scheduler.py 115 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""A scheduler that manages a tensor parallel GPU worker."""

16
import faulthandler
17
import logging
18
import os
19
import signal
20
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
21
import threading
22
import time
23
from collections import deque
Lianmin Zheng's avatar
Lianmin Zheng committed
24
from concurrent import futures
25
from dataclasses import dataclass
26
from http import HTTPStatus
27
from types import SimpleNamespace
28
from typing import Dict, List, Optional, Tuple, Union
29

30
import psutil
31
import setproctitle
32
import torch
33
import zmq
34
from torch.distributed import barrier
35

36
from sglang.global_config import global_config
Lianmin Zheng's avatar
Lianmin Zheng committed
37
from sglang.srt.configs.model_config import ModelConfig
38
39
40
41
from sglang.srt.constrained.base_grammar_backend import (
    INVALID_GRAMMAR_OBJ,
    create_grammar_backend,
)
Byron Hsu's avatar
Byron Hsu committed
42
43
44
45
46
47
48
49
50
51
52
from sglang.srt.disaggregation.decode import (
    DecodePreallocQueue,
    DecodeTransferQueue,
    SchedulerDisaggregationDecodeMixin,
)
from sglang.srt.disaggregation.prefill import (
    PrefillBootstrapQueue,
    SchedulerDisaggregationPrefillMixin,
)
from sglang.srt.disaggregation.utils import (
    DisaggregationMode,
53
    MetadataBuffers,
Byron Hsu's avatar
Byron Hsu committed
54
    ReqToMetadataIdxAllocator,
55
    TransferBackend,
56
    prepare_abort,
Byron Hsu's avatar
Byron Hsu committed
57
)
58
from sglang.srt.distributed import get_pp_group, get_world_group
fzyzcjy's avatar
fzyzcjy committed
59
from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
xm:D's avatar
xm:D committed
60
61
62
63
64
from sglang.srt.hf_transformers_utils import (
    get_processor,
    get_tokenizer,
    get_tokenizer_from_processor,
)
65
from sglang.srt.layers.dp_attention import compute_dp_attention_world_info
66
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
67
from sglang.srt.layers.moe import initialize_moe_config
68
69
from sglang.srt.managers.io_struct import (
    AbortReq,
70
71
    BatchTokenizedEmbeddingReqInput,
    BatchTokenizedGenerateReqInput,
72
73
    ClearHiCacheReqInput,
    ClearHiCacheReqOutput,
74
    CloseSessionReqInput,
75
    DestroyWeightsUpdateGroupReqInput,
76
    ExpertDistributionReq,
77
    ExpertDistributionReqOutput,
78
79
    FlushCacheReqInput,
    FlushCacheReqOutput,
80
    FreezeGCReq,
81
82
    GetInternalStateReq,
    GetInternalStateReqOutput,
83
84
    GetLoadReqInput,
    GetLoadReqOutput,
85
    GetWeightsByNameReqInput,
86
    HealthCheckOutput,
87
88
    InitWeightsSendGroupForRemoteInstanceReqInput,
    InitWeightsSendGroupForRemoteInstanceReqOutput,
89
    InitWeightsUpdateGroupReqInput,
90
91
    LoadLoRAAdapterReqInput,
    LoadLoRAAdapterReqOutput,
92
    MultiTokenizerRegisterReq,
93
    MultiTokenizerWrapper,
94
95
    OpenSessionReqInput,
    OpenSessionReqOutput,
96
    ProfileReq,
97
98
    ReleaseMemoryOccupationReqInput,
    ResumeMemoryOccupationReqInput,
99
100
    RpcReqInput,
    RpcReqOutput,
101
102
    SendWeightsToRemoteInstanceReqInput,
    SendWeightsToRemoteInstanceReqOutput,
103
104
    SetInternalStateReq,
    SetInternalStateReqOutput,
105
106
    SlowDownReqInput,
    SlowDownReqOutput,
107
108
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
109
110
    UnloadLoRAAdapterReqInput,
    UnloadLoRAAdapterReqOutput,
Chayenne's avatar
Chayenne committed
111
    UpdateWeightFromDiskReqInput,
112
    UpdateWeightsFromDistributedReqInput,
113
    UpdateWeightsFromTensorReqInput,
114
)
115
from sglang.srt.managers.mm_utils import init_embedding_cache
116
117
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
Mick's avatar
Mick committed
118
    MultimodalInputs,
119
    Req,
120
    RequestStage,
121
    ScheduleBatch,
122
    global_server_args_dict,
123
)
124
125
126
127
128
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
fzyzcjy's avatar
fzyzcjy committed
129
from sglang.srt.managers.scheduler_input_blocker import SchedulerInputBlocker
130
131
132
133
from sglang.srt.managers.scheduler_metrics_mixin import (
    RECORD_STEP_TIME,
    SchedulerMetricsMixin,
)
134
135
136
from sglang.srt.managers.scheduler_output_processor_mixin import (
    SchedulerOutputProcessorMixin,
)
137
from sglang.srt.managers.scheduler_profiler_mixin import SchedulerProfilerMixin
138
from sglang.srt.managers.scheduler_recv_skipper import SchedulerRecvSkipper
139
140
141
from sglang.srt.managers.scheduler_update_weights_mixin import (
    SchedulerUpdateWeightsMixin,
)
142
from sglang.srt.managers.session_controller import Session
143
from sglang.srt.managers.tp_worker import TpModelWorker
144
from sglang.srt.managers.tp_worker_overlap_thread import TpModelWorkerClient
145
from sglang.srt.managers.utils import DPBalanceMeta, validate_input_length
tarinkk's avatar
tarinkk committed
146
from sglang.srt.mem_cache.chunk_cache import ChunkCache, SWAChunkCache
147
from sglang.srt.mem_cache.hiradix_cache import HiRadixCache
148
from sglang.srt.mem_cache.lora_radix_cache import LoRARadixCache
149
from sglang.srt.mem_cache.radix_cache import RadixCache
Hanming Lu's avatar
Hanming Lu committed
150
from sglang.srt.mem_cache.swa_radix_cache import SWARadixCache
Lianmin Zheng's avatar
Lianmin Zheng committed
151
from sglang.srt.model_executor.forward_batch_info import ForwardMode, PPProxyTensors
152
from sglang.srt.parser.reasoning_parser import ReasoningParser
153
from sglang.srt.server_args import PortArgs, ServerArgs
154
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
155
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
156
157
158
159
160
161
162
163
164
from sglang.srt.tracing.trace import (
    process_tracing_init,
    trace_event,
    trace_set_proc_propagate_context,
    trace_set_thread_info,
    trace_slice,
    trace_slice_end,
    trace_slice_start,
)
165
from sglang.srt.two_batch_overlap import TboDPAttentionPreparer
166
from sglang.srt.utils import (
167
    DynamicGradMode,
168
    broadcast_pyobj,
fzyzcjy's avatar
fzyzcjy committed
169
    configure_gc_logger,
170
    configure_logger,
Lianmin Zheng's avatar
Lianmin Zheng committed
171
    disable_request_logging,
172
    freeze_gc,
173
    get_available_gpu_memory,
174
    get_bool_env_var,
175
    get_zmq_socket,
176
    is_cpu,
Lianmin Zheng's avatar
Lianmin Zheng committed
177
    kill_itself_when_parent_died,
178
    numa_bind_to_node,
179
    point_to_point_pyobj,
180
    pyspy_dump_schedulers,
181
182
    require_mlp_sync,
    require_mlp_tp_gather,
183
    set_gpu_proc_affinity,
184
185
186
    set_random_seed,
    suppress_other_loggers,
)
187
from sglang.utils import TypeBasedDispatcher, get_exception_traceback
188
189
190

logger = logging.getLogger(__name__)

191
# Test retract decode for debugging purposes
192
TEST_RETRACT = get_bool_env_var("SGLANG_TEST_RETRACT")
193
GRAMMAR_TIMEOUT = float(os.environ.get("SGLANG_GRAMMAR_TIMEOUT", 300))
194

195
196
_is_cpu = is_cpu()

197

198
199
@dataclass
class GenerationBatchResult:
200
201
202
    logits_output: Optional[LogitsProcessorOutput]
    pp_hidden_states_proxy_tensors: Optional[torch.Tensor]
    next_token_ids: Optional[List[int]]
203
204
    extend_input_len_per_req: List[int]
    extend_logprob_start_len_per_req: List[int]
205
    bid: int
206
    can_run_cuda_graph: bool
207
208
209
210
211
212
213
214


@dataclass
class EmbeddingBatchResult:
    embeddings: torch.Tensor
    bid: int


Byron Hsu's avatar
Byron Hsu committed
215
216
class Scheduler(
    SchedulerOutputProcessorMixin,
217
218
219
    SchedulerUpdateWeightsMixin,
    SchedulerProfilerMixin,
    SchedulerMetricsMixin,
Byron Hsu's avatar
Byron Hsu committed
220
221
222
    SchedulerDisaggregationDecodeMixin,
    SchedulerDisaggregationPrefillMixin,
):
223
224
225
226
227
228
229
230
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
Cheng Wan's avatar
Cheng Wan committed
231
        moe_ep_rank: int,
232
        pp_rank: int,
233
        dp_rank: Optional[int],
234
        dp_balance_meta: Optional[DPBalanceMeta] = None,
235
236
    ):
        # Parse args
237
        self.server_args = server_args
238
        self.tp_rank = tp_rank
Cheng Wan's avatar
Cheng Wan committed
239
        self.moe_ep_rank = moe_ep_rank
240
        self.pp_rank = pp_rank
241
        self.dp_rank = dp_rank
242
        self.tp_size = server_args.tp_size
Cheng Wan's avatar
Cheng Wan committed
243
        self.moe_ep_size = server_args.ep_size
244
245
        self.pp_size = server_args.pp_size
        self.dp_size = server_args.dp_size
246
        self.schedule_policy = server_args.schedule_policy
247
248
249
250
251
252
253
        self.enable_priority_scheduling = server_args.enable_priority_scheduling
        self.schedule_low_priority_values_first = (
            server_args.schedule_low_priority_values_first
        )
        self.priority_scheduling_preemption_threshold = (
            server_args.priority_scheduling_preemption_threshold
        )
254
        self.enable_lora = server_args.enable_lora
255
        self.max_loras_per_batch = server_args.max_loras_per_batch
256
        self.enable_overlap = not server_args.disable_overlap_schedule
257
        self.skip_tokenizer_init = server_args.skip_tokenizer_init
258
        self.enable_metrics = server_args.enable_metrics
259
260
261
        self.enable_metrics_for_all_schedulers = (
            server_args.enable_metrics_for_all_schedulers
        )
262
        self.enable_kv_cache_events = server_args.kv_events_config is not None
263
        self.stream_interval = server_args.stream_interval
264
265
266
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
267
268
        self.gpu_id = gpu_id
        self.enable_hierarchical_cache = server_args.enable_hierarchical_cache
269
        self.enable_hicache_storage = server_args.hicache_storage_backend is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
270
        self.page_size = server_args.page_size
271

272
        self.attn_tp_rank, self.attn_tp_size, self.attn_dp_rank = (
273
274
275
276
277
278
279
280
            compute_dp_attention_world_info(
                server_args.enable_dp_attention,
                self.tp_rank,
                self.tp_size,
                self.dp_size,
            )
        )

281
282
283
        # Init model config
        self.model_config = ModelConfig.from_server_args(server_args)

284
285
        # Init inter-process communication
        context = zmq.Context(2)
286
        self.idle_sleeper = None
287
        if self.pp_rank == 0 and self.attn_tp_rank == 0:
288
            self.recv_from_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
289
                context, zmq.PULL, port_args.scheduler_input_ipc_name, False
290
            )
291
292
293
294
            self.recv_from_rpc = get_zmq_socket(
                context, zmq.DEALER, port_args.rpc_ipc_name, False
            )

295
            self.send_to_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
296
                context, zmq.PUSH, port_args.tokenizer_ipc_name, False
297
            )
298
            if server_args.skip_tokenizer_init:
299
                # Directly send to the TokenizerManager
300
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
301
                    context, zmq.PUSH, port_args.tokenizer_ipc_name, False
302
303
                )
            else:
304
                # Send to the DetokenizerManager
305
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
306
                    context, zmq.PUSH, port_args.detokenizer_ipc_name, False
307
                )
308

309
310
311
312
313
314
315
            if self.server_args.sleep_on_idle:
                self.idle_sleeper = IdleSleeper(
                    [
                        self.recv_from_tokenizer,
                        self.recv_from_rpc,
                    ]
                )
316
        else:
317
            self.recv_from_tokenizer = None
318
            self.recv_from_rpc = None
319
320
            self.send_to_tokenizer = SimpleNamespace(send_pyobj=lambda x: None)
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
321

