101
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
102
103
    UnloadLoRAAdapterReqInput,
    UnloadLoRAAdapterReqOutput,
Chayenne's avatar
Chayenne committed
104
    UpdateWeightFromDiskReqInput,
105
    UpdateWeightsFromDistributedReqInput,
106
    UpdateWeightsFromTensorReqInput,
107
)
108
from sglang.srt.managers.mm_utils import init_embedding_cache
109
110
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
Mick's avatar
Mick committed
111
    MultimodalInputs,
112
113
    Req,
    ScheduleBatch,
114
    global_server_args_dict,
115
)
116
117
118
119
120
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
fzyzcjy's avatar
fzyzcjy committed
121
from sglang.srt.managers.scheduler_input_blocker import SchedulerInputBlocker
122
123
124
125
from sglang.srt.managers.scheduler_metrics_mixin import (
    RECORD_STEP_TIME,
    SchedulerMetricsMixin,
)
126
127
128
from sglang.srt.managers.scheduler_output_processor_mixin import (
    SchedulerOutputProcessorMixin,
)
129
from sglang.srt.managers.scheduler_profiler_mixin import SchedulerProfilerMixin
130
from sglang.srt.managers.scheduler_recv_skipper import SchedulerRecvSkipper
131
132
133
from sglang.srt.managers.scheduler_update_weights_mixin import (
    SchedulerUpdateWeightsMixin,
)
134
from sglang.srt.managers.session_controller import Session
135
from sglang.srt.managers.tp_worker import TpModelWorker
136
from sglang.srt.managers.tp_worker_overlap_thread import TpModelWorkerClient
137
from sglang.srt.managers.utils import DPBalanceMeta, validate_input_length
tarinkk's avatar
tarinkk committed
138
from sglang.srt.mem_cache.chunk_cache import ChunkCache, SWAChunkCache
139
from sglang.srt.mem_cache.hiradix_cache import HiRadixCache
140
from sglang.srt.mem_cache.lora_radix_cache import LoRARadixCache
141
from sglang.srt.mem_cache.radix_cache import RadixCache
Hanming Lu's avatar
Hanming Lu committed
142
from sglang.srt.mem_cache.swa_radix_cache import SWARadixCache
Lianmin Zheng's avatar
Lianmin Zheng committed
143
from sglang.srt.model_executor.forward_batch_info import ForwardMode, PPProxyTensors
144
from sglang.srt.parser.reasoning_parser import ReasoningParser
145
from sglang.srt.server_args import PortArgs, ServerArgs
146
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
147
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
148
from sglang.srt.two_batch_overlap import TboDPAttentionPreparer
149
from sglang.srt.utils import (
150
    DynamicGradMode,
151
    broadcast_pyobj,
fzyzcjy's avatar
fzyzcjy committed
152
    configure_gc_logger,
153
    configure_logger,
Lianmin Zheng's avatar
Lianmin Zheng committed
154
    disable_request_logging,
155
    freeze_gc,
156
    get_available_gpu_memory,
157
    get_bool_env_var,
158
    get_zmq_socket,
159
    is_cpu,
Lianmin Zheng's avatar
Lianmin Zheng committed
160
    kill_itself_when_parent_died,
161
    numa_bind_to_node,
162
    point_to_point_pyobj,
163
    pyspy_dump_schedulers,
164
165
    require_mlp_sync,
    require_mlp_tp_gather,
166
    set_gpu_proc_affinity,
167
168
169
    set_random_seed,
    suppress_other_loggers,
)
170
from sglang.utils import TypeBasedDispatcher, get_exception_traceback
171
172
173

logger = logging.getLogger(__name__)

174
# Test retract decode for debugging purposes
175
TEST_RETRACT = get_bool_env_var("SGLANG_TEST_RETRACT")
176
GRAMMAR_TIMEOUT = float(os.environ.get("SGLANG_GRAMMAR_TIMEOUT", 300))
177

178
179
_is_cpu = is_cpu()

180

181
182
@dataclass
class GenerationBatchResult:
183
184
185
    logits_output: Optional[LogitsProcessorOutput]
    pp_hidden_states_proxy_tensors: Optional[torch.Tensor]
    next_token_ids: Optional[List[int]]
186
187
    extend_input_len_per_req: List[int]
    extend_logprob_start_len_per_req: List[int]
188
    bid: int
189
    can_run_cuda_graph: bool
190
191
192
193
194
195
196
197


@dataclass
class EmbeddingBatchResult:
    embeddings: torch.Tensor
    bid: int


Byron Hsu's avatar
Byron Hsu committed
198
199
class Scheduler(
    SchedulerOutputProcessorMixin,
200
201
202
    SchedulerUpdateWeightsMixin,
    SchedulerProfilerMixin,
    SchedulerMetricsMixin,
Byron Hsu's avatar
Byron Hsu committed
203
204
205
    SchedulerDisaggregationDecodeMixin,
    SchedulerDisaggregationPrefillMixin,
):
206
207
208
209
210
211
212
213
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
Cheng Wan's avatar
Cheng Wan committed
214
        moe_ep_rank: int,
215
        pp_rank: int,
216
        dp_rank: Optional[int],
217
        dp_balance_meta: Optional[DPBalanceMeta] = None,
218
219
    ):
        # Parse args
220
        self.server_args = server_args
221
        self.tp_rank = tp_rank
Cheng Wan's avatar
Cheng Wan committed
222
        self.moe_ep_rank = moe_ep_rank
223
        self.pp_rank = pp_rank
224
        self.dp_rank = dp_rank
225
        self.tp_size = server_args.tp_size
Cheng Wan's avatar
Cheng Wan committed
226
        self.moe_ep_size = server_args.ep_size
227
228
        self.pp_size = server_args.pp_size
        self.dp_size = server_args.dp_size
229
        self.schedule_policy = server_args.schedule_policy
230
        self.enable_lora = server_args.enable_lora
231
        self.max_loras_per_batch = server_args.max_loras_per_batch
232
        self.enable_overlap = not server_args.disable_overlap_schedule
233
        self.skip_tokenizer_init = server_args.skip_tokenizer_init
234
        self.enable_metrics = server_args.enable_metrics
235
236
237
        self.enable_metrics_for_all_schedulers = (
            server_args.enable_metrics_for_all_schedulers
        )
238
        self.enable_kv_cache_events = server_args.kv_events_config is not None
239
        self.stream_interval = server_args.stream_interval
240
241
242
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
243
244
        self.gpu_id = gpu_id
        self.enable_hierarchical_cache = server_args.enable_hierarchical_cache
245
        self.enable_hicache_storage = server_args.hicache_storage_backend is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
246
        self.page_size = server_args.page_size
247

248
        self.attn_tp_rank, self.attn_tp_size, self.attn_dp_rank = (
249
250
251
252
253
254
255
256
            compute_dp_attention_world_info(
                server_args.enable_dp_attention,
                self.tp_rank,
                self.tp_size,
                self.dp_size,
            )
        )

257
258
259
        # Init model config
        self.model_config = ModelConfig.from_server_args(server_args)

260
261
        # Init inter-process communication
        context = zmq.Context(2)
262
        self.idle_sleeper = None
263
        if self.pp_rank == 0 and self.attn_tp_rank == 0:
264
            self.recv_from_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
265
                context, zmq.PULL, port_args.scheduler_input_ipc_name, False
266
            )
267
268
269
270
            self.recv_from_rpc = get_zmq_socket(
                context, zmq.DEALER, port_args.rpc_ipc_name, False
            )

271
            self.send_to_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
272
                context, zmq.PUSH, port_args.tokenizer_ipc_name, False
273
            )
274
            if server_args.skip_tokenizer_init:
275
                # Directly send to the TokenizerManager
276
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
277
                    context, zmq.PUSH, port_args.tokenizer_ipc_name, False
278
279
                )
            else:
280
                # Send to the DetokenizerManager
281
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
282
                    context, zmq.PUSH, port_args.detokenizer_ipc_name, False
283
                )
284

285
286
287
288
289
290
291
            if self.server_args.sleep_on_idle:
                self.idle_sleeper = IdleSleeper(
                    [
                        self.recv_from_tokenizer,
                        self.recv_from_rpc,
                    ]
                )
292
        else:
293
            self.recv_from_tokenizer = None
294
            self.recv_from_rpc = None
295
296
            self.send_to_tokenizer = SimpleNamespace(send_pyobj=lambda x: None)
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
297

298
299
300
301
302
        if self.current_scheduler_metrics_enabled():
            self.send_metrics_from_scheduler = get_zmq_socket(
                context, zmq.PUSH, port_args.metrics_ipc_name, False
            )

303
        # Init tokenizer
304
        self.init_tokenizer()
305

306
307
308
        # Init moe config
        self.init_moe_config()

309
310
311
312
313
314
315
316
317
        # Set reasoning_parser and think_end_id if --reasoning_parser is enabled
        if self.server_args.reasoning_parser and self.tokenizer:
            reasoning_parser = ReasoningParser(
                model_type=self.server_args.reasoning_parser, stream_reasoning=False
            )
            self.tokenizer.think_end_id = self.tokenizer.encode(
                reasoning_parser.detector.think_end_token, add_special_tokens=False
            )[0]

318
319
320
321
        # Check whether overlap can be enabled
        if not self.is_generation:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for embedding models.")
322

323
        # Launch a tensor parallel worker
324
        if self.enable_overlap:
325
            TpWorkerClass = TpModelWorkerClient
326
327
        else:
            TpWorkerClass = TpModelWorker
328

329
        self.tp_worker = TpWorkerClass(
330
            server_args=server_args,
331
332
            gpu_id=gpu_id,
            tp_rank=tp_rank,
Cheng Wan's avatar
Cheng Wan committed
333
            moe_ep_rank=moe_ep_rank,
334
            pp_rank=pp_rank,
335
            dp_rank=dp_rank,
336
            nccl_port=port_args.nccl_port,
337
        )
338

339
        # Launch a draft worker for speculative decoding
340
341
342
343
344
345
        if self.spec_algorithm.is_eagle():
            from sglang.srt.speculative.eagle_worker import EAGLEWorker

            self.draft_worker = EAGLEWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
Cheng Wan's avatar
Cheng Wan committed
346
                moe_ep_rank=moe_ep_rank,
347
348
349
350
351
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
352
353
354
355
356
357
358
359
360
361
362
363
        elif self.spec_algorithm.is_standalone():
            from sglang.srt.speculative.standalone_worker import StandaloneWorker

            self.draft_worker = StandaloneWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                moe_ep_rank=moe_ep_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
364
365
366
        else:
            self.draft_worker = None

367
        # Get token and memory info from the model worker
368
369
370
371
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
372
            self.max_queued_requests,
373
            self.max_req_len,
374
375
            self.max_req_input_len,
            self.random_seed,
376
            self.device,
377
378
379
380
381
            worker_global_server_args_dict,
            _,
            _,
            _,
        ) = self.tp_worker.get_worker_info()
382
383
384
385
386
387
388
389
        if global_server_args_dict["max_micro_batch_size"] is None:
            global_server_args_dict["max_micro_batch_size"] = max(
                self.max_running_requests // server_args.pp_size, 1
            )

        self.tp_group = self.tp_worker.get_tp_group()
        self.tp_cpu_group = self.tp_group.cpu_group
        self.attn_tp_group = self.tp_worker.get_attention_tp_group()
390
        self.attn_tp_cpu_group = self.tp_worker.get_attention_tp_cpu_group()
391
392
393
        self.pp_group = get_pp_group()
        self.world_group = get_world_group()

394
        self.pad_input_ids_func = self.tp_worker.get_pad_input_ids_func()
395
        global_server_args_dict.update(worker_global_server_args_dict)
396
        set_random_seed(self.random_seed)
397

398
        # Hybrid memory pool
Hanming Lu's avatar
Hanming Lu committed
399
400
401
402
403
404
405
        self.is_hybrid = self.tp_worker.is_hybrid
        if self.is_hybrid:
            self.sliding_window_size = self.tp_worker.sliding_window_size
            self.full_tokens_per_layer, self.swa_tokens_per_layer = (
                self.tp_worker.get_tokens_per_layer_info()
            )

406
        # Print debug info
407
        if tp_rank == 0:
408
409
410
            avail_mem = get_available_gpu_memory(
                self.device, self.gpu_id, empty_cache=False
            )
411
412
413
414
415
            logger.info(
                f"max_total_num_tokens={self.max_total_num_tokens}, "
                f"chunked_prefill_size={server_args.chunked_prefill_size}, "
                f"max_prefill_tokens={self.max_prefill_tokens}, "
                f"max_running_requests={self.max_running_requests}, "
416
417
                f"context_len={self.model_config.context_len}, "
                f"available_gpu_mem={avail_mem:.2f} GB"
418
            )
419

Lianmin Zheng's avatar
Lianmin Zheng committed
420
        # Init memory pool and cache
421
        self.init_memory_pool_and_cache()
422
423
424

        # Init running status
        self.waiting_queue: List[Req] = []
425
        # The running decoding batch for continuous batching
Lianmin Zheng's avatar
Lianmin Zheng committed
426
        self.running_batch: ScheduleBatch = ScheduleBatch(reqs=[], batch_is_full=False)
427
        # The current forward batch
Lianmin Zheng's avatar
Lianmin Zheng committed
428
        self.cur_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
429
        # The last forward batch
430
        self.last_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
431
432
        self.forward_ct = 0
        self.forward_ct_decode = 0
433
        self.num_generated_tokens = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
434
        self.last_prefill_tokens = 0
435
436
        self.last_decode_stats_tic = time.perf_counter()
        self.last_prefill_stats_tic = time.perf_counter()
437
        self.return_health_check_ct = 0
438
439
440
441
442
        self.num_retracted_reqs: int = 0
        self.num_paused_reqs: int = 0
        self.kv_transfer_speed_gb_s: float = 0.0
        self.kv_transfer_latency_ms: float = 0.0
        self.sessions: Dict[str, Session] = {}
443
        self.current_stream = torch.get_device_module(self.device).current_stream()
444
445
        if self.device == "cpu":
            self.current_stream.synchronize = lambda: None  # No-op for CPU
446
        self.forward_sleep_time = None
447

448
449
        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
450
451
        if self.chunked_prefill_size <= 0:  # -1 means disable
            self.chunked_prefill_size = None
452
        self.chunked_req = None
453
454
455
456
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
457
        # Init the grammar backend for constrained generation
458
        self.grammar_queue: List[Req] = []
459
        if not server_args.skip_tokenizer_init:
460
            self.grammar_backend = create_grammar_backend(
461
462
463
464
                server_args,
                self.tokenizer,
                self.model_config.vocab_size,
                self.model_config.hf_eos_token_id,
465
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
466
467
        else:
            self.grammar_backend = None
468

469
        # Init schedule policy and new token estimation
470
        self.policy = SchedulePolicy(
Lianmin Zheng's avatar
Lianmin Zheng committed
471
472
473
            self.schedule_policy,
            self.tree_cache,
            self.enable_hierarchical_cache,
474
        )
475
476
477
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
478
479
        self.init_new_token_ratio = min(
            global_config.default_init_new_token_ratio
480
481
            * server_args.schedule_conservativeness,
            1.0,
482
        )
483
484
485
486
487
488
489
490
491
492
        self.min_new_token_ratio = min(
            self.init_new_token_ratio
            * global_config.default_min_new_token_ratio_factor,
            1.0,
        )
        self.new_token_ratio_decay = (
            self.init_new_token_ratio - self.min_new_token_ratio
        ) / global_config.default_new_token_ratio_decay_steps
        self.new_token_ratio = self.init_new_token_ratio

Lianmin Zheng's avatar
Lianmin Zheng committed
493
494
495
496
        # Init watchdog thread
        self.watchdog_timeout = server_args.watchdog_timeout
        t = threading.Thread(target=self.watchdog_thread, daemon=True)
        t.start()
497
        self.parent_process = psutil.Process().parent()
498
499

        # Init memory saver, profiler and metric stats
500
501
502
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=server_args.enable_memory_saver
        )
503
        self.offload_tags = set()
limingshu's avatar
limingshu committed
504
        self.init_profiler()
505

506
        self.recv_skipper = SchedulerRecvSkipper.maybe_create(server_args)
fzyzcjy's avatar
fzyzcjy committed
507
508
509
510
511
512
        self.input_blocker = (
            SchedulerInputBlocker(noop=self.attn_tp_rank != 0)
            if get_bool_env_var("SGLANG_ENABLE_COLOCATED_BATCH_GEN")
            else None
        )

513
        # Init metrics stats
514
        self.init_metrics(tp_rank, pp_rank, dp_rank)
515
        self.init_kv_events(server_args.kv_events_config)
516
        self.init_dp_balance(dp_balance_meta)
517

518
519
520
521
522
523
524
525
526
        # Init disaggregation
        self.disaggregation_mode = DisaggregationMode(
            self.server_args.disaggregation_mode
        )
        self.init_disaggregation()

        if get_bool_env_var("SGLANG_GC_LOG"):
            configure_gc_logger()

527
528
        # Init request dispatcher
        self._request_dispatcher = TypeBasedDispatcher(
529
530
531
            [
                (TokenizedGenerateReqInput, self.handle_generate_request),
                (TokenizedEmbeddingReqInput, self.handle_embedding_request),
532
533
                (BatchTokenizedGenerateReqInput, self.handle_batch_generate_request),
                (BatchTokenizedEmbeddingReqInput, self.handle_batch_embedding_request),
534
                (FlushCacheReqInput, self.flush_cache_wrapped),
535
                (ClearHiCacheReqInput, self.clear_hicache_storage_wrapped),
536
                (AbortReq, self.abort_request),
537
538
                (OpenSessionReqInput, self.open_session),
                (CloseSessionReqInput, self.close_session),
539
540
541
542
543
544
545
546
                (UpdateWeightFromDiskReqInput, self.update_weights_from_disk),
                (InitWeightsUpdateGroupReqInput, self.init_weights_update_group),
                (
                    UpdateWeightsFromDistributedReqInput,
                    self.update_weights_from_distributed,
                ),
                (UpdateWeightsFromTensorReqInput, self.update_weights_from_tensor),
                (GetWeightsByNameReqInput, self.get_weights_by_name),
547
548
                (ReleaseMemoryOccupationReqInput, self.release_memory_occupation),
                (ResumeMemoryOccupationReqInput, self.resume_memory_occupation),
549
                (SlowDownReqInput, self.slow_down),
550
                (ProfileReq, self.profile),
551
                (FreezeGCReq, self.handle_freeze_gc),
552
                (GetInternalStateReq, self.get_internal_state),
553
                (SetInternalStateReq, self.set_internal_state),
554
                (RpcReqInput, self.handle_rpc_request),
555
                (ExpertDistributionReq, self.expert_distribution_handle),
556
557
                (LoadLoRAAdapterReqInput, self.load_lora_adapter),
                (UnloadLoRAAdapterReqInput, self.unload_lora_adapter),
558
                (MultiTokenizerRegisterReq, self.register_multi_tokenizer),
559
560
561
            ]
        )

562
563
564
    def init_tokenizer(self):
        server_args = self.server_args
        self.is_generation = self.model_config.is_generation
565

566
567
568
569
570
571
572
573
574
        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if self.model_config.is_multimodal:
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
575
                    use_fast=not server_args.disable_fast_image_processor,
576
                )
xm:D's avatar
xm:D committed
577
                self.tokenizer = get_tokenizer_from_processor(self.processor)
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
                )

    def init_memory_pool_and_cache(self):
        server_args = self.server_args

        self.req_to_token_pool, self.token_to_kv_pool_allocator = (
            self.tp_worker.get_memory_pool()
        )

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
Hanming Lu's avatar
Hanming Lu committed
597
            if self.is_hybrid:
tarinkk's avatar
tarinkk committed
598
599
600
601
                ChunkCacheClass = SWAChunkCache
            else:
                ChunkCacheClass = ChunkCache
            self.tree_cache = ChunkCacheClass(
602
603
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
604
                page_size=self.page_size,
605
606
            )
        else:
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
            if os.environ.get("SGLANG_EXPERIMENTAL_CPP_RADIX_TREE") == "1":
                # lazy import to avoid JIT overhead
                from sglang.srt.mem_cache.radix_cache_cpp import RadixCacheCpp

                self.tree_cache = RadixCacheCpp(
                    disable=False,
                    use_hicache=self.enable_hierarchical_cache,
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool=self.token_to_kv_pool_allocator,
                    tp_cache_group=self.tp_cpu_group,
                    page_size=self.page_size,
                    hicache_ratio=server_args.hicache_ratio,
                    hicache_size=server_args.hicache_size,
                    hicache_write_policy=server_args.hicache_write_policy,
                    enable_kv_cache_events=self.enable_kv_cache_events,
                )
            elif self.enable_hierarchical_cache:
624
625
626
                self.tree_cache = HiRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
627
628
629
630
631
                    tp_cache_group=(
                        self.attn_tp_cpu_group
                        if self.server_args.enable_dp_attention
                        else self.tp_cpu_group
                    ),
632
                    page_size=self.page_size,
633
                    hicache_ratio=server_args.hicache_ratio,
Zhiqiang Xie's avatar
Zhiqiang Xie committed
634
635
                    hicache_size=server_args.hicache_size,
                    hicache_write_policy=server_args.hicache_write_policy,
636
                    hicache_io_backend=server_args.hicache_io_backend,
637
                    hicache_mem_layout=server_args.hicache_mem_layout,
638
                    enable_metrics=self.enable_metrics,
639
                    hicache_storage_backend=server_args.hicache_storage_backend,
pansicheng's avatar
pansicheng committed
640
                    hicache_storage_prefetch_policy=server_args.hicache_storage_prefetch_policy,
641
642
                    model_name=server_args.served_model_name,
                    storage_backend_extra_config=server_args.hicache_storage_backend_extra_config,
643
                )
644
645
646
                self.tp_worker.register_hicache_layer_transfer_counter(
                    self.tree_cache.cache_controller.layer_done_counter
                )
Hanming Lu's avatar
Hanming Lu committed
647
648
649
650
651
652
653
654
655
656
657
            elif self.is_hybrid:
                assert (
                    self.server_args.disaggregation_mode == "null"
                ), "Hybrid mode does not support disaggregation yet"
                self.tree_cache = SWARadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    sliding_window_size=self.sliding_window_size,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
                )
658
659
660
661
662
663
664
665
666
667
668
669
670
            elif self.enable_lora:
                assert (
                    not self.enable_hierarchical_cache
                ), "LoRA radix cache doesn't support hierarchical cache"
                assert (
                    self.schedule_policy == "fcfs"
                ), "LoRA radix cache only supports FCFS policy"
                self.tree_cache = LoRARadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
                )
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
            elif server_args.enable_lmcache:
                from sglang.srt.mem_cache.storage.lmcache.lmc_radix_cache import (
                    LMCRadixCache,
                )

                self.tree_cache = LMCRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
                    model_config=self.model_config,
                    tp_size=self.tp_size,
                    rank=self.tp_rank,
                    tp_group=self.tp_group,
                )
686
687
688
689
            else:
                self.tree_cache = RadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Lianmin Zheng's avatar
Lianmin Zheng committed
690
                    page_size=self.page_size,
691
                    disable=server_args.disable_radix_cache,
692
                    enable_kv_cache_events=self.enable_kv_cache_events,
693
694
695
696
697
698
699
700
701
702
703
704
                )

        self.decode_mem_cache_buf_multiplier = (
            1
            if self.spec_algorithm.is_none()
            else (
                server_args.speculative_num_draft_tokens
                + (
                    server_args.speculative_eagle_topk
                    * server_args.speculative_num_steps
                )
            )
705
        )
706

707
708
709
        embedding_cache_size = int(os.environ.get("SGLANG_VLM_CACHE_SIZE_MB", "100"))
        init_embedding_cache(embedding_cache_size * 1024 * 1024)

Byron Hsu's avatar
Byron Hsu committed
710
    def init_disaggregation(self):
711
712
713
714
        self.transfer_backend = TransferBackend(
            self.server_args.disaggregation_transfer_backend
        )

Byron Hsu's avatar
Byron Hsu committed
715
716
717
718
        if (
            self.disaggregation_mode == DisaggregationMode.DECODE
        ):  # *2 for the headroom.
            buffer_size = (self.req_to_token_pool.size) * 2
Byron Hsu's avatar
Byron Hsu committed
719
            self.req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
Byron Hsu's avatar
Byron Hsu committed
720
721
                buffer_size
            )
722
723
            self.disagg_metadata_buffers = MetadataBuffers(
                buffer_size,
724
725
                hidden_size=self.model_config.hf_text_config.hidden_size,
                dtype=self.model_config.dtype,
726
727
                custom_mem_pool=self.token_to_kv_pool_allocator.get_kvcache().maybe_get_custom_mem_pool(),
            )
Byron Hsu's avatar
Byron Hsu committed
728
729
730

            # The decode requests polling kv cache
            self.disagg_decode_transfer_queue = DecodeTransferQueue(
731
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
732
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
733
                tp_rank=self.tp_rank,
734
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
735
736
                scheduler=self,
                tree_cache=self.tree_cache,
Byron Hsu's avatar
Byron Hsu committed
737
738
739
740
741
742
            )

            # The decode requests pending for pre-allocation
            self.disagg_decode_prealloc_queue = DecodePreallocQueue(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Byron Hsu's avatar
Byron Hsu committed
743
744
745
746
747
                draft_token_to_kv_pool=(
                    None
                    if self.draft_worker is None
                    else self.draft_worker.model_runner.token_to_kv_pool
                ),
Byron Hsu's avatar
Byron Hsu committed
748
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
749
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
750
751
752
                scheduler=self,
                transfer_queue=self.disagg_decode_transfer_queue,
                tree_cache=self.tree_cache,
753
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
754
755
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
756
757
                dp_size=self.server_args.dp_size,
                gpu_id=self.gpu_id,
Byron Hsu's avatar
Byron Hsu committed
758
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
759
760
                max_total_num_tokens=self.max_total_num_tokens,
                prefill_pp_size=self.server_args.disaggregation_prefill_pp,
761
                num_reserved_decode_tokens=self.server_args.num_reserved_decode_tokens,
762
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
763
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
764