322
323
324
325
326
        if self.current_scheduler_metrics_enabled():
            self.send_metrics_from_scheduler = get_zmq_socket(
                context, zmq.PUSH, port_args.metrics_ipc_name, False
            )

327
        # Init tokenizer
328
        self.init_tokenizer()
329

330
331
332
        # Init moe config
        self.init_moe_config()

333
334
335
336
337
338
339
340
341
        # Set reasoning_parser and think_end_id if --reasoning_parser is enabled
        if self.server_args.reasoning_parser and self.tokenizer:
            reasoning_parser = ReasoningParser(
                model_type=self.server_args.reasoning_parser, stream_reasoning=False
            )
            self.tokenizer.think_end_id = self.tokenizer.encode(
                reasoning_parser.detector.think_end_token, add_special_tokens=False
            )[0]

342
343
344
345
        # Check whether overlap can be enabled
        if not self.is_generation:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for embedding models.")
346

347
        # Launch a tensor parallel worker
348
        if self.enable_overlap:
349
            TpWorkerClass = TpModelWorkerClient
350
351
        else:
            TpWorkerClass = TpModelWorker
352

353
        self.tp_worker = TpWorkerClass(
354
            server_args=server_args,
355
356
            gpu_id=gpu_id,
            tp_rank=tp_rank,
Cheng Wan's avatar
Cheng Wan committed
357
            moe_ep_rank=moe_ep_rank,
358
            pp_rank=pp_rank,
359
            dp_rank=dp_rank,
360
            nccl_port=port_args.nccl_port,
361
        )
362

363
        # Launch a draft worker for speculative decoding
364
365
366
367
368
369
        if self.spec_algorithm.is_eagle():
            from sglang.srt.speculative.eagle_worker import EAGLEWorker

            self.draft_worker = EAGLEWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
Cheng Wan's avatar
Cheng Wan committed
370
                moe_ep_rank=moe_ep_rank,
371
372
373
374
375
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
376
377
378
379
380
381
382
383
384
385
386
387
        elif self.spec_algorithm.is_standalone():
            from sglang.srt.speculative.standalone_worker import StandaloneWorker

            self.draft_worker = StandaloneWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                moe_ep_rank=moe_ep_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
388
389
390
391
392
393
394
395
396
397
398
399
        elif self.spec_algorithm.is_lookahead():
            from sglang.srt.speculative.lookahead_worker import LOOKAHEADWorker

            self.draft_worker = LOOKAHEADWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                moe_ep_rank=moe_ep_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
400
401
402
        else:
            self.draft_worker = None

403
        # Get token and memory info from the model worker
404
405
406
407
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
408
            self.max_queued_requests,
409
            self.max_req_len,
410
411
            self.max_req_input_len,
            self.random_seed,
412
            self.device,
413
414
415
416
417
            worker_global_server_args_dict,
            _,
            _,
            _,
        ) = self.tp_worker.get_worker_info()
418
419
420
421
422
423
424
425
        if global_server_args_dict["max_micro_batch_size"] is None:
            global_server_args_dict["max_micro_batch_size"] = max(
                self.max_running_requests // server_args.pp_size, 1
            )

        self.tp_group = self.tp_worker.get_tp_group()
        self.tp_cpu_group = self.tp_group.cpu_group
        self.attn_tp_group = self.tp_worker.get_attention_tp_group()
426
        self.attn_tp_cpu_group = self.tp_worker.get_attention_tp_cpu_group()
427
428
429
        self.pp_group = get_pp_group()
        self.world_group = get_world_group()

430
        self.pad_input_ids_func = self.tp_worker.get_pad_input_ids_func()
431
        global_server_args_dict.update(worker_global_server_args_dict)
432
        set_random_seed(self.random_seed)
433

434
        # Hybrid memory pool
Hanming Lu's avatar
Hanming Lu committed
435
436
437
438
439
440
441
        self.is_hybrid = self.tp_worker.is_hybrid
        if self.is_hybrid:
            self.sliding_window_size = self.tp_worker.sliding_window_size
            self.full_tokens_per_layer, self.swa_tokens_per_layer = (
                self.tp_worker.get_tokens_per_layer_info()
            )

442
        # Print debug info
443
        if tp_rank == 0:
444
445
446
            avail_mem = get_available_gpu_memory(
                self.device, self.gpu_id, empty_cache=False
            )
447
448
449
450
451
            logger.info(
                f"max_total_num_tokens={self.max_total_num_tokens}, "
                f"chunked_prefill_size={server_args.chunked_prefill_size}, "
                f"max_prefill_tokens={self.max_prefill_tokens}, "
                f"max_running_requests={self.max_running_requests}, "
452
                f"context_len={self.model_config.context_len}, "
453
                f"{'available_cpu_mem' if self.device == 'cpu' else 'available_gpu_mem'}={avail_mem:.2f} GB"
454
            )
455

Lianmin Zheng's avatar
Lianmin Zheng committed
456
        # Init memory pool and cache
457
        self.init_memory_pool_and_cache()
458
459
460

        # Init running status
        self.waiting_queue: List[Req] = []
461
        # The running decoding batch for continuous batching
Lianmin Zheng's avatar
Lianmin Zheng committed
462
        self.running_batch: ScheduleBatch = ScheduleBatch(reqs=[], batch_is_full=False)
463
        # The current forward batch
Lianmin Zheng's avatar
Lianmin Zheng committed
464
        self.cur_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
465
        # The last forward batch
466
        self.last_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
467
468
        self.forward_ct = 0
        self.forward_ct_decode = 0
469
        self.num_generated_tokens = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
470
        self.last_prefill_tokens = 0
471
472
        self.last_decode_stats_tic = time.perf_counter()
        self.last_prefill_stats_tic = time.perf_counter()
473
        self.return_health_check_ct = 0
474
475
476
477
478
        self.num_retracted_reqs: int = 0
        self.num_paused_reqs: int = 0
        self.kv_transfer_speed_gb_s: float = 0.0
        self.kv_transfer_latency_ms: float = 0.0
        self.sessions: Dict[str, Session] = {}
479
        self.current_stream = torch.get_device_module(self.device).current_stream()
480
481
        if self.device == "cpu":
            self.current_stream.synchronize = lambda: None  # No-op for CPU
482
        self.forward_sleep_time = None
483

484
485
        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
486
487
        if self.chunked_prefill_size <= 0:  # -1 means disable
            self.chunked_prefill_size = None
488
        self.chunked_req = None
489
490
491
492
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
493
        # Init the grammar backend for constrained generation
494
        self.grammar_queue: List[Req] = []
495
        if not server_args.skip_tokenizer_init:
496
            self.grammar_backend = create_grammar_backend(
497
498
499
500
                server_args,
                self.tokenizer,
                self.model_config.vocab_size,
                self.model_config.hf_eos_token_id,
501
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
502
503
        else:
            self.grammar_backend = None
504

505
        # Init schedule policy and new token estimation
506
        self.policy = SchedulePolicy(
Lianmin Zheng's avatar
Lianmin Zheng committed
507
508
509
            self.schedule_policy,
            self.tree_cache,
            self.enable_hierarchical_cache,
510
511
            self.enable_priority_scheduling,
            self.schedule_low_priority_values_first,
512
        )
513
514
515
        # Enable preemption for priority scheduling.
        self.try_preemption = self.enable_priority_scheduling

516
517
518
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
519
520
        self.init_new_token_ratio = min(
            global_config.default_init_new_token_ratio
521
522
            * server_args.schedule_conservativeness,
            1.0,
523
        )
524
525
526
527
528
529
530
531
532
533
        self.min_new_token_ratio = min(
            self.init_new_token_ratio
            * global_config.default_min_new_token_ratio_factor,
            1.0,
        )
        self.new_token_ratio_decay = (
            self.init_new_token_ratio - self.min_new_token_ratio
        ) / global_config.default_new_token_ratio_decay_steps
        self.new_token_ratio = self.init_new_token_ratio

Lianmin Zheng's avatar
Lianmin Zheng committed
534
535
536
537
        # Init watchdog thread
        self.watchdog_timeout = server_args.watchdog_timeout
        t = threading.Thread(target=self.watchdog_thread, daemon=True)
        t.start()
538
        self.parent_process = psutil.Process().parent()
539
540

        # Init memory saver, profiler and metric stats
541
542
543
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=server_args.enable_memory_saver
        )
544
        self.offload_tags = set()
limingshu's avatar
limingshu committed
545
        self.init_profiler()
546

547
        self.recv_skipper = SchedulerRecvSkipper.maybe_create(server_args)
fzyzcjy's avatar
fzyzcjy committed
548
549
550
551
552
553
        self.input_blocker = (
            SchedulerInputBlocker(noop=self.attn_tp_rank != 0)
            if get_bool_env_var("SGLANG_ENABLE_COLOCATED_BATCH_GEN")
            else None
        )

554
        # Init metrics stats
555
        self.init_metrics(tp_rank, pp_rank, dp_rank)
556
        self.init_kv_events(server_args.kv_events_config)
557
        self.init_dp_balance(dp_balance_meta)
558

559
560
561
562
563
564
565
566
567
        # Init disaggregation
        self.disaggregation_mode = DisaggregationMode(
            self.server_args.disaggregation_mode
        )
        self.init_disaggregation()

        if get_bool_env_var("SGLANG_GC_LOG"):
            configure_gc_logger()

568
569
        # Init request dispatcher
        self._request_dispatcher = TypeBasedDispatcher(
570
571
572
            [
                (TokenizedGenerateReqInput, self.handle_generate_request),
                (TokenizedEmbeddingReqInput, self.handle_embedding_request),
573
574
                (BatchTokenizedGenerateReqInput, self.handle_batch_generate_request),
                (BatchTokenizedEmbeddingReqInput, self.handle_batch_embedding_request),
575
                (FlushCacheReqInput, self.flush_cache_wrapped),
576
                (ClearHiCacheReqInput, self.clear_hicache_storage_wrapped),
577
                (AbortReq, self.abort_request),
578
579
                (OpenSessionReqInput, self.open_session),
                (CloseSessionReqInput, self.close_session),
580
581
                (UpdateWeightFromDiskReqInput, self.update_weights_from_disk),
                (InitWeightsUpdateGroupReqInput, self.init_weights_update_group),
582
                (DestroyWeightsUpdateGroupReqInput, self.destroy_weights_update_group),
583
584
585
586
587
588
589
590
                (
                    InitWeightsSendGroupForRemoteInstanceReqInput,
                    self.init_weights_send_group_for_remote_instance,
                ),
                (
                    SendWeightsToRemoteInstanceReqInput,
                    self.send_weights_to_remote_instance,
                ),
591
592
593
594
595
596
                (
                    UpdateWeightsFromDistributedReqInput,
                    self.update_weights_from_distributed,
                ),
                (UpdateWeightsFromTensorReqInput, self.update_weights_from_tensor),
                (GetWeightsByNameReqInput, self.get_weights_by_name),
597
598
                (ReleaseMemoryOccupationReqInput, self.release_memory_occupation),
                (ResumeMemoryOccupationReqInput, self.resume_memory_occupation),
599
                (SlowDownReqInput, self.slow_down),
600
                (ProfileReq, self.profile),
601
                (FreezeGCReq, self.handle_freeze_gc),
602
                (GetInternalStateReq, self.get_internal_state),
603
                (SetInternalStateReq, self.set_internal_state),
604
                (RpcReqInput, self.handle_rpc_request),
605
                (ExpertDistributionReq, self.expert_distribution_handle),
606
607
                (LoadLoRAAdapterReqInput, self.load_lora_adapter),
                (UnloadLoRAAdapterReqInput, self.unload_lora_adapter),
608
                (MultiTokenizerRegisterReq, self.register_multi_tokenizer),
609
                (GetLoadReqInput, self.get_load),
610
611
612
            ]
        )

613
614
615
    def init_tokenizer(self):
        server_args = self.server_args
        self.is_generation = self.model_config.is_generation
616

617
618
619
620
621
622
623
624
625
        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if self.model_config.is_multimodal:
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
626
                    use_fast=not server_args.disable_fast_image_processor,
627
                )
xm:D's avatar
xm:D committed
628
                self.tokenizer = get_tokenizer_from_processor(self.processor)
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
                )

    def init_memory_pool_and_cache(self):
        server_args = self.server_args

        self.req_to_token_pool, self.token_to_kv_pool_allocator = (
            self.tp_worker.get_memory_pool()
        )