Byron Hsu's avatar
Byron Hsu committed
765
766
767
        elif self.disaggregation_mode == DisaggregationMode.PREFILL:
            # *2 for the headroom.
            buffer_size = self.max_running_requests * 2
Byron Hsu's avatar
Byron Hsu committed
768
            self.req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
Byron Hsu's avatar
Byron Hsu committed
769
770
                buffer_size
            )
771
772
            self.disagg_metadata_buffers = MetadataBuffers(
                buffer_size,
773
774
                hidden_size=self.model_config.hf_text_config.hidden_size,
                dtype=self.model_config.dtype,
775
776
                custom_mem_pool=self.token_to_kv_pool_allocator.get_kvcache().maybe_get_custom_mem_pool(),
            )
Byron Hsu's avatar
Byron Hsu committed
777

Liangsheng Yin's avatar
Liangsheng Yin committed
778
            self.disagg_prefill_bootstrap_queue = PrefillBootstrapQueue(
Byron Hsu's avatar
Byron Hsu committed
779
                token_to_kv_pool=self.token_to_kv_pool_allocator.get_kvcache(),
Byron Hsu's avatar
Byron Hsu committed
780
781
782
783
784
                draft_token_to_kv_pool=(
                    None
                    if self.draft_worker is None
                    else self.draft_worker.model_runner.token_to_kv_pool
                ),
Byron Hsu's avatar
Byron Hsu committed
785
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
786
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
787
788
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
Byron Hsu's avatar
Byron Hsu committed
789
                gpu_id=self.gpu_id,
Byron Hsu's avatar
Byron Hsu committed
790
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
791
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
792
793
794
                max_total_num_tokens=self.max_total_num_tokens,
                decode_tp_size=self.server_args.disaggregation_decode_tp,
                decode_dp_size=self.server_args.disaggregation_decode_dp,
795
                scheduler=self,
Byron Hsu's avatar
Byron Hsu committed
796
797
798
                pp_rank=self.pp_rank,
                pp_size=self.pp_size,
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
799
800
            )
            # The prefill requests that are in the middle of kv sending
801
            self.disagg_prefill_inflight_queue: List[Req] = []
Byron Hsu's avatar
Byron Hsu committed
802

803
804
805
806
    def init_moe_config(self):
        if hasattr(self.model_config.hf_config, "num_experts_per_tok"):
            initialize_moe_config(self.server_args)

807
    @DynamicGradMode()
808
    def event_loop_normal(self):
809
        """A normal scheduler loop."""
810
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
811
812
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
813

814
            batch = self.get_next_batch_to_run()
Lianmin Zheng's avatar
Lianmin Zheng committed
815
            self.cur_batch = batch
816
817
818
819

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
Lianmin Zheng's avatar
Lianmin Zheng committed
820
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
821
                # When the server is idle, do self-check and re-init some states
822
                self.self_check_during_idle()
823
824

            self.last_batch = batch
825

826
    @DynamicGradMode()
Lianmin Zheng's avatar
Lianmin Zheng committed
827
    def event_loop_overlap(self):
828
        """A scheduler loop that overlaps the CPU processing and GPU computation."""
829
        self.result_queue = deque()
Lianmin Zheng's avatar
Lianmin Zheng committed
830
831
832
833
834
835
836

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)

            batch = self.get_next_batch_to_run()
            self.cur_batch = batch
837

Lianmin Zheng's avatar
Lianmin Zheng committed
838
            if batch:
839
                batch.launch_done = threading.Event()
Lianmin Zheng's avatar
Lianmin Zheng committed
840
                result = self.run_batch(batch)
841
                self.result_queue.append((batch.copy(), result))
Lianmin Zheng's avatar
Lianmin Zheng committed
842

843
                if self.last_batch is None:
844
                    # Create a dummy first batch to start the pipeline for overlap schedule.
845
846
847
848
849
850
                    # It is now used for triggering the sampling_info_done event.
                    tmp_batch = ScheduleBatch(
                        reqs=None,
                        forward_mode=ForwardMode.DUMMY_FIRST,
                        next_batch_sampling_info=self.tp_worker.cur_sampling_info,
                    )
851
                    self.process_batch_result(tmp_batch, None, batch.launch_done)
852

Lianmin Zheng's avatar
Lianmin Zheng committed
853
            if self.last_batch:
854
                # Process the results of the last batch
855
                tmp_batch, tmp_result = self.result_queue.popleft()
856
857
858
                tmp_batch.next_batch_sampling_info = (
                    self.tp_worker.cur_sampling_info if batch else None
                )
859
860
861
862
                # NOTE: we should use current launched batch's launch_done event Instead of the last batch's
                self.process_batch_result(
                    tmp_batch, tmp_result, batch.launch_done if batch else None
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
863
            elif batch is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
864
                # When the server is idle, do self-check and re-init some states
865
                self.self_check_during_idle()
Lianmin Zheng's avatar
Lianmin Zheng committed
866
867
868

            self.last_batch = batch

869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
    @DynamicGradMode()
    def event_loop_pp(self):
        """A non-overlap scheduler loop for pipeline parallelism."""
        mbs = [None] * self.pp_size
        last_mbs = [None] * self.pp_size
        self.running_mbs = [
            ScheduleBatch(reqs=[], batch_is_full=False) for _ in range(self.pp_size)
        ]
        bids = [None] * self.pp_size
        pp_outputs: Optional[PPProxyTensors] = None
        while True:
            server_is_idle = True
            for mb_id in range(self.pp_size):
                self.running_batch = self.running_mbs[mb_id]
                self.last_batch = last_mbs[mb_id]

                recv_reqs = self.recv_requests()
                self.process_input_requests(recv_reqs)
                mbs[mb_id] = self.get_next_batch_to_run()
                self.running_mbs[mb_id] = self.running_batch

                self.cur_batch = mbs[mb_id]
                if self.cur_batch:
                    server_is_idle = False
                    result = self.run_batch(self.cur_batch)

895
                # (last rank) send the outputs to the next step
896
897
898
899
900
901
                if self.pp_group.is_last_rank:
                    if self.cur_batch:
                        next_token_ids, bids[mb_id] = (
                            result.next_token_ids,
                            result.bid,
                        )
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
                        if self.cur_batch.return_logprob:
                            pp_outputs = PPProxyTensors(
                                {
                                    "next_token_ids": next_token_ids,
                                    "extend_input_len_per_req": result.extend_input_len_per_req,
                                    "extend_logprob_start_len_per_req": result.extend_logprob_start_len_per_req,
                                }
                                | (
                                    {
                                        f"logits_output.{k}": v
                                        for k, v in result.logits_output.__dict__.items()
                                    }
                                    if result.logits_output is not None
                                    else {}
                                )
                            )
                        else:
                            pp_outputs = PPProxyTensors(
                                {
                                    "next_token_ids": next_token_ids,
                                }
                            )
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
                        # send the output from the last round to let the next stage worker run post processing
                        self.pp_group.send_tensor_dict(
                            pp_outputs.tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                # receive outputs and post-process (filter finished reqs) the coming microbatch
                next_mb_id = (mb_id + 1) % self.pp_size
                next_pp_outputs = None
                if mbs[next_mb_id] is not None:
                    next_pp_outputs: Optional[PPProxyTensors] = PPProxyTensors(
                        self.pp_group.recv_tensor_dict(
                            all_gather_group=self.attn_tp_group
                        )
                    )
                    mbs[next_mb_id].output_ids = next_pp_outputs["next_token_ids"]
940
941
942
943
944
945
946
947
948
                    logits_output_args = {
                        k[len("logits_output.") :]: v
                        for k, v in next_pp_outputs.tensors.items()
                        if k.startswith("logits_output.")
                    }
                    if len(logits_output_args) > 0:
                        logits_output = LogitsProcessorOutput(**logits_output_args)
                    else:
                        logits_output = None
949
                    output_result = GenerationBatchResult(
950
                        logits_output=logits_output,
951
952
                        pp_hidden_states_proxy_tensors=None,
                        next_token_ids=next_pp_outputs["next_token_ids"],
953
954
955
956
957
958
                        extend_input_len_per_req=next_pp_outputs.tensors.get(
                            "extend_input_len_per_req", None
                        ),
                        extend_logprob_start_len_per_req=next_pp_outputs.tensors.get(
                            "extend_logprob_start_len_per_req", None
                        ),
959
                        bid=bids[next_mb_id],
960
                        can_run_cuda_graph=result.can_run_cuda_graph,
961
962
963
964
                    )
                    self.process_batch_result(mbs[next_mb_id], output_result)
                    last_mbs[next_mb_id] = mbs[next_mb_id]

965
                # (not last rank)
966
967
968
                if not self.pp_group.is_last_rank:
                    if self.cur_batch:
                        bids[mb_id] = result.bid
969
970
                    # carry the outputs to the next stage
                    # send the outputs from the last round to let the next stage worker run post processing
971
972
973
974
975
976
977
                    if pp_outputs:
                        self.pp_group.send_tensor_dict(
                            pp_outputs.tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                    # send out reqs to the next stage
978
                    dp_offset = self.attn_dp_rank * self.attn_tp_size
979
980
981
982
                    if self.attn_tp_rank == 0:
                        point_to_point_pyobj(
                            recv_reqs,
                            self.pp_rank * self.tp_size + dp_offset,
983
                            self.world_group.device_group,
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
                            self.pp_rank * self.tp_size + dp_offset,
                            (self.pp_rank + 1) * self.tp_size + dp_offset,
                        )

                    # send out proxy tensors to the next stage
                    if self.cur_batch:
                        self.pp_group.send_tensor_dict(
                            result.pp_hidden_states_proxy_tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                pp_outputs = next_pp_outputs

            # When the server is idle, self-check and re-init some states
            if server_is_idle:
999
1000
                # When the server is idle, do self-check and re-init some states
                self.self_check_during_idle()
1001

1002
1003
    def recv_requests(self) -> List[Req]:
        """Receive results at tp_rank = 0 and broadcast it to all other TP ranks."""
1004
1005
1006
1007
1008
1009
1010
1011

        if self.recv_skipper is not None:
            last_forward_mode = (
                self.last_batch.forward_mode if self.last_batch is not None else None
            )
            if not self.recv_skipper.handle(last_forward_mode):
                return []

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
        if self.pp_rank == 0:
            if self.attn_tp_rank == 0:
                recv_reqs = []

                while True:
                    try:
                        recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                    except zmq.ZMQError:
                        break
                    recv_reqs.append(recv_req)

                while True:
                    try:
                        recv_rpc = self.recv_from_rpc.recv_pyobj(zmq.NOBLOCK)
                    except zmq.ZMQError:
                        break
                    recv_reqs.append(recv_rpc)
            else:
                recv_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1031
        else:
1032
            if self.attn_tp_rank == 0:
1033
                dp_offset = self.attn_dp_rank * self.attn_tp_size
1034
1035
1036
                recv_reqs = point_to_point_pyobj(
                    [],
                    self.pp_rank * self.tp_size + dp_offset,
1037
                    self.world_group.device_group,
1038
1039
1040
1041
1042
                    (self.pp_rank - 1) * self.tp_size + dp_offset,
                    self.pp_rank * self.tp_size + dp_offset,
                )
            else:
                recv_reqs = None
1043

fzyzcjy's avatar
fzyzcjy committed
1044
1045
1046
        if self.input_blocker is not None:
            recv_reqs = self.input_blocker.handle(recv_reqs)

1047
1048
1049
1050
1051
1052
        if self.server_args.enable_dp_attention:
            if self.attn_tp_rank == 0:
                work_reqs = [
                    req
                    for req in recv_reqs
                    if isinstance(
1053
1054
1055
1056
1057
1058
1059
                        req,
                        (
                            TokenizedGenerateReqInput,
                            TokenizedEmbeddingReqInput,
                            BatchTokenizedGenerateReqInput,
                            BatchTokenizedEmbeddingReqInput,
                        ),
1060
1061
1062
1063
1064
1065
                    )
                ]
                control_reqs = [
                    req
                    for req in recv_reqs
                    if not isinstance(
1066
1067
1068
1069
1070
1071
1072
                        req,
                        (
                            TokenizedGenerateReqInput,
                            TokenizedEmbeddingReqInput,
                            BatchTokenizedGenerateReqInput,
                            BatchTokenizedEmbeddingReqInput,
                        ),
1073
1074
1075
1076
1077
1078
1079
1080
1081
                    )
                ]
            else:
                work_reqs = None
                control_reqs = None

            if self.attn_tp_size != 1:
                work_reqs = broadcast_pyobj(
                    work_reqs,
1082
                    self.attn_tp_group.rank,
1083
                    self.attn_tp_cpu_group,
1084
                    src=self.attn_tp_group.ranks[0],
1085
1086
1087
                )
            if self.tp_size != 1:
                control_reqs = broadcast_pyobj(
1088
1089
1090
1091
                    control_reqs,
                    self.tp_group.rank,
                    self.tp_cpu_group,
                    src=self.tp_group.ranks[0],
1092
1093
1094
                )
            recv_reqs = work_reqs + control_reqs
        elif self.tp_size != 1:
1095
1096
1097
1098
1099
1100
            recv_reqs = broadcast_pyobj(
                recv_reqs,
                self.tp_group.rank,
                self.tp_cpu_group,
                src=self.tp_group.ranks[0],
            )
1101
1102
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
1103
    def process_input_requests(self, recv_reqs: List):
1104
        for recv_req in recv_reqs:
1105
1106
            # If it is a health check generation request and there are running requests, ignore it.
            if is_health_check_generate_req(recv_req) and (
1107
1108
1109
                self.chunked_req is not None
                or not self.running_batch.is_empty()
                or len(self.offload_tags) > 0
1110
1111
1112
1113
            ):
                self.return_health_check_ct += 1
                continue