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
Hanming Lu's avatar
Hanming Lu committed
648
            if self.is_hybrid:
tarinkk's avatar
tarinkk committed
649
650
651
652
                ChunkCacheClass = SWAChunkCache
            else:
                ChunkCacheClass = ChunkCache
            self.tree_cache = ChunkCacheClass(
653
654
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
655
                page_size=self.page_size,
656
657
            )
        else:
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
            if os.environ.get("SGLANG_EXPERIMENTAL_CPP_RADIX_TREE") == "1":
                # lazy import to avoid JIT overhead
                from sglang.srt.mem_cache.radix_cache_cpp import RadixCacheCpp

                self.tree_cache = RadixCacheCpp(
                    disable=False,
                    use_hicache=self.enable_hierarchical_cache,
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool=self.token_to_kv_pool_allocator,
                    tp_cache_group=self.tp_cpu_group,
                    page_size=self.page_size,
                    hicache_ratio=server_args.hicache_ratio,
                    hicache_size=server_args.hicache_size,
                    hicache_write_policy=server_args.hicache_write_policy,
                    enable_kv_cache_events=self.enable_kv_cache_events,
                )
            elif self.enable_hierarchical_cache:
675
676
677
                self.tree_cache = HiRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
678
679
680
681
682
                    tp_cache_group=(
                        self.attn_tp_cpu_group
                        if self.server_args.enable_dp_attention
                        else self.tp_cpu_group
                    ),
683
                    page_size=self.page_size,
684
                    eviction_policy=server_args.radix_eviction_policy,
685
                    hicache_ratio=server_args.hicache_ratio,
Zhiqiang Xie's avatar
Zhiqiang Xie committed
686
687
                    hicache_size=server_args.hicache_size,
                    hicache_write_policy=server_args.hicache_write_policy,
688
                    hicache_io_backend=server_args.hicache_io_backend,
689
                    hicache_mem_layout=server_args.hicache_mem_layout,
690
                    enable_metrics=self.enable_metrics,
691
                    hicache_storage_backend=server_args.hicache_storage_backend,
pansicheng's avatar
pansicheng committed
692
                    hicache_storage_prefetch_policy=server_args.hicache_storage_prefetch_policy,
693
694
                    model_name=server_args.served_model_name,
                    storage_backend_extra_config=server_args.hicache_storage_backend_extra_config,
695
                )
696
697
698
                self.tp_worker.register_hicache_layer_transfer_counter(
                    self.tree_cache.cache_controller.layer_done_counter
                )
Hanming Lu's avatar
Hanming Lu committed
699
700
701
702
703
704
705
706
707
708
709
            elif self.is_hybrid:
                assert (
                    self.server_args.disaggregation_mode == "null"
                ), "Hybrid mode does not support disaggregation yet"
                self.tree_cache = SWARadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    sliding_window_size=self.sliding_window_size,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
                )
710
711
712
713
714
715
716
717
718
719
720
721
722
            elif self.enable_lora:
                assert (
                    not self.enable_hierarchical_cache
                ), "LoRA radix cache doesn't support hierarchical cache"
                assert (
                    self.schedule_policy == "fcfs"
                ), "LoRA radix cache only supports FCFS policy"
                self.tree_cache = LoRARadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
                )
723
724
725
726
727
728
729
730
731
732
733
734
735
736
            elif server_args.enable_lmcache:
                from sglang.srt.mem_cache.storage.lmcache.lmc_radix_cache import (
                    LMCRadixCache,
                )

                self.tree_cache = LMCRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
                    model_config=self.model_config,
                    tp_size=self.tp_size,
                    rank=self.tp_rank,
                    tp_group=self.tp_group,
737
                    eviction_policy=server_args.radix_eviction_policy,
738
                )
739
740
741
742
            else:
                self.tree_cache = RadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Lianmin Zheng's avatar
Lianmin Zheng committed
743
                    page_size=self.page_size,
744
                    disable=server_args.disable_radix_cache,
745
                    enable_kv_cache_events=self.enable_kv_cache_events,
746
                    eviction_policy=server_args.radix_eviction_policy,
747
748
749
750
751
752
753
754
                )

        self.decode_mem_cache_buf_multiplier = (
            1
            if self.spec_algorithm.is_none()
            else (
                server_args.speculative_num_draft_tokens
                + (
755
756
                    (server_args.speculative_eagle_topk or 1)
                    * (server_args.speculative_num_steps or 1)
757
758
                )
            )
759
        )
760

761
762
763
        embedding_cache_size = int(os.environ.get("SGLANG_VLM_CACHE_SIZE_MB", "100"))
        init_embedding_cache(embedding_cache_size * 1024 * 1024)

Byron Hsu's avatar
Byron Hsu committed
764
    def init_disaggregation(self):
765
766
767
768
        self.transfer_backend = TransferBackend(
            self.server_args.disaggregation_transfer_backend
        )

Byron Hsu's avatar
Byron Hsu committed
769
770
771
772
        if (
            self.disaggregation_mode == DisaggregationMode.DECODE
        ):  # *2 for the headroom.
            buffer_size = (self.req_to_token_pool.size) * 2
Byron Hsu's avatar
Byron Hsu committed
773
            self.req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
Byron Hsu's avatar
Byron Hsu committed
774
775
                buffer_size
            )
776
777
            self.disagg_metadata_buffers = MetadataBuffers(
                buffer_size,
778
779
                hidden_size=self.model_config.hf_text_config.hidden_size,
                dtype=self.model_config.dtype,
780
781
                custom_mem_pool=self.token_to_kv_pool_allocator.get_kvcache().maybe_get_custom_mem_pool(),
            )
Byron Hsu's avatar
Byron Hsu committed
782
783
784

            # The decode requests polling kv cache
            self.disagg_decode_transfer_queue = DecodeTransferQueue(
785
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
786
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
787
                tp_rank=self.tp_rank,
788
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
789
790
                scheduler=self,
                tree_cache=self.tree_cache,
Byron Hsu's avatar
Byron Hsu committed
791
792
793
794
795
796
            )

            # The decode requests pending for pre-allocation
            self.disagg_decode_prealloc_queue = DecodePreallocQueue(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Byron Hsu's avatar
Byron Hsu committed
797
798
                draft_token_to_kv_pool=(
                    None
799
                    if self.draft_worker is None or self.spec_algorithm.is_lookahead()
Byron Hsu's avatar
Byron Hsu committed
800
801
                    else self.draft_worker.model_runner.token_to_kv_pool
                ),
Byron Hsu's avatar
Byron Hsu committed
802
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
803
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
804
805
806
                scheduler=self,
                transfer_queue=self.disagg_decode_transfer_queue,
                tree_cache=self.tree_cache,
807
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
808
809
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
810
811
                dp_size=self.server_args.dp_size,
                gpu_id=self.gpu_id,
Byron Hsu's avatar
Byron Hsu committed
812
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
813
814
                max_total_num_tokens=self.max_total_num_tokens,
                prefill_pp_size=self.server_args.disaggregation_prefill_pp,
815
                num_reserved_decode_tokens=self.server_args.num_reserved_decode_tokens,
816
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
817
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
818

Byron Hsu's avatar
Byron Hsu committed
819
820
821
        elif self.disaggregation_mode == DisaggregationMode.PREFILL:
            # *2 for the headroom.
            buffer_size = self.max_running_requests * 2
Byron Hsu's avatar
Byron Hsu committed
822
            self.req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
Byron Hsu's avatar
Byron Hsu committed
823
824
                buffer_size
            )
825
826
            self.disagg_metadata_buffers = MetadataBuffers(
                buffer_size,
827
828
                hidden_size=self.model_config.hf_text_config.hidden_size,
                dtype=self.model_config.dtype,
829
830
                custom_mem_pool=self.token_to_kv_pool_allocator.get_kvcache().maybe_get_custom_mem_pool(),
            )
Byron Hsu's avatar
Byron Hsu committed
831

Liangsheng Yin's avatar
Liangsheng Yin committed
832
            self.disagg_prefill_bootstrap_queue = PrefillBootstrapQueue(
Byron Hsu's avatar
Byron Hsu committed
833
                token_to_kv_pool=self.token_to_kv_pool_allocator.get_kvcache(),
Byron Hsu's avatar
Byron Hsu committed
834
835
                draft_token_to_kv_pool=(
                    None
836
                    if self.draft_worker is None or self.spec_algorithm.is_lookahead()
Byron Hsu's avatar
Byron Hsu committed
837
838
                    else self.draft_worker.model_runner.token_to_kv_pool
                ),
Byron Hsu's avatar
Byron Hsu committed
839
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
840
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
841
842
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
Byron Hsu's avatar
Byron Hsu committed
843
                gpu_id=self.gpu_id,
Byron Hsu's avatar
Byron Hsu committed
844
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
845
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
846
847
848
                max_total_num_tokens=self.max_total_num_tokens,
                decode_tp_size=self.server_args.disaggregation_decode_tp,
                decode_dp_size=self.server_args.disaggregation_decode_dp,
849
                scheduler=self,
Byron Hsu's avatar
Byron Hsu committed
850
851
852
                pp_rank=self.pp_rank,
                pp_size=self.pp_size,
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
853
854
            )
            # The prefill requests that are in the middle of kv sending
855
            self.disagg_prefill_inflight_queue: List[Req] = []
Byron Hsu's avatar
Byron Hsu committed
856

857
858
859
860
    def init_moe_config(self):
        if hasattr(self.model_config.hf_config, "num_experts_per_tok"):
            initialize_moe_config(self.server_args)

861
    @DynamicGradMode()
862
    def event_loop_normal(self):
863
        """A normal scheduler loop."""
864
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
865
866
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
867

868
            batch = self.get_next_batch_to_run()
Lianmin Zheng's avatar
Lianmin Zheng committed
869
            self.cur_batch = batch
870

871
872
873
874
            if batch:
                for req in batch.reqs:
                    trace_event("schedule", req.rid)

875
876
877
            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
Lianmin Zheng's avatar
Lianmin Zheng committed
878
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
879
                # When the server is idle, do self-check and re-init some states
880
                self.self_check_during_idle()
881
882

            self.last_batch = batch
883

884
    @DynamicGradMode()
Lianmin Zheng's avatar
Lianmin Zheng committed
885
    def event_loop_overlap(self):
886
        """A scheduler loop that overlaps the CPU processing and GPU computation."""
887
        self.result_queue = deque()
Lianmin Zheng's avatar
Lianmin Zheng committed
888
889
890
891
892
893
894

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)

            batch = self.get_next_batch_to_run()
            self.cur_batch = batch
895

896
897
898
899
            if batch:
                for req in batch.reqs:
                    trace_event("schedule", req.rid)

Lianmin Zheng's avatar
Lianmin Zheng committed
900
            if batch:
901
                batch.launch_done = threading.Event()
Lianmin Zheng's avatar
Lianmin Zheng committed
902
                result = self.run_batch(batch)
903
                self.result_queue.append((batch.copy(), result))
Lianmin Zheng's avatar
Lianmin Zheng committed
904

905
                if self.last_batch is None:
906
                    # Create a dummy first batch to start the pipeline for overlap schedule.
907
908
909
910
911
912
                    # It is now used for triggering the sampling_info_done event.
                    tmp_batch = ScheduleBatch(
                        reqs=None,
                        forward_mode=ForwardMode.DUMMY_FIRST,
                        next_batch_sampling_info=self.tp_worker.cur_sampling_info,
                    )
913
                    self.process_batch_result(tmp_batch, None, batch.launch_done)
914

Lianmin Zheng's avatar
Lianmin Zheng committed
915
            if self.last_batch:
916
                # Process the results of the last batch
917
                tmp_batch, tmp_result = self.result_queue.popleft()
918
919
920
                tmp_batch.next_batch_sampling_info = (
                    self.tp_worker.cur_sampling_info if batch else None
                )
921
922
923
924
                # NOTE: we should use current launched batch's launch_done event Instead of the last batch's
                self.process_batch_result(
                    tmp_batch, tmp_result, batch.launch_done if batch else None
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
925
            elif batch is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
926
                # When the server is idle, do self-check and re-init some states
927
                self.self_check_during_idle()
Lianmin Zheng's avatar
Lianmin Zheng committed
928
929
930

            self.last_batch = batch

931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
    @DynamicGradMode()
    def event_loop_pp(self):
        """A non-overlap scheduler loop for pipeline parallelism."""
        mbs = [None] * self.pp_size
        last_mbs = [None] * self.pp_size
        self.running_mbs = [
            ScheduleBatch(reqs=[], batch_is_full=False) for _ in range(self.pp_size)
        ]
        bids = [None] * self.pp_size
        pp_outputs: Optional[PPProxyTensors] = None
        while True:
            server_is_idle = True
            for mb_id in range(self.pp_size):
                self.running_batch = self.running_mbs[mb_id]
                self.last_batch = last_mbs[mb_id]

                recv_reqs = self.recv_requests()
                self.process_input_requests(recv_reqs)
                mbs[mb_id] = self.get_next_batch_to_run()
                self.running_mbs[mb_id] = self.running_batch

                self.cur_batch = mbs[mb_id]
                if self.cur_batch:
                    server_is_idle = False
                    result = self.run_batch(self.cur_batch)

957
                # (last rank) send the outputs to the next step
958
959
960
961
962
963
                if self.pp_group.is_last_rank:
                    if self.cur_batch:
                        next_token_ids, bids[mb_id] = (
                            result.next_token_ids,
                            result.bid,
                        )
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
                        if self.cur_batch.return_logprob:
                            pp_outputs = PPProxyTensors(
                                {
                                    "next_token_ids": next_token_ids,
                                    "extend_input_len_per_req": result.extend_input_len_per_req,
                                    "extend_logprob_start_len_per_req": result.extend_logprob_start_len_per_req,
                                }
                                | (
                                    {
                                        f"logits_output.{k}": v
                                        for k, v in result.logits_output.__dict__.items()
                                    }
                                    if result.logits_output is not None
                                    else {}
                                )
                            )
                        else:
                            pp_outputs = PPProxyTensors(
                                {
                                    "next_token_ids": next_token_ids,
                                }
                            )
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
                        # send the output from the last round to let the next stage worker run post processing
                        self.pp_group.send_tensor_dict(
                            pp_outputs.tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                # receive outputs and post-process (filter finished reqs) the coming microbatch
                next_mb_id = (mb_id + 1) % self.pp_size
                next_pp_outputs = None
                if mbs[next_mb_id] is not None:
                    next_pp_outputs: Optional[PPProxyTensors] = PPProxyTensors(
                        self.pp_group.recv_tensor_dict(
                            all_gather_group=self.attn_tp_group
                        )
                    )
                    mbs[next_mb_id].output_ids = next_pp_outputs["next_token_ids"]
1002
1003
1004
1005
1006
1007
1008
1009
1010
                    logits_output_args = {
                        k[len("logits_output.") :]: v
                        for k, v in next_pp_outputs.tensors.items()
                        if k.startswith("logits_output.")
                    }
                    if len(logits_output_args) > 0:
                        logits_output = LogitsProcessorOutput(**logits_output_args)
                    else:
                        logits_output = None
1011
                    output_result = GenerationBatchResult(
1012
                        logits_output=logits_output,
1013
1014
                        pp_hidden_states_proxy_tensors=None,
                        next_token_ids=next_pp_outputs["next_token_ids"],
1015
1016
1017
1018
1019
1020
                        extend_input_len_per_req=next_pp_outputs.tensors.get(
                            "extend_input_len_per_req", None
                        ),
                        extend_logprob_start_len_per_req=next_pp_outputs.tensors.get(
                            "extend_logprob_start_len_per_req", None
                        ),
1021
                        bid=bids[next_mb_id],
1022
                        can_run_cuda_graph=result.can_run_cuda_graph,
1023
1024
1025
1026
                    )
                    self.process_batch_result(mbs[next_mb_id], output_result)
                    last_mbs[next_mb_id] = mbs[next_mb_id]

1027
                # (not last rank)
1028
1029
1030
                if not self.pp_group.is_last_rank:
                    if self.cur_batch:
                        bids[mb_id] = result.bid
1031
1032
                    # carry the outputs to the next stage
                    # send the outputs from the last round to let the next stage worker run post processing
1033
1034
1035
1036
1037
1038
1039
                    if pp_outputs:
                        self.pp_group.send_tensor_dict(
                            pp_outputs.tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                    # send out reqs to the next stage
1040
                    dp_offset = self.attn_dp_rank * self.attn_tp_size
1041
1042
1043
1044
                    if self.attn_tp_rank == 0:
                        point_to_point_pyobj(
                            recv_reqs,
                            self.pp_rank * self.tp_size + dp_offset,
1045
                            self.world_group.device_group,
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
                            self.pp_rank * self.tp_size + dp_offset,
                            (self.pp_rank + 1) * self.tp_size + dp_offset,
                        )

                    # send out proxy tensors to the next stage
                    if self.cur_batch:
                        self.pp_group.send_tensor_dict(
                            result.pp_hidden_states_proxy_tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                pp_outputs = next_pp_outputs

            # When the server is idle, self-check and re-init some states
            if server_is_idle:
1061
1062
                # When the server is idle, do self-check and re-init some states
                self.self_check_during_idle()
1063

1064
1065
    def recv_requests(self) -> List[Req]:
        """Receive results at tp_rank = 0 and broadcast it to all other TP ranks."""
1066
1067
1068
1069
1070
1071
1072
1073

        if self.recv_skipper is not None:
            last_forward_mode = (
                self.last_batch.forward_mode if self.last_batch is not None else None
            )
            if not self.recv_skipper.handle(last_forward_mode):
                return []

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
        if self.pp_rank == 0:
            if self.attn_tp_rank == 0:
                recv_reqs = []

                while True:
                    try:
                        recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                    except zmq.ZMQError:
                        break
                    recv_reqs.append(recv_req)

                while True:
                    try:
                        recv_rpc = self.recv_from_rpc.recv_pyobj(zmq.NOBLOCK)
                    except zmq.ZMQError:
                        break
                    recv_reqs.append(recv_rpc)
            else:
                recv_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1093
        else:
1094
            if self.attn_tp_rank == 0:
1095
                dp_offset = self.attn_dp_rank * self.attn_tp_size
1096
1097
1098
                recv_reqs = point_to_point_pyobj(
                    [],
                    self.pp_rank * self.tp_size + dp_offset,
1099
                    self.world_group.device_group,
1100
1101
1102
1103
1104
                    (self.pp_rank - 1) * self.tp_size + dp_offset,
                    self.pp_rank * self.tp_size + dp_offset,
                )
            else:
                recv_reqs = None
1105

fzyzcjy's avatar
fzyzcjy committed
1106
1107
1108
        if self.input_blocker is not None:
            recv_reqs = self.input_blocker.handle(recv_reqs)

1109
1110
1111
1112
1113
1114
        if self.server_args.enable_dp_attention:
            if self.attn_tp_rank == 0:
                work_reqs = [
                    req
                    for req in recv_reqs
                    if isinstance(
1115
1116
1117
1118
1119
1120
1121
                        req,
                        (
                            TokenizedGenerateReqInput,
                            TokenizedEmbeddingReqInput,
                            BatchTokenizedGenerateReqInput,
                            BatchTokenizedEmbeddingReqInput,
                        ),
1122
1123
1124
1125
1126
1127
                    )
                ]
                control_reqs = [
                    req
                    for req in recv_reqs
                    if not isinstance(
1128
1129
1130
1131
1132
1133
1134
                        req,
                        (
                            TokenizedGenerateReqInput,
                            TokenizedEmbeddingReqInput,
                            BatchTokenizedGenerateReqInput,
                            BatchTokenizedEmbeddingReqInput,
                        ),
1135
1136
1137
1138
1139
1140
1141
1142
1143
                    )
                ]
            else:
                work_reqs = None
                control_reqs = None

            if self.attn_tp_size != 1:
                work_reqs = broadcast_pyobj(
                    work_reqs,
1144
                    self.attn_tp_group.rank,
1145
                    self.attn_tp_cpu_group,
1146
                    src=self.attn_tp_group.ranks[0],
1147
1148
1149
                )
            if self.tp_size != 1:
                control_reqs = broadcast_pyobj(
1150
1151
1152
1153
                    control_reqs,
                    self.tp_group.rank,
                    self.tp_cpu_group,
                    src=self.tp_group.ranks[0],
1154
1155
1156
                )
            recv_reqs = work_reqs + control_reqs
        elif self.tp_size != 1:
1157
1158
1159
1160
1161
1162
            recv_reqs = broadcast_pyobj(
                recv_reqs,
                self.tp_group.rank,
                self.tp_cpu_group,
                src=self.tp_group.ranks[0],
            )
1163
1164
1165
1166
1167
1168

        for req in recv_reqs:
            if isinstance(req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)):
                trace_set_proc_propagate_context(req.rid, req.trace_context)
                trace_slice_start("", req.rid, anonymous=True)

1169
1170
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
1171
    def process_input_requests(self, recv_reqs: List):
1172
        for recv_req in recv_reqs:
1173
1174
            # If it is a health check generation request and there are running requests, ignore it.
            if is_health_check_generate_req(recv_req) and (
1175
1176
1177
                self.chunked_req is not None
                or not self.running_batch.is_empty()
                or len(self.offload_tags) > 0
1178
1179
1180
1181
            ):
                self.return_health_check_ct += 1
                continue

1182
1183
            # If it is a MultiTokenizerWrapper, unwrap it and handle the inner request.
            if isinstance(recv_req, MultiTokenizerWrapper):
1184
1185
1186
1187
                worker_id = recv_req.worker_id
                recv_req = recv_req.obj
                output = self._request_dispatcher(recv_req)
                if output is not None:
1188
                    output = MultiTokenizerWrapper(worker_id, output)
1189
1190
1191
                    self.send_to_tokenizer.send_pyobj(output)
                continue

1192
            output = self._request_dispatcher(recv_req)
1193
            if output is not None:
1194
1195
1196
1197
1198
                if isinstance(output, RpcReqOutput):
                    if self.recv_from_rpc is not None:
                        self.recv_from_rpc.send_pyobj(output)
                else:
                    self.send_to_tokenizer.send_pyobj(output)
1199

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
    def init_req_max_new_tokens(self, req):
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
            self.max_req_len - len(req.origin_input_ids) - 1,
        )

1210
1211
1212
1213
    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
1214
        self.maybe_update_dp_balance_data(recv_req)
1215

1216
        # Create a new request
1217
1218
1219
1220
1221
        if (
            recv_req.session_params is None
            or recv_req.session_params.id is None
            or recv_req.session_params.id not in self.sessions
        ):
Rin Intachuen's avatar
Rin Intachuen committed
1222
1223
1224
1225
1226
1227
            if recv_req.input_embeds is not None:
                # Generate fake input_ids based on the length of input_embeds
                seq_length = len(recv_req.input_embeds)
                fake_input_ids = [1] * seq_length
                recv_req.input_ids = fake_input_ids

1228
1229
1230
1231
            if recv_req.bootstrap_port is None:
                # Use default bootstrap port
                recv_req.bootstrap_port = self.server_args.disaggregation_bootstrap_port

1232
1233
1234
1235
1236
            req = Req(
                recv_req.rid,
                recv_req.input_text,
                recv_req.input_ids,
                recv_req.sampling_params,
Lianmin Zheng's avatar
Lianmin Zheng committed
1237
1238
                return_logprob=recv_req.return_logprob,
                top_logprobs_num=recv_req.top_logprobs_num,
1239
                token_ids_logprob=recv_req.token_ids_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
1240
                stream=recv_req.stream,
1241
                lora_id=recv_req.lora_id,
Rin Intachuen's avatar
Rin Intachuen committed
1242
                input_embeds=recv_req.input_embeds,
Lianmin Zheng's avatar
Lianmin Zheng committed
1243
                custom_logit_processor=recv_req.custom_logit_processor,
1244
                return_hidden_states=recv_req.return_hidden_states,
1245
                eos_token_ids=self.model_config.hf_eos_token_id,
1246
                bootstrap_host=recv_req.bootstrap_host,
1247
                bootstrap_port=recv_req.bootstrap_port,
1248
                bootstrap_room=recv_req.bootstrap_room,
1249
                data_parallel_rank=recv_req.data_parallel_rank,
1250
                vocab_size=self.model_config.vocab_size,
1251
                priority=recv_req.priority,
1252
1253
1254
                metrics_collector=(
                    self.metrics_collector if self.enable_metrics else None
                ),
1255
1256
            )
            req.tokenizer = self.tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
1257

1258
1259
1260
            if self.disaggregation_mode != DisaggregationMode.NULL:
                # Invalid request for disaggregated mode
                if recv_req.bootstrap_room is None:
1261
                    error_msg = (
1262
1263
1264
                        f"Invalid request: Disaggregated request received without "
                        f"boostrap room id. {req.rid=}"
                    )
1265
                    logger.error(error_msg)
1266
                    prepare_abort(req, error_msg, status_code=HTTPStatus.BAD_REQUEST)
1267
1268
1269
                    self.stream_output([req], req.return_logprob)
                    return