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
            # If it is a work request, accept or reject the request based on the request queue size.
            if is_work_request(recv_req):
                if len(self.waiting_queue) + 1 > self.max_queued_requests:
                    abort_req = AbortReq(
                        recv_req.rid,
                        finished_reason={
                            "type": "abort",
                            "status_code": HTTPStatus.SERVICE_UNAVAILABLE,
                            "message": "The request queue is full.",
                        },
                    )
                    self.send_to_tokenizer.send_pyobj(abort_req)
                    continue
1127

1128
1129
            # If it is a MultiTokenizerWrapper, unwrap it and handle the inner request.
            if isinstance(recv_req, MultiTokenizerWrapper):
1130
1131
1132
1133
                worker_id = recv_req.worker_id
                recv_req = recv_req.obj
                output = self._request_dispatcher(recv_req)
                if output is not None:
1134
                    output = MultiTokenizerWrapper(worker_id, output)
1135
1136
1137
                    self.send_to_tokenizer.send_pyobj(output)
                continue

1138
            output = self._request_dispatcher(recv_req)
1139
            if output is not None:
1140
1141
1142
1143
1144
                if isinstance(output, RpcReqOutput):
                    if self.recv_from_rpc is not None:
                        self.recv_from_rpc.send_pyobj(output)
                else:
                    self.send_to_tokenizer.send_pyobj(output)
1145
1146
1147
1148
1149

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
1150
        self.maybe_update_dp_balance_data(recv_req)
1151

1152
        # Create a new request
1153
1154
1155
1156
1157
        if (
            recv_req.session_params is None
            or recv_req.session_params.id is None
            or recv_req.session_params.id not in self.sessions
        ):
Rin Intachuen's avatar
Rin Intachuen committed
1158
1159
1160
1161
1162
1163
            if recv_req.input_embeds is not None:
                # Generate fake input_ids based on the length of input_embeds
                seq_length = len(recv_req.input_embeds)
                fake_input_ids = [1] * seq_length
                recv_req.input_ids = fake_input_ids

1164
1165
1166
1167
            if recv_req.bootstrap_port is None:
                # Use default bootstrap port
                recv_req.bootstrap_port = self.server_args.disaggregation_bootstrap_port

1168
1169
1170
1171
1172
            req = Req(
                recv_req.rid,
                recv_req.input_text,
                recv_req.input_ids,
                recv_req.sampling_params,
Lianmin Zheng's avatar
Lianmin Zheng committed
1173
1174
                return_logprob=recv_req.return_logprob,
                top_logprobs_num=recv_req.top_logprobs_num,
1175
                token_ids_logprob=recv_req.token_ids_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
1176
                stream=recv_req.stream,
1177
                lora_id=recv_req.lora_id,
Rin Intachuen's avatar
Rin Intachuen committed
1178
                input_embeds=recv_req.input_embeds,
Lianmin Zheng's avatar
Lianmin Zheng committed
1179
                custom_logit_processor=recv_req.custom_logit_processor,
1180
                return_hidden_states=recv_req.return_hidden_states,
1181
                eos_token_ids=self.model_config.hf_eos_token_id,
1182
                bootstrap_host=recv_req.bootstrap_host,
1183
                bootstrap_port=recv_req.bootstrap_port,
1184
                bootstrap_room=recv_req.bootstrap_room,
1185
                data_parallel_rank=recv_req.data_parallel_rank,
1186
                vocab_size=self.model_config.vocab_size,
1187
1188
            )
            req.tokenizer = self.tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
1189

1190
1191
1192
            if self.disaggregation_mode != DisaggregationMode.NULL:
                # Invalid request for disaggregated mode
                if recv_req.bootstrap_room is None:
1193
                    error_msg = (
1194
1195
1196
                        f"Invalid request: Disaggregated request received without "
                        f"boostrap room id. {req.rid=}"
                    )
1197
                    logger.error(error_msg)
1198
                    prepare_abort(req, error_msg, status_code=HTTPStatus.BAD_REQUEST)
1199
1200
1201
                    self.stream_output([req], req.return_logprob)
                    return

1202
1203
1204
1205
            if (
                recv_req.session_params is not None
                and recv_req.session_params.id is not None
            ):
1206
                req.set_finish_with_abort(
1207
                    f"Invalid request: session id {recv_req.session_params.id} does not exist"
1208
                )
1209
                self._add_request_to_queue(req)
1210
1211
                return
        else:
1212
1213
            # Create a new request from a previous session
            session = self.sessions[recv_req.session_params.id]
1214
            req = session.create_req(recv_req, self.tokenizer)
1215
            if isinstance(req.finished_reason, FINISH_ABORT):
1216
                self._add_request_to_queue(req)
1217
                return
1218

1219
        # Handle multimodal inputs
Mick's avatar
Mick committed
1220
1221
        if recv_req.mm_inputs is not None:
            image_inputs = MultimodalInputs.from_dict(recv_req.mm_inputs)
1222
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
1223
            req.origin_input_ids = self.pad_input_ids_func(
1224
                req.origin_input_ids, image_inputs
1225
            )
1226
            req.extend_image_inputs(image_inputs)
1227

1228
            if len(req.origin_input_ids) >= self.max_req_input_len:
1229
1230
1231
1232
1233
                req.set_finish_with_abort(
                    error_msg=(
                        "Multimodal prompt is too long after expanding multimodal tokens. "
                        f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                    )
1234
                )
1235
                self._add_request_to_queue(req)
1236
1237
                return

1238
        # Validate prompt length
1239
1240
1241
1242
1243
1244
        error_msg = validate_input_length(
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
        if error_msg:
1245
            req.set_finish_with_abort(error_msg)
1246
            self._add_request_to_queue(req)
1247
            return
1248

1249
        # Copy more attributes
1250
        if recv_req.logprob_start_len == -1 or not recv_req.return_logprob:
1251
1252
1253
1254
1255
            # By default, only return the logprobs for output tokens
            req.logprob_start_len = len(req.origin_input_ids) - 1
        else:
            req.logprob_start_len = recv_req.logprob_start_len

1256
        if req.logprob_start_len >= len(req.origin_input_ids):
1257
            error_msg = f"{req.logprob_start_len=} is higher than the number of input tokens {len(req.origin_input_ids)=}. Please use a smaller logprob_start_len."
1258
            req.logprob_start_len = len(req.origin_input_ids) - 1
1259
            req.set_finish_with_abort(error_msg)
1260
1261
1262
            self._add_request_to_queue(req)
            return

1263
1264
1265
1266
1267
1268
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
1269
            self.max_req_len - len(req.origin_input_ids) - 1,
1270
1271
        )

1272
1273
1274
1275
1276
        # Init grammar cache for this request
        add_to_grammar_queue = False
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
1277
            or req.sampling_params.ebnf is not None
1278
            or req.sampling_params.structural_tag is not None
1279
1280
1281
1282
1283
1284
        ):
            assert self.grammar_backend is not None
            if req.sampling_params.json_schema is not None:
                key = ("json", req.sampling_params.json_schema)
            elif req.sampling_params.regex is not None:
                key = ("regex", req.sampling_params.regex)
1285
1286
            elif req.sampling_params.ebnf is not None:
                key = ("ebnf", req.sampling_params.ebnf)
1287
1288
            elif req.sampling_params.structural_tag:
                key = ("structural_tag", req.sampling_params.structural_tag)
1289

1290
1291
1292
1293
1294
            value, cache_hit = self.grammar_backend.get_cached_or_future_value(key)
            req.grammar = value

            if not cache_hit:
                req.grammar_key = key
1295
                add_to_grammar_queue = True
1296
1297
1298
1299
            else:
                if value is INVALID_GRAMMAR_OBJ:  # We hit a cached invalid grammar.
                    error_msg = f"Invalid grammar request with cache hit: {key=}"
                    req.set_finish_with_abort(error_msg)
1300
1301

        if add_to_grammar_queue:
1302
            req.queue_time_start = time.perf_counter()
1303
1304
            self.grammar_queue.append(req)
        else:
1305
1306
            self._add_request_to_queue(req)

1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
    def handle_batch_generate_request(
        self,
        recv_req: BatchTokenizedGenerateReqInput,
    ):
        """Handle optimized batch generate request."""
        logger.debug(f"Processing batch generate request with {len(recv_req)} requests")

        # Process each request in the batch
        for tokenized_req in recv_req:
            self.handle_generate_request(tokenized_req)

1318
    def _add_request_to_queue(self, req: Req):
1319
        req.queue_time_start = time.perf_counter()
Byron Hsu's avatar
Byron Hsu committed
1320
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
1321
            self._prefetch_kvcache(req)
Byron Hsu's avatar
Byron Hsu committed
1322
1323
1324
            self.disagg_prefill_bootstrap_queue.add(
                req, self.model_config.num_key_value_heads
            )
Byron Hsu's avatar
Byron Hsu committed
1325
1326
1327
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            self.disagg_decode_prealloc_queue.add(req)
        else:
1328
            self._prefetch_kvcache(req)
Byron Hsu's avatar
Byron Hsu committed
1329
1330
            self.waiting_queue.append(req)

1331
1332
1333
    def _prefetch_kvcache(self, req: Req):
        if self.enable_hicache_storage:
            req.init_next_round_input(self.tree_cache)
1334
1335
1336
1337
1338
            if req.last_node.backuped:
                # only to initiate the prefetch if the last node is backuped
                # otherwise, the allocated GPU memory must be locked for integrity
                last_hash = req.last_host_node.get_last_hash_value()
                matched_len = len(req.prefix_indices) + req.host_hit_length
1339
1340
1341
1342
1343
                new_input_tokens = req.fill_ids[matched_len:]
                self.tree_cache.prefetch_from_storage(
                    req.rid, req.last_host_node, new_input_tokens, last_hash
                )

1344
    def _extend_requests_to_queue(self, reqs: List[Req], is_retracted: bool = False):
1345
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
Byron Hsu's avatar
Byron Hsu committed
1346
1347
1348
            self.disagg_prefill_bootstrap_queue.extend(
                reqs, self.model_config.num_key_value_heads
            )
1349
1350
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            # If this is a decode server, we put the request to the decode pending prealloc queue
1351
            self.disagg_decode_prealloc_queue.extend(reqs, is_retracted)
Byron Hsu's avatar
Byron Hsu committed
1352
1353
        else:
            self.waiting_queue.extend(reqs)
1354
1355
1356

    def handle_embedding_request(
        self,
1357
        recv_req: TokenizedEmbeddingReqInput,
1358
1359
1360
1361
1362
1363
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
woodx's avatar
woodx committed
1364
            token_type_ids=recv_req.token_type_ids,
1365
1366
1367
        )
        req.tokenizer = self.tokenizer

1368
1369
        # Handle multimodal inputs
        if recv_req.image_inputs is not None:
Mick's avatar
Mick committed
1370
            image_inputs = MultimodalInputs.from_dict(recv_req.image_inputs)
1371
1372
1373
1374
1375
1376
1377
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
            req.origin_input_ids = self.pad_input_ids_func(
                req.origin_input_ids, image_inputs
            )
            req.extend_image_inputs(image_inputs)

            if len(req.origin_input_ids) >= self.max_req_input_len:
1378
1379
1380
1381
1382
                req.set_finish_with_abort(
                    error_msg=(
                        "Multimodal prompt is too long after expanding multimodal tokens. "
                        f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                    )
1383
                )
1384
                self._add_request_to_queue(req)
1385
1386
                return

1387
        # Validate prompts length
1388
        error_msg = validate_input_length(
1389
1390
1391
1392
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
1393
        if error_msg:
1394
            self._add_request_to_queue(req)
1395
            return
1396

1397
1398
        # Copy more attributes
        req.logprob_start_len = len(req.origin_input_ids) - 1
1399
        self._add_request_to_queue(req)
1400

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
    def handle_batch_embedding_request(
        self,
        recv_req: BatchTokenizedEmbeddingReqInput,
    ):
        """Handle optimized batch embedding request."""
        logger.debug(
            f"Processing batch embedding request with {len(recv_req)} requests"
        )

        # Process each request in the batch
        for tokenized_req in recv_req:
            self.handle_embedding_request(tokenized_req)

1414
1415
1416
1417
1418
    def self_check_during_idle(self):
        self.check_memory()
        self.check_tree_cache()
        self.new_token_ratio = self.init_new_token_ratio
        self.maybe_sleep_on_idle()
1419