1270
1271
1272
1273
            if (
                recv_req.session_params is not None
                and recv_req.session_params.id is not None
            ):
1274
                req.set_finish_with_abort(
1275
                    f"Invalid request: session id {recv_req.session_params.id} does not exist"
1276
                )
1277
                self.init_req_max_new_tokens(req)
1278
                self._add_request_to_queue(req)
1279
1280
                return
        else:
1281
1282
            # Create a new request from a previous session
            session = self.sessions[recv_req.session_params.id]
1283
            req = session.create_req(recv_req, self.tokenizer)
1284
            if isinstance(req.finished_reason, FINISH_ABORT):
1285
                self.init_req_max_new_tokens(req)
1286
                self._add_request_to_queue(req)
1287
                return
1288

1289
        # Handle multimodal inputs
Mick's avatar
Mick committed
1290
1291
        if recv_req.mm_inputs is not None:
            image_inputs = MultimodalInputs.from_dict(recv_req.mm_inputs)
1292
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
1293
            req.origin_input_ids = self.pad_input_ids_func(
1294
                req.origin_input_ids, image_inputs
1295
            )
1296
            req.extend_image_inputs(image_inputs)
1297

1298
            if len(req.origin_input_ids) >= self.max_req_input_len:
1299
1300
1301
1302
1303
                req.set_finish_with_abort(
                    error_msg=(
                        "Multimodal prompt is too long after expanding multimodal tokens. "
                        f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                    )
1304
                )
1305
                self.init_req_max_new_tokens(req)
1306
                self._add_request_to_queue(req)
1307
1308
                return

1309
1310
1311
        # initialize before returning
        self.init_req_max_new_tokens(req)

1312
        # Validate prompt length
1313
1314
1315
1316
1317
1318
        error_msg = validate_input_length(
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
        if error_msg:
1319
            req.set_finish_with_abort(error_msg)
1320
            self._add_request_to_queue(req)
1321
            return
1322

1323
        # Copy more attributes
1324
        if recv_req.logprob_start_len == -1 or not recv_req.return_logprob:
1325
            # By default, only return the logprobs for output tokens
1326
1327
1328
1329
1330
1331
1332
            # For prefill-only requests with logprob_start_len == -1, set logprob_start_len beyond input sequence
            # to skip input logprob computation entirely
            if req.is_prefill_only:
                req.logprob_start_len = len(req.origin_input_ids)
            else:
                # TODO: For text generation, evaluate setting logprob_start_len to len(req.origin_input_ids) as well
                req.logprob_start_len = len(req.origin_input_ids) - 1
1333
1334
1335
        else:
            req.logprob_start_len = recv_req.logprob_start_len

1336
1337
1338
        if not req.is_prefill_only and req.logprob_start_len >= len(
            req.origin_input_ids
        ):
1339
            error_msg = f"{req.logprob_start_len=} is higher than the number of input tokens {len(req.origin_input_ids)=}. Please use a smaller logprob_start_len."
1340
            req.logprob_start_len = len(req.origin_input_ids) - 1
1341
            req.set_finish_with_abort(error_msg)
1342
1343
1344
            self._add_request_to_queue(req)
            return

1345
1346
1347
1348
1349
        # Init grammar cache for this request
        add_to_grammar_queue = False
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
1350
            or req.sampling_params.ebnf is not None
1351
            or req.sampling_params.structural_tag is not None
1352
1353
1354
1355
1356
1357
        ):
            assert self.grammar_backend is not None
            if req.sampling_params.json_schema is not None:
                key = ("json", req.sampling_params.json_schema)
            elif req.sampling_params.regex is not None:
                key = ("regex", req.sampling_params.regex)
1358
1359
            elif req.sampling_params.ebnf is not None:
                key = ("ebnf", req.sampling_params.ebnf)
1360
1361
            elif req.sampling_params.structural_tag:
                key = ("structural_tag", req.sampling_params.structural_tag)
1362

1363
1364
1365
1366
1367
            value, cache_hit = self.grammar_backend.get_cached_or_future_value(key)
            req.grammar = value

            if not cache_hit:
                req.grammar_key = key
1368
                add_to_grammar_queue = True
1369
1370
1371
1372
            else:
                if value is INVALID_GRAMMAR_OBJ:  # We hit a cached invalid grammar.
                    error_msg = f"Invalid grammar request with cache hit: {key=}"
                    req.set_finish_with_abort(error_msg)
1373
1374

        if add_to_grammar_queue:
1375
            req.queue_time_start = time.perf_counter()
1376
1377
            self.grammar_queue.append(req)
        else:
1378
1379
            self._add_request_to_queue(req)

1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
    def handle_batch_generate_request(
        self,
        recv_req: BatchTokenizedGenerateReqInput,
    ):
        """Handle optimized batch generate request."""
        logger.debug(f"Processing batch generate request with {len(recv_req)} requests")

        # Process each request in the batch
        for tokenized_req in recv_req:
            self.handle_generate_request(tokenized_req)

1391
    def _add_request_to_queue(self, req: Req):
1392
        req.queue_time_start = time.perf_counter()
Byron Hsu's avatar
Byron Hsu committed
1393
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
1394
            self._prefetch_kvcache(req)
Byron Hsu's avatar
Byron Hsu committed
1395
1396
1397
            self.disagg_prefill_bootstrap_queue.add(
                req, self.model_config.num_key_value_heads
            )
Byron Hsu's avatar
Byron Hsu committed
1398
1399
1400
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            self.disagg_decode_prealloc_queue.add(req)
        else:
1401
1402
1403
            self._set_or_validate_priority(req)
            if self._abort_on_queued_limit(req):
                return
1404
            self._prefetch_kvcache(req)
Byron Hsu's avatar
Byron Hsu committed
1405
            self.waiting_queue.append(req)
1406
            trace_slice_end("process req", req.rid, auto_next_anon=True)
Byron Hsu's avatar
Byron Hsu committed
1407

1408
1409
1410
    def _prefetch_kvcache(self, req: Req):
        if self.enable_hicache_storage:
            req.init_next_round_input(self.tree_cache)
1411
1412
1413
1414
1415
            if req.last_node.backuped:
                # only to initiate the prefetch if the last node is backuped
                # otherwise, the allocated GPU memory must be locked for integrity
                last_hash = req.last_host_node.get_last_hash_value()
                matched_len = len(req.prefix_indices) + req.host_hit_length
1416
1417
1418
1419
1420
                new_input_tokens = req.fill_ids[matched_len:]
                self.tree_cache.prefetch_from_storage(
                    req.rid, req.last_host_node, new_input_tokens, last_hash
                )

1421
    def _extend_requests_to_queue(self, reqs: List[Req], is_retracted: bool = False):
1422
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
Byron Hsu's avatar
Byron Hsu committed
1423
1424
1425
            self.disagg_prefill_bootstrap_queue.extend(
                reqs, self.model_config.num_key_value_heads
            )
1426
1427
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            # If this is a decode server, we put the request to the decode pending prealloc queue
1428
            self.disagg_decode_prealloc_queue.extend(reqs, is_retracted)
Byron Hsu's avatar
Byron Hsu committed
1429
        else:
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
            for req in reqs:
                self._set_or_validate_priority(req)
                if not self._abort_on_queued_limit(req):
                    self.waiting_queue.append(req)

    def _set_or_validate_priority(self, req: Req):
        """Set the default priority value, or abort the request based on the priority scheduling mode."""
        if self.enable_priority_scheduling and req.priority is None:
            if self.schedule_low_priority_values_first:
                req.priority = sys.maxsize
            else:
                req.priority = -sys.maxsize - 1
        elif not self.enable_priority_scheduling and req.priority is not None:
            abort_req = AbortReq(
                req.rid,
                finished_reason={
                    "type": "abort",
                    "status_code": HTTPStatus.SERVICE_UNAVAILABLE,
                    "message": "Using priority is disabled for this server. Please send a new request without a priority.",
                },
            )
            self.send_to_tokenizer.send_pyobj(abort_req)

    def _abort_on_queued_limit(self, recv_req: Req) -> bool:
        """Abort an incoming or existing request if the waiting queue is full. Returns True if the incoming request is aborted."""
        if (
            self.max_queued_requests is None
            or len(self.waiting_queue) + 1 <= self.max_queued_requests
        ):
            return False

        # Reject the incoming request by default.
        req_to_abort = recv_req
        message = "The request queue is full."
        if self.enable_priority_scheduling:
            # With priority scheduling, consider aboritng an existing request based on the priority.
            # direction = 1  => smaller number = higher priority; -1 => larger number = higher priority.
            # max(...) + (direction * priority, queue_time_start) picks the least-preferred request.
            # Tie: later queue_time_start (newer) is evicted first. Preempt only if strictly better.
            direction = 1 if self.schedule_low_priority_values_first else -1
            key_fn = lambda item: (
                direction * item[1].priority,
                item[1].queue_time_start,
            )
            idx, candidate_req = max(enumerate(self.waiting_queue), key=key_fn)
            abort_existing_req = (
                direction * recv_req.priority < direction * candidate_req.priority
            )
            if abort_existing_req:
                self.waiting_queue.pop(idx)
                req_to_abort = candidate_req
                message = "The request is aborted by a higher priority request."

        self.send_to_tokenizer.send_pyobj(
            AbortReq(
                req_to_abort.rid,
                finished_reason={
                    "type": "abort",
                    "status_code": HTTPStatus.SERVICE_UNAVAILABLE,
                    "message": message,
                },
            )
        )
        return req_to_abort.rid == recv_req.rid
1494
1495
1496

    def handle_embedding_request(
        self,
1497
        recv_req: TokenizedEmbeddingReqInput,
1498
1499
1500
1501
1502
1503
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
woodx's avatar
woodx committed
1504
            token_type_ids=recv_req.token_type_ids,
1505
            priority=recv_req.priority,
1506
1507
1508
        )
        req.tokenizer = self.tokenizer

1509
1510
        # Handle multimodal inputs
        if recv_req.image_inputs is not None:
Mick's avatar
Mick committed
1511
            image_inputs = MultimodalInputs.from_dict(recv_req.image_inputs)
1512
1513
1514
1515
1516
1517
1518
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
            req.origin_input_ids = self.pad_input_ids_func(
                req.origin_input_ids, image_inputs
            )
            req.extend_image_inputs(image_inputs)

            if len(req.origin_input_ids) >= self.max_req_input_len:
1519
1520
1521
1522
1523
                req.set_finish_with_abort(
                    error_msg=(
                        "Multimodal prompt is too long after expanding multimodal tokens. "
                        f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                    )
1524
                )
1525
                self._add_request_to_queue(req)
1526
1527
                return

1528
        # Validate prompts length
1529
        error_msg = validate_input_length(
1530
1531
1532
1533
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
1534
        if error_msg:
1535
            self._add_request_to_queue(req)
1536
            return
1537

1538
1539
        # Copy more attributes
        req.logprob_start_len = len(req.origin_input_ids) - 1
1540
        self._add_request_to_queue(req)
1541

1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
    def handle_batch_embedding_request(
        self,
        recv_req: BatchTokenizedEmbeddingReqInput,
    ):
        """Handle optimized batch embedding request."""
        logger.debug(
            f"Processing batch embedding request with {len(recv_req)} requests"
        )

        # Process each request in the batch
        for tokenized_req in recv_req:
            self.handle_embedding_request(tokenized_req)

1555
1556
1557
1558
1559
    def self_check_during_idle(self):
        self.check_memory()
        self.check_tree_cache()
        self.new_token_ratio = self.init_new_token_ratio
        self.maybe_sleep_on_idle()
1560

Lianmin Zheng's avatar
Lianmin Zheng committed
1561
    def check_memory(self):
Hanming Lu's avatar
Hanming Lu committed
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
        if self.is_hybrid:
            (
                full_num_used,
                swa_num_used,
                _,
                _,
                full_available_size,
                full_evictable_size,
                swa_available_size,
                swa_evictable_size,
            ) = self._get_swa_token_info()
            memory_leak = full_num_used != 0 or swa_num_used != 0
            token_msg = (
                f"{self.full_tokens_per_layer=}, {full_available_size=}, {full_evictable_size=}, {self.tree_cache.full_protected_size()=}\n"
                f"{self.swa_tokens_per_layer=}, {swa_available_size=}, {swa_evictable_size=}, {self.tree_cache.swa_protected_size()=}\n"
            )
tarinkk's avatar
tarinkk committed
1578
        else:
Hanming Lu's avatar
Hanming Lu committed
1579
1580
1581
            _, _, available_size, evictable_size = self._get_token_info()
            protected_size = self.tree_cache.protected_size()
            memory_leak = (available_size + evictable_size) != (
1582
1583
1584
                # self.max_total_num_tokens
                # if not self.enable_hierarchical_cache
                # else self.max_total_num_tokens - protected_size
Hanming Lu's avatar
Hanming Lu committed
1585
                self.max_total_num_tokens
1586
                - protected_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1587
            )
Hanming Lu's avatar
Hanming Lu committed
1588
1589
1590
1591
            token_msg = f"{self.max_total_num_tokens=}, {available_size=}, {evictable_size=}, {protected_size=}\n"

        if memory_leak:
            msg = "token_to_kv_pool_allocator memory leak detected! " f"{token_msg}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1592
            raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1593