Lianmin Zheng's avatar
Lianmin Zheng committed
1420
    def check_memory(self):
Hanming Lu's avatar
Hanming Lu committed
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
        if self.is_hybrid:
            (
                full_num_used,
                swa_num_used,
                _,
                _,
                full_available_size,
                full_evictable_size,
                swa_available_size,
                swa_evictable_size,
            ) = self._get_swa_token_info()
            memory_leak = full_num_used != 0 or swa_num_used != 0
            token_msg = (
                f"{self.full_tokens_per_layer=}, {full_available_size=}, {full_evictable_size=}, {self.tree_cache.full_protected_size()=}\n"
                f"{self.swa_tokens_per_layer=}, {swa_available_size=}, {swa_evictable_size=}, {self.tree_cache.swa_protected_size()=}\n"
            )
tarinkk's avatar
tarinkk committed
1437
        else:
Hanming Lu's avatar
Hanming Lu committed
1438
1439
1440
            _, _, available_size, evictable_size = self._get_token_info()
            protected_size = self.tree_cache.protected_size()
            memory_leak = (available_size + evictable_size) != (
1441
1442
1443
                # self.max_total_num_tokens
                # if not self.enable_hierarchical_cache
                # else self.max_total_num_tokens - protected_size
Hanming Lu's avatar
Hanming Lu committed
1444
                self.max_total_num_tokens
1445
                - protected_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1446
            )
Hanming Lu's avatar
Hanming Lu committed
1447
1448
1449
1450
            token_msg = f"{self.max_total_num_tokens=}, {available_size=}, {evictable_size=}, {protected_size=}\n"

        if memory_leak:
            msg = "token_to_kv_pool_allocator memory leak detected! " f"{token_msg}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1451
            raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1452

1453
1454
1455
1456
1457
1458
1459
1460
        if self.disaggregation_mode == DisaggregationMode.DECODE:
            req_total_size = (
                self.req_to_token_pool.size + self.req_to_token_pool.pre_alloc_size
            )
        else:
            req_total_size = self.req_to_token_pool.size

        if len(self.req_to_token_pool.free_slots) != req_total_size:
1461
            msg = (
1462
                "req_to_token_pool memory leak detected!"
1463
1464
                f"available_size={len(self.req_to_token_pool.free_slots)}, "
                f"total_size={self.req_to_token_pool.size}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1465
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1466
            raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1467

1468
1469
        if (
            self.enable_metrics
1470
            and self.current_scheduler_metrics_enabled()
1471
            and time.perf_counter() > self.metrics_collector.last_log_time + 30
1472
1473
        ):
            # During idle time, also collect metrics every 30 seconds.
Hanming Lu's avatar
Hanming Lu committed
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
            if self.is_hybrid:
                (
                    full_num_used,
                    swa_num_used,
                    full_token_usage,
                    swa_token_usage,
                    _,
                    _,
                    _,
                    _,
                ) = self._get_swa_token_info()
                num_used = max(full_num_used, swa_num_used)
                token_usage = max(full_token_usage, swa_token_usage)
            else:
                num_used, token_usage, _, _ = self._get_token_info()
Lianmin Zheng's avatar
Lianmin Zheng committed
1489
            num_running_reqs = len(self.running_batch.reqs)
1490
1491
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
Hanming Lu's avatar
Hanming Lu committed
1492
            self.stats.token_usage = round(token_usage, 2)
1493
1494
            self.stats.gen_throughput = 0
            self.stats.num_queue_reqs = len(self.waiting_queue)
1495
            self.stats.num_grammar_queue_reqs = len(self.grammar_queue)
1496
            self.metrics_collector.log_stats(self.stats)
1497
        self._publish_kv_events()
1498

Hanming Lu's avatar
Hanming Lu committed
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
    def check_tree_cache(self):
        if self.is_hybrid and isinstance(self.tree_cache, SWARadixCache):
            self.tree_cache.sanity_check()

    def _get_token_info(self):
        available_size = self.token_to_kv_pool_allocator.available_size()
        evictable_size = self.tree_cache.evictable_size()
        num_used = self.max_total_num_tokens - (available_size + evictable_size)
        token_usage = num_used / self.max_total_num_tokens
        return num_used, token_usage, available_size, evictable_size

    def _get_swa_token_info(self):
        full_available_size = self.token_to_kv_pool_allocator.full_available_size()
        full_evictable_size = self.tree_cache.full_evictable_size()
        swa_available_size = self.token_to_kv_pool_allocator.swa_available_size()
        swa_evictable_size = self.tree_cache.swa_evictable_size()
        full_num_used = self.full_tokens_per_layer - (
            full_available_size + full_evictable_size
        )
        swa_num_used = self.swa_tokens_per_layer - (
            swa_available_size + swa_evictable_size
        )
        full_token_usage = full_num_used / self.full_tokens_per_layer
        swa_token_usage = swa_num_used / self.swa_tokens_per_layer
        return (
            full_num_used,
            swa_num_used,
            full_token_usage,
            swa_token_usage,
            full_available_size,
            full_evictable_size,
            swa_available_size,
            swa_evictable_size,
        )

1534
    def get_next_batch_to_run(self) -> Optional[ScheduleBatch]:
1535
        # Merge the prefill batch into the running batch
1536
1537
1538
1539
1540
        chunked_req_to_exclude = set()
        if self.chunked_req:
            # Move the chunked request out of the batch so that we can merge
            # only finished requests to running_batch.
            chunked_req_to_exclude.add(self.chunked_req)
1541
            self.tree_cache.cache_unfinished_req(self.chunked_req, chunked=True)
1542
1543
            # chunked request keeps its rid but will get a new req_pool_idx
            self.req_to_token_pool.free(self.chunked_req.req_pool_idx)
Lianmin Zheng's avatar
Lianmin Zheng committed
1544
        if self.last_batch and self.last_batch.forward_mode.is_extend():
1545
1546
1547
1548
            if self.last_batch.chunked_req is not None:
                # In the context pipeline parallelism, after the last chunk, the current microbatch still track outdated chunked_req.
                # We need to discard it.
                chunked_req_to_exclude.add(self.last_batch.chunked_req)
Lianmin Zheng's avatar
Lianmin Zheng committed
1549

1550
            # Filter batch
1551
            last_bs = self.last_batch.batch_size()
1552
1553
1554
            self.last_batch.filter_batch(
                chunked_req_to_exclude=list(chunked_req_to_exclude)
            )
1555
            if self.last_batch.batch_size() < last_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1556
                self.running_batch.batch_is_full = False
1557

1558
1559
1560
            # Merge the new batch into the running batch.
            # For prefill-only batch, we can avoid going through decoding step.
            if not self.last_batch.is_empty() and not self.last_batch.is_prefill_only:
Lianmin Zheng's avatar
Lianmin Zheng committed
1561
                if self.running_batch.is_empty():
1562
1563
                    self.running_batch = self.last_batch
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1564
                    # Merge running_batch with prefill batch
1565
                    self.running_batch.merge_batch(self.last_batch)
1566

1567
        new_batch = self.get_new_batch_prefill()
1568

1569
1570
1571
1572
1573
        need_dp_attn_preparation = require_mlp_sync(self.server_args)

        if need_dp_attn_preparation and not self.spec_algorithm.is_none():
            # In speculative decoding, prefill batches and decode batches cannot be processed in the same DP attention group.
            # We prepare idle batches in advance to skip preparing decode batches when there are prefill batches in the group.
1574
            new_batch = self.prepare_mlp_sync_batch(new_batch)
1575
1576
1577
            need_dp_attn_preparation = new_batch is None

        if new_batch is not None:
1578
1579
1580
1581
            # Run prefill first if possible
            ret = new_batch
        else:
            # Run decode
Lianmin Zheng's avatar
Lianmin Zheng committed
1582
            if not self.running_batch.is_empty():
1583
                self.running_batch = self.update_running_batch(self.running_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1584
1585
1586
                ret = self.running_batch if not self.running_batch.is_empty() else None
            else:
                ret = None
1587

1588
1589
        # Handle DP attention
        if need_dp_attn_preparation:
1590
            self.maybe_handle_dp_balance_data()
1591
            ret = self.prepare_mlp_sync_batch(ret)
1592
1593

        return ret
1594

1595
1596
1597
1598
1599
1600
    def get_num_allocatable_reqs(self, running_bs):
        res = global_server_args_dict["max_micro_batch_size"] - running_bs
        if self.pp_size > 1:
            res = min(res, self.req_to_token_pool.available_size())
        return res

Lianmin Zheng's avatar
Lianmin Zheng committed
1601
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
Lianmin Zheng's avatar
Lianmin Zheng committed
1602
        # Check if the grammar is ready in the grammar queue
1603
        if self.grammar_queue:
1604
            self.move_ready_grammar_requests()
1605

Lianmin Zheng's avatar
Lianmin Zheng committed
1606
1607
        # Handle the cases where prefill is not allowed
        if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1608
            self.running_batch.batch_is_full or len(self.waiting_queue) == 0
1609
        ) and self.chunked_req is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1610
1611
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
1612
        running_bs = len(self.running_batch.reqs)
1613
        # Ignore the check if self.chunked_req is not None.
1614
1615
1616
1617
1618
        # In the non-PP case, when self.chunked_req is not None, num_allocatable_reqs should always be greater than 0,
        # as the space for the chunked request has just been released.
        # In PP case, a chunked req can start in one microbatch and end in another microbatch, so the max_running_requests per microbatch should not be strict.
        # Instead, we should always allow chunked request to be added, otherwise, there will be a memory leak.
        if self.get_num_allocatable_reqs(running_bs) <= 0 and not self.chunked_req:
Lianmin Zheng's avatar
Lianmin Zheng committed
1619
            self.running_batch.batch_is_full = True
1620
1621
            return None

1622
        if self.enable_hierarchical_cache:
1623
            self.tree_cache.check_hicache_events()
1624

1625
        # Get priority queue
1626
        self.policy.calc_priority(self.waiting_queue)
1627

Lianmin Zheng's avatar
Lianmin Zheng committed
1628
        # Prefill policy
1629
        adder = PrefillAdder(
1630
            self.page_size,
1631
            self.tree_cache,
1632
            self.token_to_kv_pool_allocator,
1633
1634
1635
1636
            self.running_batch,
            self.new_token_ratio,
            self.max_prefill_tokens,
            self.chunked_prefill_size,
1637
            running_bs if self.is_mixed_chunk else 0,
1638
1639
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1640
        if self.chunked_req is not None:
1641
1642
            self.chunked_req.init_next_round_input()
            self.chunked_req = adder.add_chunked_req(self.chunked_req)
1643

1644
        if self.enable_lora:
1645
            lora_set = set([req.lora_id for req in self.running_batch.reqs])
Lianmin Zheng's avatar
Lianmin Zheng committed
1646

1647
        # Get requests from the waiting queue to a new prefill batch
1648
        for req in self.waiting_queue:
1649
1650
1651
1652
1653

            if self.enable_lora and not self.tp_worker.can_run_lora_batch(
                lora_set
                | set([req.lora_id for req in adder.can_run_list])
                | set([req.lora_id])
1654
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1655
                self.running_batch.batch_is_full = True
1656
1657
                break

1658
            if len(adder.can_run_list) >= self.get_num_allocatable_reqs(running_bs):
Lianmin Zheng's avatar
Lianmin Zheng committed
1659
                self.running_batch.batch_is_full = True
1660
                break
1661

Byron Hsu's avatar
Byron Hsu committed
1662
1663
1664
1665
1666
1667
1668
            if self.disaggregation_mode == DisaggregationMode.PREFILL:
                # In prefill mode, prealloc queue and transfer queue can also take memory,
                # so we need to check if the available size for the actual available size.
                if len(adder.can_run_list) >= self.req_to_token_pool.available_size():
                    self.running_batch.batch_is_full = True
                    break

1669
            if self.enable_hicache_storage:
pansicheng's avatar
pansicheng committed
1670
1671
1672
1673
                prefetch_done = self.tree_cache.check_prefetch_progress(req.rid)
                if not prefetch_done:
                    # skip staging requests that are ongoing prefetch
                    continue
1674

1675
1676
            req.init_next_round_input(self.tree_cache)
            res = adder.add_one_req(req, has_chunked_req=(self.chunked_req is not None))
1677

1678
1679
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
1680
1681
                    if self.enable_hierarchical_cache:
                        # Set batch_is_full after making sure there are requests that can be served
Lianmin Zheng's avatar
Lianmin Zheng committed
1682
1683
                        self.running_batch.batch_is_full = len(
                            adder.can_run_list
1684
                        ) > 0 or (not self.running_batch.is_empty())
1685
                    else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1686
                        self.running_batch.batch_is_full = True
1687
1688
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1689
        # Update waiting queue
1690
        can_run_list: List[Req] = adder.can_run_list
Lianmin Zheng's avatar
Lianmin Zheng committed
1691
1692
        if len(can_run_list) == 0:
            return None
1693
1694
1695
1696

        if self.enable_metrics:
            # only record queue time when enable_metrics is True to avoid overhead
            for req in can_run_list:
1697
                req.queue_time_end = time.perf_counter()
1698

Lianmin Zheng's avatar
Lianmin Zheng committed
1699
1700
1701
        self.waiting_queue = [
            x for x in self.waiting_queue if x not in set(can_run_list)
        ]
1702

1703
1704
1705
        if adder.new_chunked_req is not None:
            assert self.chunked_req is None
            self.chunked_req = adder.new_chunked_req
1706

1707
1708
        if self.chunked_req:
            self.chunked_req.is_chunked += 1
Lianmin Zheng's avatar
Lianmin Zheng committed
1709

1710
        # Print stats
1711
        if self.current_scheduler_metrics_enabled():
1712
            self.log_prefill_stats(adder, can_run_list, running_bs)
1713