1594
1595
1596
1597
1598
1599
1600
1601
        if self.disaggregation_mode == DisaggregationMode.DECODE:
            req_total_size = (
                self.req_to_token_pool.size + self.req_to_token_pool.pre_alloc_size
            )
        else:
            req_total_size = self.req_to_token_pool.size

        if len(self.req_to_token_pool.free_slots) != req_total_size:
1602
            msg = (
1603
                "req_to_token_pool memory leak detected!"
1604
1605
                f"available_size={len(self.req_to_token_pool.free_slots)}, "
                f"total_size={self.req_to_token_pool.size}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1606
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1607
            raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1608

1609
1610
        if (
            self.enable_metrics
1611
            and self.current_scheduler_metrics_enabled()
1612
            and time.perf_counter() > self.metrics_collector.last_log_time + 30
1613
1614
        ):
            # During idle time, also collect metrics every 30 seconds.
Hanming Lu's avatar
Hanming Lu committed
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
            if self.is_hybrid:
                (
                    full_num_used,
                    swa_num_used,
                    full_token_usage,
                    swa_token_usage,
                    _,
                    _,
                    _,
                    _,
                ) = self._get_swa_token_info()
                num_used = max(full_num_used, swa_num_used)
                token_usage = max(full_token_usage, swa_token_usage)
            else:
                num_used, token_usage, _, _ = self._get_token_info()
Lianmin Zheng's avatar
Lianmin Zheng committed
1630
            num_running_reqs = len(self.running_batch.reqs)
1631
1632
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
Hanming Lu's avatar
Hanming Lu committed
1633
            self.stats.token_usage = round(token_usage, 2)
1634
1635
            self.stats.gen_throughput = 0
            self.stats.num_queue_reqs = len(self.waiting_queue)
1636
            self.stats.num_grammar_queue_reqs = len(self.grammar_queue)
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
            if self.disaggregation_mode == DisaggregationMode.PREFILL:
                self.stats.num_prefill_prealloc_queue_reqs = len(
                    self.disagg_prefill_bootstrap_queue.queue
                )
                self.stats.num_prefill_inflight_queue_reqs = len(
                    self.disagg_prefill_inflight_queue
                )
            if self.disaggregation_mode == DisaggregationMode.DECODE:
                self.stats.num_decode_prealloc_queue_reqs = len(
                    self.disagg_decode_prealloc_queue.queue
                )
                self.stats.num_decode_transfer_queue_reqs = len(
                    self.disagg_decode_transfer_queue.queue
                )
1651
            self.metrics_collector.log_stats(self.stats)
1652
        self._publish_kv_events()
1653

Hanming Lu's avatar
Hanming Lu committed
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
    def check_tree_cache(self):
        if self.is_hybrid and isinstance(self.tree_cache, SWARadixCache):
            self.tree_cache.sanity_check()

    def _get_token_info(self):
        available_size = self.token_to_kv_pool_allocator.available_size()
        evictable_size = self.tree_cache.evictable_size()
        num_used = self.max_total_num_tokens - (available_size + evictable_size)
        token_usage = num_used / self.max_total_num_tokens
        return num_used, token_usage, available_size, evictable_size

    def _get_swa_token_info(self):
        full_available_size = self.token_to_kv_pool_allocator.full_available_size()
        full_evictable_size = self.tree_cache.full_evictable_size()
        swa_available_size = self.token_to_kv_pool_allocator.swa_available_size()
        swa_evictable_size = self.tree_cache.swa_evictable_size()
        full_num_used = self.full_tokens_per_layer - (
            full_available_size + full_evictable_size
        )
        swa_num_used = self.swa_tokens_per_layer - (
            swa_available_size + swa_evictable_size
        )
        full_token_usage = full_num_used / self.full_tokens_per_layer
        swa_token_usage = swa_num_used / self.swa_tokens_per_layer
        return (
            full_num_used,
            swa_num_used,
            full_token_usage,
            swa_token_usage,
            full_available_size,
            full_evictable_size,
            swa_available_size,
            swa_evictable_size,
        )

1689
    def get_next_batch_to_run(self) -> Optional[ScheduleBatch]:
1690
        # Merge the prefill batch into the running batch
1691
1692
1693
1694
1695
        chunked_req_to_exclude = set()
        if self.chunked_req:
            # Move the chunked request out of the batch so that we can merge
            # only finished requests to running_batch.
            chunked_req_to_exclude.add(self.chunked_req)
1696
            self.tree_cache.cache_unfinished_req(self.chunked_req, chunked=True)
1697
            # chunked request keeps its rid but will get a new req_pool_idx
Yi Zhang's avatar
Yi Zhang committed
1698
1699
1700
1701
1702
1703
            if self.tp_worker.worker.model_runner.is_hybrid_gdn:
                self.req_to_token_pool.free(
                    self.chunked_req.req_pool_idx, free_mamba_cache=False
                )
            else:
                self.req_to_token_pool.free(self.chunked_req.req_pool_idx)
Lianmin Zheng's avatar
Lianmin Zheng committed
1704
        if self.last_batch and self.last_batch.forward_mode.is_extend():
1705
1706
1707
1708
            if self.last_batch.chunked_req is not None:
                # In the context pipeline parallelism, after the last chunk, the current microbatch still track outdated chunked_req.
                # We need to discard it.
                chunked_req_to_exclude.add(self.last_batch.chunked_req)
Lianmin Zheng's avatar
Lianmin Zheng committed
1709

1710
            # Filter batch
1711
            last_bs = self.last_batch.batch_size()
1712
1713
1714
            self.last_batch.filter_batch(
                chunked_req_to_exclude=list(chunked_req_to_exclude)
            )
1715
            if self.last_batch.batch_size() < last_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1716
                self.running_batch.batch_is_full = False
1717

1718
1719
1720
            # Merge the new batch into the running batch.
            # For prefill-only batch, we can avoid going through decoding step.
            if not self.last_batch.is_empty() and not self.last_batch.is_prefill_only:
Lianmin Zheng's avatar
Lianmin Zheng committed
1721
                if self.running_batch.is_empty():
1722
1723
                    self.running_batch = self.last_batch
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1724
                    # Merge running_batch with prefill batch
1725
                    self.running_batch.merge_batch(self.last_batch)
1726

1727
        new_batch = self.get_new_batch_prefill()
1728

1729
1730
1731
1732
1733
        need_dp_attn_preparation = require_mlp_sync(self.server_args)

        if need_dp_attn_preparation and not self.spec_algorithm.is_none():
            # In speculative decoding, prefill batches and decode batches cannot be processed in the same DP attention group.
            # We prepare idle batches in advance to skip preparing decode batches when there are prefill batches in the group.
1734
            new_batch = self.prepare_mlp_sync_batch(new_batch)
1735
1736
1737
            need_dp_attn_preparation = new_batch is None

        if new_batch is not None:
1738
1739
1740
1741
            # Run prefill first if possible
            ret = new_batch
        else:
            # Run decode
Lianmin Zheng's avatar
Lianmin Zheng committed
1742
            if not self.running_batch.is_empty():
1743
                self.running_batch = self.update_running_batch(self.running_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1744
1745
1746
                ret = self.running_batch if not self.running_batch.is_empty() else None
            else:
                ret = None
1747

1748
1749
        # Handle DP attention
        if need_dp_attn_preparation:
1750
            self.maybe_handle_dp_balance_data()
1751
            ret = self.prepare_mlp_sync_batch(ret)
1752
1753

        return ret
1754

1755
1756
1757
1758
1759
1760
    def get_num_allocatable_reqs(self, running_bs):
        res = global_server_args_dict["max_micro_batch_size"] - running_bs
        if self.pp_size > 1:
            res = min(res, self.req_to_token_pool.available_size())
        return res

Lianmin Zheng's avatar
Lianmin Zheng committed
1761
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
Lianmin Zheng's avatar
Lianmin Zheng committed
1762
        # Check if the grammar is ready in the grammar queue
1763
        if self.grammar_queue:
1764
            self.move_ready_grammar_requests()
1765

1766
1767
1768
1769
        if self.try_preemption:
            # Reset batch_is_full to try preemption with a prefill adder.
            self.running_batch.batch_is_full = False

Lianmin Zheng's avatar
Lianmin Zheng committed
1770
1771
        # Handle the cases where prefill is not allowed
        if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1772
            self.running_batch.batch_is_full or len(self.waiting_queue) == 0
1773
        ) and self.chunked_req is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1774
1775
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
1776
        running_bs = len(self.running_batch.reqs)
1777
        # Ignore the check if self.chunked_req is not None.
1778
1779
1780
1781
        # In the non-PP case, when self.chunked_req is not None, num_allocatable_reqs should always be greater than 0,
        # as the space for the chunked request has just been released.
        # In PP case, a chunked req can start in one microbatch and end in another microbatch, so the max_running_requests per microbatch should not be strict.
        # Instead, we should always allow chunked request to be added, otherwise, there will be a memory leak.
1782
1783
1784
1785
1786
        if (
            self.get_num_allocatable_reqs(running_bs) <= 0
            and not self.chunked_req
            and not self.try_preemption
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1787
            self.running_batch.batch_is_full = True
1788
1789
            return None

1790
        if self.enable_hierarchical_cache:
1791
            self.tree_cache.check_hicache_events()
1792

1793
        # Get priority queue
1794
        self.policy.calc_priority(self.waiting_queue)
1795

Lianmin Zheng's avatar
Lianmin Zheng committed
1796
        # Prefill policy
1797
        adder = PrefillAdder(
1798
            self.page_size,
1799
            self.tree_cache,
1800
            self.token_to_kv_pool_allocator,
1801
1802
1803
1804
            self.running_batch,
            self.new_token_ratio,
            self.max_prefill_tokens,
            self.chunked_prefill_size,
1805
            running_bs if self.is_mixed_chunk else 0,
1806
            self.priority_scheduling_preemption_threshold,
1807
1808
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1809
        if self.chunked_req is not None:
1810
1811
            self.chunked_req.init_next_round_input()
            self.chunked_req = adder.add_chunked_req(self.chunked_req)
1812

1813
        if self.enable_lora:
1814
            lora_set = set([req.lora_id for req in self.running_batch.reqs])
Lianmin Zheng's avatar
Lianmin Zheng committed
1815

1816
        # Get requests from the waiting queue to a new prefill batch
1817
        for req in self.waiting_queue:
1818
1819
1820
1821
1822

            if self.enable_lora and not self.tp_worker.can_run_lora_batch(
                lora_set
                | set([req.lora_id for req in adder.can_run_list])
                | set([req.lora_id])
1823
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1824
                self.running_batch.batch_is_full = True
1825
1826
                break

1827
            running_bs = len(self.running_batch.reqs) - len(adder.preempt_list)
1828
            if len(adder.can_run_list) >= self.get_num_allocatable_reqs(running_bs):
Lianmin Zheng's avatar
Lianmin Zheng committed
1829
                self.running_batch.batch_is_full = True
Byron Hsu's avatar
Byron Hsu committed
1830
1831
1832
1833
1834
            if self.disaggregation_mode == DisaggregationMode.PREFILL:
                # In prefill mode, prealloc queue and transfer queue can also take memory,
                # so we need to check if the available size for the actual available size.
                if len(adder.can_run_list) >= self.req_to_token_pool.available_size():
                    self.running_batch.batch_is_full = True
1835
1836
1837
1838
1839

            if self.running_batch.batch_is_full:
                if not self.try_preemption:
                    break
                if not adder.preempt_to_schedule(req, self.server_args):
Byron Hsu's avatar
Byron Hsu committed
1840
1841
                    break

1842
            if self.enable_hicache_storage:
pansicheng's avatar
pansicheng committed
1843
1844
1845
1846
                prefetch_done = self.tree_cache.check_prefetch_progress(req.rid)
                if not prefetch_done:
                    # skip staging requests that are ongoing prefetch
                    continue
1847

1848
1849
            req.init_next_round_input(self.tree_cache)
            res = adder.add_one_req(req, has_chunked_req=(self.chunked_req is not None))
1850

1851
1852
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
1853
1854
                    if self.enable_hierarchical_cache:
                        # Set batch_is_full after making sure there are requests that can be served
Lianmin Zheng's avatar
Lianmin Zheng committed
1855
1856
                        self.running_batch.batch_is_full = len(
                            adder.can_run_list
1857
                        ) > 0 or (not self.running_batch.is_empty())
1858
                    else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1859
                        self.running_batch.batch_is_full = True
1860
1861
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1862
        # Update waiting queue
1863
        can_run_list: List[Req] = adder.can_run_list
Lianmin Zheng's avatar
Lianmin Zheng committed
1864
1865
        if len(can_run_list) == 0:
            return None
1866
1867
1868
1869

        if self.enable_metrics:
            # only record queue time when enable_metrics is True to avoid overhead
            for req in can_run_list:
1870
                req.queue_time_end = time.perf_counter()
1871
                req.add_latency(RequestStage.PREFILL_WAITING)
1872

Lianmin Zheng's avatar
Lianmin Zheng committed
1873
1874
1875
        self.waiting_queue = [
            x for x in self.waiting_queue if x not in set(can_run_list)
        ]
1876
1877
        if adder.preempt_list:
            self._extend_requests_to_queue(adder.preempt_list)
1878

1879
1880
1881
        if adder.new_chunked_req is not None:
            assert self.chunked_req is None
            self.chunked_req = adder.new_chunked_req
1882

1883
1884
        if self.chunked_req:
            self.chunked_req.is_chunked += 1
Lianmin Zheng's avatar
Lianmin Zheng committed
1885

1886
        # Print stats
1887
        if self.current_scheduler_metrics_enabled():
1888
            self.log_prefill_stats(adder, can_run_list, running_bs)
1889

Lianmin Zheng's avatar
Lianmin Zheng committed
1890
        # Create a new batch
1891
1892
1893
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
1894
            self.token_to_kv_pool_allocator,
1895
            self.tree_cache,
1896
            self.model_config,
1897
            self.enable_overlap,
1898
            self.spec_algorithm,
1899
            chunked_req=self.chunked_req,
1900
        )
1901
1902
        if self.enable_hierarchical_cache:
            # todo (zhiqiang): disable cuda graph execution if hicache loading triggered
1903
1904
1905
            new_batch.hicache_consumer_index = (
                self.tree_cache.ready_to_load_host_cache()
            )
1906

1907
        new_batch.prepare_for_extend()
1908

Lianmin Zheng's avatar
Lianmin Zheng committed
1909
        # Mixed-style chunked prefill
1910
1911
        if (
            self.is_mixed_chunk
Lianmin Zheng's avatar
Lianmin Zheng committed
1912
            and not self.running_batch.is_empty()
1913
1914
1915
            and not (new_batch.return_logprob or self.running_batch.return_logprob)
        ):
            # TODO (lianmin): support return_logprob + mixed chunked prefill
1916
1917
            self.running_batch.filter_batch()
            if not self.running_batch.is_empty():
1918
                self.running_batch.prepare_for_decode()
1919
1920
                new_batch.mix_with_running(self.running_batch)
                new_batch.decoding_reqs = self.running_batch.reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
1921
1922
1923
            self.running_batch = ScheduleBatch(
                reqs=[], batch_is_full=self.running_batch.batch_is_full
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1924
1925
        else:
            new_batch.decoding_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1926
1927
1928

        return new_batch

Lianmin Zheng's avatar
Lianmin Zheng committed
1929
    def update_running_batch(self, batch: ScheduleBatch) -> Optional[ScheduleBatch]:
1930
        """Update the current running decoding batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1931
        initial_bs = batch.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1932

1933
1934
        batch.filter_batch()
        if batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1935
1936
            batch.batch_is_full = False
            return batch
1937

Lianmin Zheng's avatar
Lianmin Zheng committed
1938
        # Check if decode out of memory
1939
        if not batch.check_decode_mem(self.decode_mem_cache_buf_multiplier) or (
1940
            TEST_RETRACT and batch.batch_size() > 10
1941
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1942
1943
            old_ratio = self.new_token_ratio

1944
            retracted_reqs, new_token_ratio = batch.retract_decode(self.server_args)
1945
            num_retracted_reqs = len(retracted_reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1946
            self.new_token_ratio = new_token_ratio
1947

Lianmin Zheng's avatar
Lianmin Zheng committed
1948
            logger.info(
1949
                "KV cache pool is full. Retract requests. "
1950
                f"#retracted_reqs: {num_retracted_reqs}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
1951
1952
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
1953

1954
            self._extend_requests_to_queue(retracted_reqs, is_retracted=True)
1955
            self.total_retracted_reqs += num_retracted_reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
1956
1957
        else:
            self.new_token_ratio = max(
1958
                self.new_token_ratio - self.new_token_ratio_decay,
Lianmin Zheng's avatar
Lianmin Zheng committed
1959
1960
1961
                self.min_new_token_ratio,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
1962
        if batch.batch_size() < initial_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1963
            batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
1964
1965

        # Update batch tensors
1966
        batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
1967
        return batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1968

1969
1970
1971
    def run_batch(
        self, batch: ScheduleBatch
    ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
1972
        """Run a batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1973
1974
        self.forward_ct += 1

1975
1976
        # Whether to run the profiler
        self._profile_batch_predicate(batch)
1977
1978
1979
1980
        if self.forward_sleep_time is not None:
            logger.info(f"Scheduler.run_batch sleep {self.forward_sleep_time}s")
            time.sleep(self.forward_sleep_time)

1981
        # Run forward
1982
        if self.is_generation:
1983
1984
            if self.spec_algorithm.is_none():
                model_worker_batch = batch.get_model_worker_batch()
1985

1986
                if self.pp_group.is_last_rank:
1987
                    logits_output, next_token_ids, can_run_cuda_graph = (
1988
1989
1990
                        self.tp_worker.forward_batch_generation(model_worker_batch)
                    )
                else:
1991
                    pp_hidden_states_proxy_tensors, _, can_run_cuda_graph = (
1992
1993
                        self.tp_worker.forward_batch_generation(model_worker_batch)
                    )
1994
                bid = model_worker_batch.bid
Lianmin Zheng's avatar
Lianmin Zheng committed
1995
            else:
1996
1997
1998
                (
                    logits_output,
                    next_token_ids,
1999
                    bid,
2000
                    num_accepted_tokens,
2001
                    can_run_cuda_graph,
2002
                ) = self.draft_worker.forward_batch_speculative_generation(batch)
2003
2004
2005
                bs = batch.batch_size()
                self.spec_num_total_accepted_tokens += num_accepted_tokens + bs
                self.spec_num_total_forward_ct += bs
2006
                self.num_generated_tokens += num_accepted_tokens
2007
2008
2009

            if self.pp_group.is_last_rank:
                batch.output_ids = next_token_ids
2010

2011
2012
2013
            # These 2 values are needed for processing the output, but the values can be
            # modified by overlap schedule. So we have to copy them here so that
            # we can use the correct values in output processing.
2014
            if batch.return_logprob or self.spec_algorithm.is_eagle():
2015
                extend_input_len_per_req = [req.extend_input_len for req in batch.reqs]
2016
2017
2018
            else:
                extend_input_len_per_req = None
            if batch.return_logprob:
2019
2020
2021
2022
2023
2024
                extend_logprob_start_len_per_req = [
                    req.extend_logprob_start_len for req in batch.reqs
                ]
            else:
                extend_logprob_start_len_per_req = None

2025
            ret = GenerationBatchResult(
2026
2027
2028
2029
2030
2031
2032
                logits_output=logits_output if self.pp_group.is_last_rank else None,
                pp_hidden_states_proxy_tensors=(
                    pp_hidden_states_proxy_tensors
                    if not self.pp_group.is_last_rank
                    else None
                ),
                next_token_ids=next_token_ids if self.pp_group.is_last_rank else None,
2033
2034
                extend_input_len_per_req=extend_input_len_per_req,
                extend_logprob_start_len_per_req=extend_logprob_start_len_per_req,
2035
                bid=bid,
2036
                can_run_cuda_graph=can_run_cuda_graph,
2037
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
2038
2039
2040
        else:  # embedding or reward model
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
2041
2042
2043
            ret = EmbeddingBatchResult(
                embeddings=embeddings, bid=model_worker_batch.bid
            )
2044
        return ret
Chayenne's avatar
Chayenne committed
2045

2046
2047
2048
2049
    def process_batch_result(
        self,
        batch: ScheduleBatch,
        result: Union[GenerationBatchResult, EmbeddingBatchResult],
2050
        launch_done: Optional[threading.Event] = None,
2051
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
2052
        if batch.forward_mode.is_decode():
2053
            self.process_batch_result_decode(batch, result, launch_done)
2054
2055
2056
2057
2058
2059
2060
2061
            for req in batch.reqs:
                trace_slice(
                    "decode loop",
                    req.rid,
                    auto_next_anon=not req.finished(),
                    thread_finish_flag=req.finished(),
                )

2062
        elif batch.forward_mode.is_extend():
2063
            self.process_batch_result_prefill(batch, result, launch_done)
2064
2065
2066
2067
2068
2069
2070
            for req in batch.reqs:
                trace_slice(
                    "prefill",
                    req.rid,
                    auto_next_anon=not req.finished(),
                    thread_finish_flag=req.finished(),
                )
2071
2072
        elif batch.forward_mode.is_idle():
            if self.enable_overlap:
2073
                self.tp_worker.resolve_last_batch_result(launch_done)
2074
                self.set_next_batch_sampling_info_done(batch)
2075
        elif batch.forward_mode.is_dummy_first():
2076
            self.set_next_batch_sampling_info_done(batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
2077

2078
2079
2080
        self.maybe_send_health_check_signal()

    def maybe_send_health_check_signal(self):
2081
2082
2083
2084
2085
2086
2087
        if self.return_health_check_ct:
            # Return some signal for the health check.
            # This is used to prevent the health check signal being blocked by long context prefill.
            # However, one minor issue is that this code path does not check the status of detokenizer manager.
            self.return_health_check_ct -= 1
            self.send_to_tokenizer.send_pyobj(HealthCheckOutput())

2088
2089
    def prepare_mlp_sync_batch(self, local_batch: ScheduleBatch):
        return self.prepare_mlp_sync_batch_raw(
2090
2091
2092
            local_batch,
            dp_size=self.server_args.dp_size,
            attn_tp_size=self.attn_tp_size,
2093
            tp_group=self.tp_group,
2094
2095
2096
2097
            get_idle_batch=self.get_idle_batch,
            disable_cuda_graph=self.server_args.disable_cuda_graph,
            spec_algorithm=self.spec_algorithm,
            speculative_num_draft_tokens=self.server_args.speculative_num_draft_tokens,
2098
            require_mlp_tp_gather=require_mlp_tp_gather(self.server_args),
2099
            disable_overlap_schedule=self.server_args.disable_overlap_schedule,
2100
2101
2102
        )

    @staticmethod
2103
    def prepare_mlp_sync_batch_raw(
2104
2105
2106
        local_batch: ScheduleBatch,
        dp_size,
        attn_tp_size: int,
2107
        tp_group,
2108
2109
2110
2111
        get_idle_batch,
        disable_cuda_graph: bool,
        spec_algorithm,
        speculative_num_draft_tokens,
2112
        require_mlp_tp_gather: bool,
2113
        disable_overlap_schedule: bool,
2114
    ):
2115
2116
2117
        # Check if other DP workers have running batches
        if local_batch is None:
            num_tokens = 0
2118
            num_tokens_for_logprob = 0
2119
2120
        elif local_batch.forward_mode.is_decode():
            num_tokens = local_batch.batch_size()
2121
            num_tokens_for_logprob = num_tokens
2122
2123
        else:
            num_tokens = local_batch.extend_num_tokens
2124
            num_tokens_for_logprob = sum(
Lianmin Zheng's avatar
Lianmin Zheng committed
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
                [
                    # We should have at least 1 token for sample in every case.
                    max(extend_len - logprob_start_len, 1)
                    for logprob_start_len, extend_len in zip(
                        local_batch.extend_logprob_start_lens, local_batch.extend_lens
                    )
                ]
            )

        if local_batch is None or local_batch.forward_mode.is_decode_or_idle():
            can_cuda_graph = 1
        else:
            can_cuda_graph = 0

        is_extend_in_batch = (
            local_batch.forward_mode.is_extend() if local_batch else False
        )
2142
2143

        tbo_preparer = TboDPAttentionPreparer()
2144
2145
2146
2147
2148
2149
        if disable_overlap_schedule:
            group = tp_group.device_group
            device = tp_group.device
        else:
            group = tp_group.cpu_group
            device = "cpu"
2150