Lianmin Zheng's avatar
Lianmin Zheng committed
1714
        # Create a new batch
1715
1716
1717
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
1718
            self.token_to_kv_pool_allocator,
1719
            self.tree_cache,
1720
            self.model_config,
1721
            self.enable_overlap,
1722
            self.spec_algorithm,
1723
            chunked_req=self.chunked_req,
1724
        )
1725
1726
        if self.enable_hierarchical_cache:
            # todo (zhiqiang): disable cuda graph execution if hicache loading triggered
1727
1728
1729
            new_batch.hicache_consumer_index = (
                self.tree_cache.ready_to_load_host_cache()
            )
1730

1731
        new_batch.prepare_for_extend()
1732

Lianmin Zheng's avatar
Lianmin Zheng committed
1733
        # Mixed-style chunked prefill
1734
1735
        if (
            self.is_mixed_chunk
Lianmin Zheng's avatar
Lianmin Zheng committed
1736
            and not self.running_batch.is_empty()
1737
1738
1739
            and not (new_batch.return_logprob or self.running_batch.return_logprob)
        ):
            # TODO (lianmin): support return_logprob + mixed chunked prefill
1740
1741
            self.running_batch.filter_batch()
            if not self.running_batch.is_empty():
1742
                self.running_batch.prepare_for_decode()
1743
1744
                new_batch.mix_with_running(self.running_batch)
                new_batch.decoding_reqs = self.running_batch.reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
1745
1746
1747
            self.running_batch = ScheduleBatch(
                reqs=[], batch_is_full=self.running_batch.batch_is_full
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1748
1749
        else:
            new_batch.decoding_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1750
1751
1752

        return new_batch

Lianmin Zheng's avatar
Lianmin Zheng committed
1753
    def update_running_batch(self, batch: ScheduleBatch) -> Optional[ScheduleBatch]:
1754
        """Update the current running decoding batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1755
        initial_bs = batch.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1756

1757
1758
        batch.filter_batch()
        if batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1759
1760
            batch.batch_is_full = False
            return batch
1761

Lianmin Zheng's avatar
Lianmin Zheng committed
1762
        # Check if decode out of memory
1763
        if not batch.check_decode_mem(self.decode_mem_cache_buf_multiplier) or (
1764
            TEST_RETRACT and batch.batch_size() > 10
1765
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1766
1767
            old_ratio = self.new_token_ratio

1768
            retracted_reqs, new_token_ratio = batch.retract_decode(self.server_args)
1769
            num_retracted_reqs = len(retracted_reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1770
            self.new_token_ratio = new_token_ratio
1771

Lianmin Zheng's avatar
Lianmin Zheng committed
1772
            logger.info(
1773
                "KV cache pool is full. Retract requests. "
1774
                f"#retracted_reqs: {num_retracted_reqs}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
1775
1776
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
1777

1778
            self._extend_requests_to_queue(retracted_reqs, is_retracted=True)
1779
            self.total_retracted_reqs += num_retracted_reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
1780
1781
        else:
            self.new_token_ratio = max(
1782
                self.new_token_ratio - self.new_token_ratio_decay,
Lianmin Zheng's avatar
Lianmin Zheng committed
1783
1784
1785
                self.min_new_token_ratio,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
1786
        if batch.batch_size() < initial_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1787
            batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
1788
1789

        # Update batch tensors
1790
        batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
1791
        return batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1792

1793
1794
1795
    def run_batch(
        self, batch: ScheduleBatch
    ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
1796
        """Run a batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1797
1798
        self.forward_ct += 1

1799
1800
        # Whether to run the profiler
        self._profile_batch_predicate(batch)
1801
1802
1803
1804
        if self.forward_sleep_time is not None:
            logger.info(f"Scheduler.run_batch sleep {self.forward_sleep_time}s")
            time.sleep(self.forward_sleep_time)

1805
        # Run forward
1806
        if self.is_generation:
1807
1808
            if self.spec_algorithm.is_none():
                model_worker_batch = batch.get_model_worker_batch()
1809
1810
1811
1812
1813

                # update the consumer index of hicache to the running batch
                self.tp_worker.set_hicache_consumer(
                    model_worker_batch.hicache_consumer_index
                )
1814
                if self.pp_group.is_last_rank:
1815
                    logits_output, next_token_ids, can_run_cuda_graph = (
1816
1817
1818
                        self.tp_worker.forward_batch_generation(model_worker_batch)
                    )
                else:
1819
                    pp_hidden_states_proxy_tensors, _, can_run_cuda_graph = (
1820
1821
                        self.tp_worker.forward_batch_generation(model_worker_batch)
                    )
1822
                bid = model_worker_batch.bid
Lianmin Zheng's avatar
Lianmin Zheng committed
1823
            else:
1824
1825
1826
                (
                    logits_output,
                    next_token_ids,
1827
                    bid,
1828
                    num_accepted_tokens,
1829
                    can_run_cuda_graph,
1830
                ) = self.draft_worker.forward_batch_speculative_generation(batch)
1831
1832
1833
                bs = batch.batch_size()
                self.spec_num_total_accepted_tokens += num_accepted_tokens + bs
                self.spec_num_total_forward_ct += bs
1834
                self.num_generated_tokens += num_accepted_tokens
1835
1836
1837

            if self.pp_group.is_last_rank:
                batch.output_ids = next_token_ids
1838

1839
1840
1841
            # These 2 values are needed for processing the output, but the values can be
            # modified by overlap schedule. So we have to copy them here so that
            # we can use the correct values in output processing.
1842
            if batch.return_logprob or self.spec_algorithm.is_eagle():
1843
                extend_input_len_per_req = [req.extend_input_len for req in batch.reqs]
1844
1845
1846
            else:
                extend_input_len_per_req = None
            if batch.return_logprob:
1847
1848
1849
1850
1851
1852
                extend_logprob_start_len_per_req = [
                    req.extend_logprob_start_len for req in batch.reqs
                ]
            else:
                extend_logprob_start_len_per_req = None

1853
            ret = GenerationBatchResult(
1854
1855
1856
1857
1858
1859
1860
                logits_output=logits_output if self.pp_group.is_last_rank else None,
                pp_hidden_states_proxy_tensors=(
                    pp_hidden_states_proxy_tensors
                    if not self.pp_group.is_last_rank
                    else None
                ),
                next_token_ids=next_token_ids if self.pp_group.is_last_rank else None,
1861
1862
                extend_input_len_per_req=extend_input_len_per_req,
                extend_logprob_start_len_per_req=extend_logprob_start_len_per_req,
1863
                bid=bid,
1864
                can_run_cuda_graph=can_run_cuda_graph,
1865
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1866
1867
1868
        else:  # embedding or reward model
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
1869
1870
1871
            ret = EmbeddingBatchResult(
                embeddings=embeddings, bid=model_worker_batch.bid
            )
1872
        return ret
Chayenne's avatar
Chayenne committed
1873

1874
1875
1876
1877
    def process_batch_result(
        self,
        batch: ScheduleBatch,
        result: Union[GenerationBatchResult, EmbeddingBatchResult],
1878
        launch_done: Optional[threading.Event] = None,
1879
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1880
        if batch.forward_mode.is_decode():
1881
            self.process_batch_result_decode(batch, result, launch_done)
1882
        elif batch.forward_mode.is_extend():
1883
            self.process_batch_result_prefill(batch, result, launch_done)
1884
1885
        elif batch.forward_mode.is_idle():
            if self.enable_overlap:
1886
                self.tp_worker.resolve_last_batch_result(launch_done)
1887
                self.set_next_batch_sampling_info_done(batch)
1888
        elif batch.forward_mode.is_dummy_first():
1889
            self.set_next_batch_sampling_info_done(batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1890

1891
1892
1893
        self.maybe_send_health_check_signal()

    def maybe_send_health_check_signal(self):
1894
1895
1896
1897
1898
1899
1900
        if self.return_health_check_ct:
            # Return some signal for the health check.
            # This is used to prevent the health check signal being blocked by long context prefill.
            # However, one minor issue is that this code path does not check the status of detokenizer manager.
            self.return_health_check_ct -= 1
            self.send_to_tokenizer.send_pyobj(HealthCheckOutput())

1901
1902
    def prepare_mlp_sync_batch(self, local_batch: ScheduleBatch):
        return self.prepare_mlp_sync_batch_raw(
1903
1904
1905
            local_batch,
            dp_size=self.server_args.dp_size,
            attn_tp_size=self.attn_tp_size,
1906
            tp_group=self.tp_group,
1907
1908
1909
1910
            get_idle_batch=self.get_idle_batch,
            disable_cuda_graph=self.server_args.disable_cuda_graph,
            spec_algorithm=self.spec_algorithm,
            speculative_num_draft_tokens=self.server_args.speculative_num_draft_tokens,
1911
            require_mlp_tp_gather=require_mlp_tp_gather(self.server_args),
1912
            disable_overlap_schedule=self.server_args.disable_overlap_schedule,
1913
1914
1915
        )

    @staticmethod
1916
    def prepare_mlp_sync_batch_raw(
1917
1918
1919
        local_batch: ScheduleBatch,
        dp_size,
        attn_tp_size: int,
1920
        tp_group,
1921
1922
1923
1924
        get_idle_batch,
        disable_cuda_graph: bool,
        spec_algorithm,
        speculative_num_draft_tokens,
1925
        require_mlp_tp_gather: bool,
1926
        disable_overlap_schedule: bool,
1927
    ):
1928
1929
1930
        # Check if other DP workers have running batches
        if local_batch is None:
            num_tokens = 0
1931
            num_tokens_for_logprob = 0
1932
1933
        elif local_batch.forward_mode.is_decode():
            num_tokens = local_batch.batch_size()
1934
            num_tokens_for_logprob = num_tokens
1935
1936
        else:
            num_tokens = local_batch.extend_num_tokens
1937
            num_tokens_for_logprob = sum(
Lianmin Zheng's avatar
Lianmin Zheng committed
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
                [
                    # We should have at least 1 token for sample in every case.
                    max(extend_len - logprob_start_len, 1)
                    for logprob_start_len, extend_len in zip(
                        local_batch.extend_logprob_start_lens, local_batch.extend_lens
                    )
                ]
            )

        if local_batch is None or local_batch.forward_mode.is_decode_or_idle():
            can_cuda_graph = 1
        else:
            can_cuda_graph = 0

        is_extend_in_batch = (
            local_batch.forward_mode.is_extend() if local_batch else False
        )
1955
1956

        tbo_preparer = TboDPAttentionPreparer()
1957
1958
1959
1960
1961
1962
        if disable_overlap_schedule:
            group = tp_group.device_group
            device = tp_group.device
        else:
            group = tp_group.cpu_group
            device = "cpu"
1963

Lianmin Zheng's avatar
Lianmin Zheng committed
1964
1965
1966
1967
        local_info = torch.tensor(
            [
                num_tokens,
                can_cuda_graph,
1968
                num_tokens_for_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
1969
                is_extend_in_batch,
1970
1971
1972
                *tbo_preparer.prepare_all_gather(
                    local_batch,
                ),
Lianmin Zheng's avatar
Lianmin Zheng committed
1973
1974
            ],
            dtype=torch.int64,
1975
            device=device,
Lianmin Zheng's avatar
Lianmin Zheng committed
1976
1977
        )
        global_info = torch.empty(
1978
            (dp_size, attn_tp_size, 6),
Lianmin Zheng's avatar
Lianmin Zheng committed
1979
            dtype=torch.int64,
1980
            device=device,
Lianmin Zheng's avatar
Lianmin Zheng committed
1981
        )
1982
        torch.distributed.all_gather_into_tensor(
Lianmin Zheng's avatar
Lianmin Zheng committed
1983
1984
            global_info.flatten(),
            local_info,
1985
            group=group,
1986
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1987
1988
1989
1990
        global_num_tokens = global_info[:, 0, 0].tolist()
        can_cuda_graph = min(global_info[:, 0, 1].tolist())
        global_num_tokens_for_logprob = global_info[:, 0, 2].tolist()
        is_extend_in_batch = global_info[:, 0, 3].tolist()
1991

1992
1993
1994
1995
        tbo_split_seq_index, global_forward_mode = tbo_preparer.compute_output(
            global_info[:, :, 4:6]
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1996
        if local_batch is None and max(global_num_tokens) > 0:
1997
            local_batch = get_idle_batch()
1998
1999

        if local_batch is not None:
2000
            # TODO: handle the case when moe_dense_tp_size != 1
2001
            if not require_mlp_tp_gather:
2002
2003
2004
2005
2006
2007
2008
                local_batch.global_num_tokens = [num_tokens]
                local_batch.global_num_tokens_for_logprob = [num_tokens_for_logprob]
            else:
                local_batch.global_num_tokens = global_num_tokens
                local_batch.global_num_tokens_for_logprob = (
                    global_num_tokens_for_logprob
                )
2009
            local_batch.is_extend_in_batch = any(is_extend_in_batch)
2010
2011
            local_batch.tbo_split_seq_index = tbo_split_seq_index
            local_batch.global_forward_mode = global_forward_mode
2012

2013
            # Check forward mode for cuda graph
2014
            if not disable_cuda_graph:
Lianmin Zheng's avatar
Lianmin Zheng committed
2015
                local_batch.can_run_dp_cuda_graph = can_cuda_graph
2016

2017
        return local_batch
2018
2019
2020
2021
2022

    def get_idle_batch(self):
        idle_batch = ScheduleBatch.init_new(
            [],
            self.req_to_token_pool,
2023
            self.token_to_kv_pool_allocator,
2024
2025
2026
            self.tree_cache,
            self.model_config,
            self.enable_overlap,
2027
            self.spec_algorithm,
2028
2029
2030
2031
        )
        idle_batch.prepare_for_idle()
        return idle_batch

2032
2033
    def move_ready_grammar_requests(self):
        """Move requests whose grammar objects are ready from grammar_queue to waiting_queue."""
2034

2035
        num_ready_reqs = 0
2036
        num_timeout_reqs = 0
2037
2038
        for req in self.grammar_queue:
            try:
2039
2040
2041
                if req.finished():  # It is aborted by AbortReq
                    num_ready_reqs += 1
                    continue
2042
                req.grammar = req.grammar.result(timeout=0.03)
2043
2044
2045
2046
2047
                self.grammar_backend.set_cache(req.grammar_key, req.grammar.copy())
                if req.grammar is INVALID_GRAMMAR_OBJ:
                    req.set_finish_with_abort(
                        f"Invalid grammar request: {req.grammar_key=}"
                    )
2048
2049
                num_ready_reqs += 1
            except futures._base.TimeoutError:
2050
                req.grammar_wait_ct += 1
2051
2052
                # NOTE(lianmin): this timeout is the waiting time of the above line. It is
                # not the waiting time from it enters the grammar queue.
2053
                if req.grammar_wait_ct > GRAMMAR_TIMEOUT / 0.03:
2054
                    num_timeout_reqs = 1
2055
2056
                break

2057
        if self.server_args.enable_dp_attention:
2058
2059
            tp_size = self.attn_tp_size
            tp_group = self.attn_tp_cpu_group
2060
        else:
2061
2062
2063
2064
2065
            tp_size = self.tp_size
            tp_group = self.tp_cpu_group

        if tp_size > 1:
            # Sync across TP ranks to make sure they have the same number of ready requests
2066
            tensor = torch.tensor([num_ready_reqs, num_timeout_reqs], dtype=torch.int32)
2067
2068
2069
            torch.distributed.all_reduce(
                tensor, op=torch.distributed.ReduceOp.MAX, group=tp_group
            )
2070
            num_ready_reqs_max, num_timeout_reqs_max = tensor.tolist()
2071

2072
            for i in range(num_ready_reqs, num_ready_reqs_max):
2073
                req = self.grammar_queue[i]
2074
2075
                if req.finished():  # It is aborted by AbortReq
                    continue
2076
                req.grammar = req.grammar.result()
2077
2078
2079
2080
2081
2082
2083
2084
                self.grammar_backend.set_cache(req.grammar_key, req.grammar.copy())
                if req.grammar is INVALID_GRAMMAR_OBJ:
                    req.set_finish_with_abort(
                        f"Invalid grammar request: {req.grammar_key=}"
                    )
        else:
            num_ready_reqs_max = num_ready_reqs
            num_timeout_reqs_max = num_timeout_reqs
2085

2086
2087
2088
2089
2090
2091
2092
        for i in range(num_ready_reqs, num_ready_reqs + num_timeout_reqs_max):
            req = self.grammar_queue[i]
            req.grammar.cancel()
            error_msg = f"Grammar preprocessing timed out for {req.grammar_key=}"
            req.set_finish_with_abort(error_msg)
            self.grammar_backend.set_cache(req.grammar_key, INVALID_GRAMMAR_OBJ)
        num_ready_reqs = num_ready_reqs_max + num_timeout_reqs_max
2093

2094
        self._extend_requests_to_queue(self.grammar_queue[:num_ready_reqs])
2095
2096
        self.grammar_queue = self.grammar_queue[num_ready_reqs:]

2097
2098
2099
2100
2101
2102
2103
    def set_next_batch_sampling_info_done(self, batch: ScheduleBatch):
        if batch.next_batch_sampling_info:
            if batch.next_batch_sampling_info.grammars is not None:
                batch.next_batch_sampling_info.update_regex_vocab_mask()
                self.current_stream.synchronize()
            batch.next_batch_sampling_info.sampling_info_done.set()

2104
2105
2106
    def watchdog_thread(self):
        """A watch dog thread that will try to kill the server itself if one forward batch takes too long."""
        self.watchdog_last_forward_ct = 0
2107
        self.watchdog_last_time = time.perf_counter()
2108
2109

        while True:
2110
            current = time.perf_counter()
2111
2112
2113
2114
2115
2116
2117
2118
2119
            if self.cur_batch is not None:
                if self.watchdog_last_forward_ct == self.forward_ct:
                    if current > self.watchdog_last_time + self.watchdog_timeout:
                        break
                else:
                    self.watchdog_last_forward_ct = self.forward_ct
                    self.watchdog_last_time = current
            time.sleep(self.watchdog_timeout // 2)

Lianmin Zheng's avatar
Lianmin Zheng committed
2120
2121
        if not disable_request_logging():
            # Print batch size and memory pool info to check whether there are de-sync issues.
Hanming Lu's avatar
Hanming Lu committed
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
            if self.is_hybrid:
                (
                    _,
                    _,
                    _,
                    _,
                    full_available_size,
                    full_evictable_size,
                    swa_available_size,
                    swa_evictable_size,
                ) = self._get_swa_token_info()
                info_msg = (
                    f"{full_available_size=}, "
                    f"{full_evictable_size=}, "
                    f"{swa_available_size=}, "
                    f"{swa_evictable_size=}, "
                )
            else:
                _, _, available_size, evictable_size = self._get_token_info()
                info_msg = f"{available_size=}, " f"{evictable_size=}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
2142
2143
2144
            logger.error(
                f"{self.cur_batch.batch_size()=}, "
                f"{self.cur_batch.reqs=}, "
Hanming Lu's avatar
Hanming Lu committed
2145
                f"{info_msg}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2146
2147
            )

2148
        pyspy_dump_schedulers()
Lianmin Zheng's avatar
Lianmin Zheng committed
2149
        logger.error(f"Watchdog timeout ({self.watchdog_timeout=})")
2150
2151
        print(file=sys.stderr, flush=True)
        print(file=sys.stdout, flush=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
2152
2153

        # Wait for some time so that the parent process can print the error.
2154
2155
2156
        time.sleep(5)
        self.parent_process.send_signal(signal.SIGQUIT)

2157
2158
2159
    def flush_cache_wrapped(self, recv_req: FlushCacheReqInput):
        success = self.flush_cache()
        return FlushCacheReqOutput(success=success)
2160

2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
    def clear_hicache_storage_wrapped(self, recv_req: ClearHiCacheReqInput):
        if self.enable_hierarchical_cache:
            self.tree_cache.clear_storage_backend()
            logger.info("Hierarchical cache cleared successfully!")
            if_success = True
        else:
            logging.warning("Hierarchical cache is not enabled.")
            if_success = False
        return ClearHiCacheReqOutput(success=if_success)

2171
    def flush_cache(self):
2172
        """Flush the memory pool and cache."""
2173
2174
2175
2176
2177
        if (
            len(self.waiting_queue) == 0
            and self.running_batch.is_empty()
            and (self.pp_size == 1 or all(x.is_empty() for x in self.running_mbs))
        ):
2178
2179
            self.cur_batch = None
            self.last_batch = None
2180
            self.tree_cache.reset()
2181
            if self.grammar_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
2182
                self.grammar_backend.reset()
2183
            self.req_to_token_pool.clear()
2184
            self.token_to_kv_pool_allocator.clear()
2185
2186
2187

            if not self.spec_algorithm.is_none():
                self.draft_worker.model_runner.req_to_token_pool.clear()
2188
                self.draft_worker.model_runner.token_to_kv_pool_allocator.clear()
2189
2190
2191
2192
2193

            self.num_generated_tokens = 0
            self.forward_ct_decode = 0
            self.spec_num_total_accepted_tokens = 0
            self.spec_num_total_forward_ct = 0
2194
2195
            self.cum_spec_accept_length = 0
            self.cum_spec_accept_count = 0
2196
2197
2198
2199
2200
2201
2202
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
2203
                f"#running-req: {len(self.running_batch.reqs)}"
2204
2205
2206
2207
            )
            if_success = False
        return if_success

Liangsheng Yin's avatar
Liangsheng Yin committed
2208
2209
    def get_load(self):
        # TODO(lsyin): use dynamically maintained num_waiting_tokens
Hanming Lu's avatar
Hanming Lu committed
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
        if self.is_hybrid:
            load_full = (
                self.full_tokens_per_layer
                - self.token_to_kv_pool_allocator.full_available_size()
                - self.tree_cache.full_evictable_size()
            )
            load_swa = (
                self.swa_tokens_per_layer
                - self.token_to_kv_pool_allocator.swa_available_size()
                - self.tree_cache.swa_evictable_size()
            )
            load = max(load_full, load_swa)
        else:
            load = (
                self.max_total_num_tokens
                - self.token_to_kv_pool_allocator.available_size()
                - self.tree_cache.evictable_size()
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
        load += sum(len(req.origin_input_ids) for req in self.waiting_queue)
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            load += sum(
                len(req.origin_input_ids)
                for req in self.disagg_prefill_bootstrap_queue.queue
            )
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            load += sum(
                len(req.req.origin_input_ids)
                for req in self.disagg_decode_prealloc_queue.queue
            )

        return load

2242
2243
2244
    def get_internal_state(self, recv_req: GetInternalStateReq):
        ret = dict(global_server_args_dict)
        ret["last_gen_throughput"] = self.last_gen_throughput
2245
2246
2247
2248
2249
2250
2251
2252
2253
        ret["memory_usage"] = {
            "weight": round(
                self.tp_worker.worker.model_runner.weight_load_mem_usage, 2
            ),
            "kvcache": round(
                self.token_to_kv_pool_allocator.get_kvcache().mem_usage, 2
            ),
            "token_capacity": int(self.max_total_num_tokens),
        }
2254
2255
2256
2257
2258
2259

        if not _is_cpu:
            ret["memory_usage"]["cuda_graph"] = round(
                self.tp_worker.worker.model_runner.cuda_graph_mem_usage, 2
            )

2260
2261
2262
2263
2264
2265
        if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
            ret["avg_spec_accept_length"] = (
                self.cum_spec_accept_length / self.cum_spec_accept_count
            )
        if RECORD_STEP_TIME:
            ret["step_time_dict"] = self.step_time_dict
Liangsheng Yin's avatar
Liangsheng Yin committed
2266
2267
2268
2269

        ret["load"] = self.get_load()

        return GetInternalStateReqOutput(internal_state=ret)
2270
2271
2272
2273
2274

    def set_internal_state(self, recv_req: SetInternalStateReq):
        server_args_dict = recv_req.server_args
        args_allow_update = set(
            [
2275
                "max_micro_batch_size",
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
                "speculative_accept_threshold_single",
                "speculative_accept_threshold_acc",
            ]
        )
        if_success = True
        for k, v in server_args_dict.items():
            if k not in args_allow_update:
                logging.warning(f"Updating {k} is not supported.")
                if_success = False
                break
2286
2287
2288
2289
2290
2291
2292
2293
            elif k == "max_micro_batch_size" and (
                v > self.max_running_requests // self.pp_size or v < 1
            ):
                logging.warning(
                    f"Updating {k} to {v} is rejected because it is out of the valid range [1, {self.max_running_requests // self.pp_size}]."
                )
                if_success = False
                break
2294
2295
2296
2297
2298
2299
2300
2301
2302
        if if_success:
            if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
                avg_spec_accept_length = (
                    self.cum_spec_accept_length / self.cum_spec_accept_count
                )
                logger.info(f"{avg_spec_accept_length=}")
            self.cum_spec_accept_length = self.cum_spec_accept_count = 0
            for k, v in server_args_dict.items():
                global_server_args_dict[k] = v
2303
            logger.info(f"Global server args updated! {global_server_args_dict=}")
2304
2305
2306
2307
2308
        return SetInternalStateReqOutput(
            updated=True,
            server_args=global_server_args_dict,
        )

2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
    def handle_rpc_request(self, recv_req: RpcReqInput):
        # Handle RPC requests
        logger.info(
            f"handle_rpc_request: {recv_req.method}, param: {recv_req.parameters}"
        )

        success = True
        exec = None
        try:
            func = getattr(self, recv_req.method)
            func(recv_req.parameters)
        except Exception as e:
            success = False
            exec = e
            logger.error(f"Failed to call rpc {recv_req.method}: {str(e)}")

        barrier()
        return RpcReqOutput(success, "" if not exec else str(exec))

2328
2329
    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
Lianmin Zheng's avatar
Lianmin Zheng committed
2330
        to_del = []
2331
        for i, req in enumerate(self.waiting_queue):
2332
            if recv_req.abort_all or req.rid.startswith(recv_req.rid):
Lianmin Zheng's avatar
Lianmin Zheng committed
2333
                to_del.append(i)
2334

Lianmin Zheng's avatar
Lianmin Zheng committed
2335
        # Sort in reverse order to avoid index issues when deleting
Lianmin Zheng's avatar
Lianmin Zheng committed
2336
        for i in reversed(to_del):
2337
2338
2339
            # Abort method 1: directly pop from the queue
            # This only works for requests that have not started anything.
            # We still need to send something back to TokenizerManager to clean up the state.
Lianmin Zheng's avatar
Lianmin Zheng committed
2340
            req = self.waiting_queue.pop(i)
2341
2342
2343
            if self.enable_hicache_storage:
                # to release prefetch events associated with the request
                self.tree_cache.release_aborted_request(req.rid)
Lianmin Zheng's avatar
Lianmin Zheng committed
2344
            self.send_to_tokenizer.send_pyobj(AbortReq(req.rid))
2345
2346
2347
2348
            # For disaggregation decode mode, the request in the waiting queue has KV cache allocated.
            if self.disaggregation_mode == DisaggregationMode.DECODE:
                self.tree_cache.cache_finished_req(req)

2349
            logger.debug(f"Abort queued request. {req.rid=}")
2350

2351
2352
2353
2354
2355
        # Delete the requests in the grammar queue
        for req in self.grammar_queue:
            # Abort method 2: call `set_finish_with_abort`
            # The request will still run one prefill forward pass.
            # In this case, we change the input_ids to be only one token to make this prefill cheap.
2356
            if recv_req.abort_all or req.rid.startswith(recv_req.rid):
2357
                logger.debug(f"Abort grammar queue request. {req.rid=}")
2358
2359
                if req.grammar:
                    req.grammar.cancel()
2360
2361
                req.set_finish_with_abort("Aborted by AbortReq.")

2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
        # Delete requests not in the waiting queue when PD disaggregation is enabled
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            # Abort requests that have not yet been bootstrapped
            for i, req in enumerate(self.disagg_prefill_bootstrap_queue.queue):
                logger.debug(f"Abort bootstrap queue request. {req.rid=}")
                if recv_req.abort_all or req.rid.startswith(recv_req.rid):
                    if hasattr(req.disagg_kv_sender, "abort"):
                        req.disagg_kv_sender.abort()

            # Abort in-flight requests
            for i, req in enumerate(self.disagg_prefill_inflight_queue):
                logger.debug(f"Abort inflight queue request. {req.rid=}")
                if recv_req.abort_all or req.rid.startswith(recv_req.rid):
                    if hasattr(req.disagg_kv_sender, "abort"):
                        req.disagg_kv_sender.abort()

        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            # Abort requests that have not yet finished preallocation
            for i, decode_req in enumerate(self.disagg_decode_prealloc_queue.queue):
                logger.debug(f"Abort prealloc queue request. {decode_req.req.rid=}")
                if recv_req.abort_all or decode_req.req.rid.startswith(recv_req.rid):
                    if hasattr(decode_req.kv_receiver, "abort"):
                        decode_req.kv_receiver.abort()

            # Abort requests waiting for kvcache to release tree cache
            for i, decode_req in enumerate(self.disagg_decode_transfer_queue.queue):
                logger.debug(f"Abort transfer queue request. {decode_req.req.rid=}")
                if recv_req.abort_all or decode_req.req.rid.startswith(recv_req.rid):
                    if hasattr(decode_req.kv_receiver, "abort"):
                        decode_req.kv_receiver.abort()

2393
        # Delete requests in the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
2394
2395
2396
2397
2398
2399
        if self.cur_batch is self.running_batch or self.cur_batch is None:
            reqs = self.running_batch.reqs
        else:
            reqs = self.running_batch.reqs + self.cur_batch.reqs

        for req in reqs:
2400
2401
2402
            if not req.finished() and (
                recv_req.abort_all or req.rid.startswith(recv_req.rid)
            ):
2403
2404
2405
                # Abort method 3: set `to_abort=True`
                # The request will still run one decode forward pass.
                # Then we reuse all existing code to clean up the KV cache allocation.
Lianmin Zheng's avatar
Lianmin Zheng committed
2406
2407
                logger.debug(f"Abort running request. {req.rid=}")
                req.to_abort = True
2408

2409
2410
2411
    def _pause_engine(self) -> Tuple[List[Req], int]:
        raise NotImplementedError()

2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
    def load_lora_adapter(
        self, recv_req: LoadLoRAAdapterReqInput
    ) -> LoadLoRAAdapterReqOutput:
        """In-place loading a new lora adapter from disk or huggingface."""

        result = self.tp_worker.load_lora_adapter(recv_req)
        return result

    def unload_lora_adapter(
        self, recv_req: UnloadLoRAAdapterReqInput
    ) -> UnloadLoRAAdapterReqOutput:
        """Unload the lora adapter."""

        result = self.tp_worker.unload_lora_adapter(recv_req)
        return result

2428
2429
2430
2431
    def register_multi_tokenizer(self, recv_req: MultiTokenizerRegisterReq):
        self.send_to_detokenizer.send_pyobj(recv_req)
        return recv_req

2432
2433
2434
2435
2436
2437
2438
    def slow_down(self, recv_req: SlowDownReqInput):
        t = recv_req.forward_sleep_time
        if t is not None and t <= 0:
            t = None
        self.forward_sleep_time = t
        return SlowDownReqOutput()

2439
2440
    def expert_distribution_handle(self, recv_req: ExpertDistributionReq):
        if recv_req == ExpertDistributionReq.START_RECORD:
2441
            get_global_expert_distribution_recorder().start_record()
2442
        elif recv_req == ExpertDistributionReq.STOP_RECORD:
2443
            get_global_expert_distribution_recorder().stop_record()
2444
        elif recv_req == ExpertDistributionReq.DUMP_RECORD:
2445
            get_global_expert_distribution_recorder().dump_record()
2446
        else:
2447
            raise ValueError(f"Unrecognized ExpertDistributionReq value: {recv_req=}")
2448
        return ExpertDistributionReqOutput()
2449

2450
    def open_session(self, recv_req: OpenSessionReqInput):
2451
2452
2453
2454
        # handle error
        session_id = recv_req.session_id
        if session_id in self.sessions:
            logger.warning(f"session id {session_id} already exist, cannot open.")
2455
            return OpenSessionReqOutput(session_id, False)
2456
        elif session_id is None:
2457
            logger.warning("session id is None, cannot open.")
2458
            return OpenSessionReqOutput(session_id, False)
2459
2460
2461
2462
        else:
            self.sessions[session_id] = Session(
                recv_req.capacity_of_str_len, session_id
            )
2463
            return OpenSessionReqOutput(session_id, True)
2464
2465
2466
2467
2468
2469
2470
2471
2472

    def close_session(self, recv_req: CloseSessionReqInput):
        # handle error
        session_id = recv_req.session_id
        if session_id not in self.sessions:
            logger.warning(f"session id {session_id} does not exist, cannot delete.")
        else:
            del self.sessions[session_id]

2473
2474
    def get_print_prefix(self):
        prefix = ""
2475
2476
        if self.attn_dp_rank is not None:
            prefix += f" DP{self.attn_dp_rank}"
2477
2478
2479
2480
2481
2482
        if self.server_args.tp_size > 1:
            prefix += f" TP{self.tp_rank}"
        if self.pp_size > 1:
            prefix += f" PP{self.pp_rank}"
        return prefix

2483
2484
    def current_scheduler_metrics_enabled(self):
        return self.attn_tp_rank == 0 or self.enable_metrics_for_all_schedulers
2485

2486
2487
2488
    def maybe_sleep_on_idle(self):
        if self.idle_sleeper is not None:
            self.idle_sleeper.maybe_sleep()
2489

2490
2491
2492
2493
2494
2495
    def handle_freeze_gc(self, recv_req: FreezeGCReq):
        """Handle freeze_gc request: freeze scheduler's GC and forward to detokenizer."""
        freeze_gc("Scheduler")
        self.send_to_detokenizer.send_pyobj(recv_req)
        return None

2496

2497
2498
2499
2500
2501
2502
2503
class IdleSleeper:
    """
    In setups which have long inactivity periods it is desirable to reduce
    system power consumption when sglang does nothing. This would lead not only
    to power savings, but also to more CPU thermal headroom when a request
    eventually comes. This is important in cases when multiple GPUs are connected
    as each GPU would otherwise pin one thread at 100% CPU usage.
2504

2505
2506
2507
    The simplest solution is to use zmq.Poller on all sockets that may receive
    data that needs handling immediately.
    """
2508

2509
2510
    def __init__(self, sockets):
        self.poller = zmq.Poller()
2511
        self.last_empty_time = time.time()
2512
2513
2514
2515
2516
        for s in sockets:
            self.poller.register(s, zmq.POLLIN)

    def maybe_sleep(self):
        self.poller.poll(1000)
2517
2518
2519
2520
2521
2522
2523
        if (
            global_config.torch_empty_cache_interval > 0
            and time.time() - self.last_empty_time
            > global_config.torch_empty_cache_interval
        ):
            self.last_empty_time = time.time()
            torch.cuda.empty_cache()
2524

2525

2526
2527
def is_health_check_generate_req(recv_req):
    return getattr(recv_req, "rid", "").startswith("HEALTH_CHECK")
2528

2529
2530

def is_work_request(recv_req):
2531
2532
2533
2534
2535
2536
2537
2538
2539
    return isinstance(
        recv_req,
        (
            TokenizedGenerateReqInput,
            TokenizedEmbeddingReqInput,
            BatchTokenizedGenerateReqInput,
            BatchTokenizedEmbeddingReqInput,
        ),
    )
2540
2541


2542
2543
2544
2545
2546
def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
Cheng Wan's avatar
Cheng Wan committed
2547
    moe_ep_rank: int,
2548
    pp_rank: int,
2549
    dp_rank: Optional[int],
2550
    pipe_writer,
2551
    balance_meta: Optional[DPBalanceMeta] = None,
2552
):
2553
2554
2555
    if (numa_node := server_args.numa_node) is not None:
        numa_bind_to_node(numa_node[gpu_id])

2556
    # Generate the prefix
2557
2558
2559
2560
2561
    prefix = ""
    if dp_rank is not None:
        prefix += f" DP{dp_rank}"
    if server_args.tp_size > 1:
        prefix += f" TP{tp_rank}"
Cheng Wan's avatar
Cheng Wan committed
2562
2563
    if server_args.ep_size > 1:
        prefix += f" EP{moe_ep_rank}"
2564
2565
    if server_args.pp_size > 1:
        prefix += f" PP{pp_rank}"
2566

2567
    # Config the process
2568
    setproctitle.setproctitle(f"sglang::scheduler{prefix.replace(' ', '_')}")
2569
    faulthandler.enable()
2570
    kill_itself_when_parent_died()
2571
    parent_process = psutil.Process().parent()
2572

2573
2574
2575
    # [For Router] if env var "SGLANG_DP_RANK" exist, set dp_rank to the value of the env var
    if dp_rank is None and "SGLANG_DP_RANK" in os.environ:
        dp_rank = int(os.environ["SGLANG_DP_RANK"])
2576

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
2577
    # Configure the logger
2578
    configure_logger(server_args, prefix=prefix)
2579
    suppress_other_loggers()
2580

2581
    # Set cpu affinity to this gpu process
2582
2583
2584
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
        set_gpu_proc_affinity(server_args.tp_size, server_args.nnodes, gpu_id)

2585
    # Create a scheduler and run the event loop
2586
    try:
Cheng Wan's avatar
Cheng Wan committed
2587
        scheduler = Scheduler(
2588
2589
2590
2591
2592
2593
2594
2595
            server_args,
            port_args,
            gpu_id,
            tp_rank,
            moe_ep_rank,
            pp_rank,
            dp_rank,
            dp_balance_meta=balance_meta,
Cheng Wan's avatar
Cheng Wan committed
2596
        )
2597
        pipe_writer.send(
Mick's avatar
Mick committed
2598
2599
2600
2601
2602
            {
                "status": "ready",
                "max_total_num_tokens": scheduler.max_total_num_tokens,
                "max_req_input_len": scheduler.max_req_input_len,
            }
2603
        )
Byron Hsu's avatar
Byron Hsu committed
2604

2605
        disaggregation_mode: DisaggregationMode = scheduler.disaggregation_mode
Byron Hsu's avatar
Byron Hsu committed
2606
        if disaggregation_mode == DisaggregationMode.NULL:
2607
2608
2609
            if server_args.pp_size > 1:
                scheduler.event_loop_pp()
            elif scheduler.enable_overlap:
Byron Hsu's avatar
Byron Hsu committed
2610
2611
2612
2613
                scheduler.event_loop_overlap()
            else:
                scheduler.event_loop_normal()
        elif disaggregation_mode == DisaggregationMode.PREFILL:
2614
2615
2616
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_prefill()
            else:
2617
2618
2619
2620
                if server_args.pp_size > 1:
                    scheduler.event_loop_pp_disagg_prefill()
                else:
                    scheduler.event_loop_normal_disagg_prefill()
2621

Byron Hsu's avatar
Byron Hsu committed
2622
        elif disaggregation_mode == DisaggregationMode.DECODE:
2623
2624
2625
2626
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_decode()
            else:
                scheduler.event_loop_normal_disagg_decode()
Byron Hsu's avatar
Byron Hsu committed
2627

2628
    except Exception:
2629
2630
2631
        traceback = get_exception_traceback()
        logger.error(f"Scheduler hit an exception: {traceback}")
        parent_process.send_signal(signal.SIGQUIT)