Lianmin Zheng's avatar
Lianmin Zheng committed
2151
2152
2153
2154
        local_info = torch.tensor(
            [
                num_tokens,
                can_cuda_graph,
2155
                num_tokens_for_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
2156
                is_extend_in_batch,
2157
2158
2159
                *tbo_preparer.prepare_all_gather(
                    local_batch,
                ),
Lianmin Zheng's avatar
Lianmin Zheng committed
2160
2161
            ],
            dtype=torch.int64,
2162
            device=device,
Lianmin Zheng's avatar
Lianmin Zheng committed
2163
2164
        )
        global_info = torch.empty(
2165
            (dp_size, attn_tp_size, 6),
Lianmin Zheng's avatar
Lianmin Zheng committed
2166
            dtype=torch.int64,
2167
            device=device,
Lianmin Zheng's avatar
Lianmin Zheng committed
2168
        )
2169
        torch.distributed.all_gather_into_tensor(
Lianmin Zheng's avatar
Lianmin Zheng committed
2170
2171
            global_info.flatten(),
            local_info,
2172
            group=group,
2173
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2174
2175
2176
2177
        global_num_tokens = global_info[:, 0, 0].tolist()
        can_cuda_graph = min(global_info[:, 0, 1].tolist())
        global_num_tokens_for_logprob = global_info[:, 0, 2].tolist()
        is_extend_in_batch = global_info[:, 0, 3].tolist()
2178

2179
2180
2181
2182
        tbo_split_seq_index, global_forward_mode = tbo_preparer.compute_output(
            global_info[:, :, 4:6]
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2183
        if local_batch is None and max(global_num_tokens) > 0:
2184
            local_batch = get_idle_batch()
2185
2186

        if local_batch is not None:
2187
            # TODO: handle the case when moe_dense_tp_size != 1
2188
            if not require_mlp_tp_gather:
2189
2190
2191
2192
2193
2194
2195
                local_batch.global_num_tokens = [num_tokens]
                local_batch.global_num_tokens_for_logprob = [num_tokens_for_logprob]
            else:
                local_batch.global_num_tokens = global_num_tokens
                local_batch.global_num_tokens_for_logprob = (
                    global_num_tokens_for_logprob
                )
2196
            local_batch.is_extend_in_batch = any(is_extend_in_batch)
2197
2198
            local_batch.tbo_split_seq_index = tbo_split_seq_index
            local_batch.global_forward_mode = global_forward_mode
2199

2200
            # Check forward mode for cuda graph
2201
            if not disable_cuda_graph:
Lianmin Zheng's avatar
Lianmin Zheng committed
2202
                local_batch.can_run_dp_cuda_graph = can_cuda_graph
2203

2204
        return local_batch
2205
2206
2207
2208
2209

    def get_idle_batch(self):
        idle_batch = ScheduleBatch.init_new(
            [],
            self.req_to_token_pool,
2210
            self.token_to_kv_pool_allocator,
2211
2212
2213
            self.tree_cache,
            self.model_config,
            self.enable_overlap,
2214
            self.spec_algorithm,
2215
2216
2217
2218
        )
        idle_batch.prepare_for_idle()
        return idle_batch

2219
2220
    def move_ready_grammar_requests(self):
        """Move requests whose grammar objects are ready from grammar_queue to waiting_queue."""
2221

2222
        num_ready_reqs = 0
2223
        num_timeout_reqs = 0
2224
2225
        for req in self.grammar_queue:
            try:
2226
2227
2228
                if req.finished():  # It is aborted by AbortReq
                    num_ready_reqs += 1
                    continue
2229
                req.grammar = req.grammar.result(timeout=0.03)
2230
2231
2232
2233
2234
                self.grammar_backend.set_cache(req.grammar_key, req.grammar.copy())
                if req.grammar is INVALID_GRAMMAR_OBJ:
                    req.set_finish_with_abort(
                        f"Invalid grammar request: {req.grammar_key=}"
                    )
2235
2236
                num_ready_reqs += 1
            except futures._base.TimeoutError:
2237
                req.grammar_wait_ct += 1
2238
2239
                # NOTE(lianmin): this timeout is the waiting time of the above line. It is
                # not the waiting time from it enters the grammar queue.
2240
                if req.grammar_wait_ct > GRAMMAR_TIMEOUT / 0.03:
2241
                    num_timeout_reqs = 1
2242
2243
                break

2244
        if self.server_args.enable_dp_attention:
2245
2246
            tp_size = self.attn_tp_size
            tp_group = self.attn_tp_cpu_group
2247
        else:
2248
2249
2250
2251
2252
            tp_size = self.tp_size
            tp_group = self.tp_cpu_group

        if tp_size > 1:
            # Sync across TP ranks to make sure they have the same number of ready requests
2253
            tensor = torch.tensor([num_ready_reqs, num_timeout_reqs], dtype=torch.int32)
2254
2255
2256
            torch.distributed.all_reduce(
                tensor, op=torch.distributed.ReduceOp.MAX, group=tp_group
            )
2257
            num_ready_reqs_max, num_timeout_reqs_max = tensor.tolist()
2258

2259
            for i in range(num_ready_reqs, num_ready_reqs_max):
2260
                req = self.grammar_queue[i]
2261
2262
                if req.finished():  # It is aborted by AbortReq
                    continue
2263
                req.grammar = req.grammar.result()
2264
2265
2266
2267
2268
2269
2270
2271
                self.grammar_backend.set_cache(req.grammar_key, req.grammar.copy())
                if req.grammar is INVALID_GRAMMAR_OBJ:
                    req.set_finish_with_abort(
                        f"Invalid grammar request: {req.grammar_key=}"
                    )
        else:
            num_ready_reqs_max = num_ready_reqs
            num_timeout_reqs_max = num_timeout_reqs
2272

2273
2274
2275
2276
2277
2278
2279
        for i in range(num_ready_reqs, num_ready_reqs + num_timeout_reqs_max):
            req = self.grammar_queue[i]
            req.grammar.cancel()
            error_msg = f"Grammar preprocessing timed out for {req.grammar_key=}"
            req.set_finish_with_abort(error_msg)
            self.grammar_backend.set_cache(req.grammar_key, INVALID_GRAMMAR_OBJ)
        num_ready_reqs = num_ready_reqs_max + num_timeout_reqs_max
2280

2281
        self._extend_requests_to_queue(self.grammar_queue[:num_ready_reqs])
2282
2283
        self.grammar_queue = self.grammar_queue[num_ready_reqs:]

2284
2285
2286
2287
2288
2289
2290
    def set_next_batch_sampling_info_done(self, batch: ScheduleBatch):
        if batch.next_batch_sampling_info:
            if batch.next_batch_sampling_info.grammars is not None:
                batch.next_batch_sampling_info.update_regex_vocab_mask()
                self.current_stream.synchronize()
            batch.next_batch_sampling_info.sampling_info_done.set()

2291
2292
2293
    def watchdog_thread(self):
        """A watch dog thread that will try to kill the server itself if one forward batch takes too long."""
        self.watchdog_last_forward_ct = 0
2294
        self.watchdog_last_time = time.perf_counter()
2295
2296

        while True:
2297
            current = time.perf_counter()
2298
2299
2300
2301
2302
2303
2304
2305
2306
            if self.cur_batch is not None:
                if self.watchdog_last_forward_ct == self.forward_ct:
                    if current > self.watchdog_last_time + self.watchdog_timeout:
                        break
                else:
                    self.watchdog_last_forward_ct = self.forward_ct
                    self.watchdog_last_time = current
            time.sleep(self.watchdog_timeout // 2)

Lianmin Zheng's avatar
Lianmin Zheng committed
2307
2308
        if not disable_request_logging():
            # Print batch size and memory pool info to check whether there are de-sync issues.
Hanming Lu's avatar
Hanming Lu committed
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
            if self.is_hybrid:
                (
                    _,
                    _,
                    _,
                    _,
                    full_available_size,
                    full_evictable_size,
                    swa_available_size,
                    swa_evictable_size,
                ) = self._get_swa_token_info()
                info_msg = (
                    f"{full_available_size=}, "
                    f"{full_evictable_size=}, "
                    f"{swa_available_size=}, "
                    f"{swa_evictable_size=}, "
                )
            else:
                _, _, available_size, evictable_size = self._get_token_info()
                info_msg = f"{available_size=}, " f"{evictable_size=}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
2329
2330
2331
            logger.error(
                f"{self.cur_batch.batch_size()=}, "
                f"{self.cur_batch.reqs=}, "
Hanming Lu's avatar
Hanming Lu committed
2332
                f"{info_msg}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2333
2334
            )

2335
        pyspy_dump_schedulers()
Lianmin Zheng's avatar
Lianmin Zheng committed
2336
        logger.error(f"Watchdog timeout ({self.watchdog_timeout=})")
2337
2338
        print(file=sys.stderr, flush=True)
        print(file=sys.stdout, flush=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
2339
2340

        # Wait for some time so that the parent process can print the error.
2341
2342
2343
        time.sleep(5)
        self.parent_process.send_signal(signal.SIGQUIT)

2344
2345
2346
    def flush_cache_wrapped(self, recv_req: FlushCacheReqInput):
        success = self.flush_cache()
        return FlushCacheReqOutput(success=success)
2347

2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
    def clear_hicache_storage_wrapped(self, recv_req: ClearHiCacheReqInput):
        if self.enable_hierarchical_cache:
            self.tree_cache.clear_storage_backend()
            logger.info("Hierarchical cache cleared successfully!")
            if_success = True
        else:
            logging.warning("Hierarchical cache is not enabled.")
            if_success = False
        return ClearHiCacheReqOutput(success=if_success)

2358
    def flush_cache(self):
2359
        """Flush the memory pool and cache."""
2360
2361
2362
2363
2364
        if (
            len(self.waiting_queue) == 0
            and self.running_batch.is_empty()
            and (self.pp_size == 1 or all(x.is_empty() for x in self.running_mbs))
        ):
2365
2366
            self.cur_batch = None
            self.last_batch = None
2367
            self.tree_cache.reset()
2368
            if self.grammar_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
2369
                self.grammar_backend.reset()
2370
            self.req_to_token_pool.clear()
2371
            self.token_to_kv_pool_allocator.clear()
2372

2373
2374
            if self.draft_worker:
                self.draft_worker.clear_cache_pool()
2375
2376
2377
2378
2379

            self.num_generated_tokens = 0
            self.forward_ct_decode = 0
            self.spec_num_total_accepted_tokens = 0
            self.spec_num_total_forward_ct = 0
2380
2381
            self.cum_spec_accept_length = 0
            self.cum_spec_accept_count = 0
2382
2383
2384
2385
2386
2387
2388
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
2389
                f"#running-req: {len(self.running_batch.reqs)}"
2390
2391
2392
2393
            )
            if_success = False
        return if_success

2394
    def get_load(self, recv_req: GetLoadReqInput = None) -> GetLoadReqOutput:
Liangsheng Yin's avatar
Liangsheng Yin committed
2395
        # TODO(lsyin): use dynamically maintained num_waiting_tokens
2396

Hanming Lu's avatar
Hanming Lu committed
2397
        if self.is_hybrid:
2398
            num_tokens_full = (
Hanming Lu's avatar
Hanming Lu committed
2399
2400
2401
2402
                self.full_tokens_per_layer
                - self.token_to_kv_pool_allocator.full_available_size()
                - self.tree_cache.full_evictable_size()
            )
2403
            num_tokens_swa = (
Hanming Lu's avatar
Hanming Lu committed
2404
2405
2406
2407
                self.swa_tokens_per_layer
                - self.token_to_kv_pool_allocator.swa_available_size()
                - self.tree_cache.swa_evictable_size()
            )
2408
            num_tokens = max(num_tokens_full, num_tokens_swa)
Hanming Lu's avatar
Hanming Lu committed
2409
        else:
2410
            num_tokens = (
Hanming Lu's avatar
Hanming Lu committed
2411
2412
2413
2414
                self.max_total_num_tokens
                - self.token_to_kv_pool_allocator.available_size()
                - self.tree_cache.evictable_size()
            )
2415
2416
2417
2418

        # Tokens in waiting queue, bootstrap queue, prealloc queue
        num_tokens += sum(len(req.origin_input_ids) for req in self.waiting_queue)
        num_waiting_reqs = len(self.waiting_queue)
Liangsheng Yin's avatar
Liangsheng Yin committed
2419
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
2420
            num_tokens += sum(
Liangsheng Yin's avatar
Liangsheng Yin committed
2421
2422
2423
                len(req.origin_input_ids)
                for req in self.disagg_prefill_bootstrap_queue.queue
            )
2424
            num_waiting_reqs += len(self.disagg_prefill_bootstrap_queue.queue)
Liangsheng Yin's avatar
Liangsheng Yin committed
2425
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
2426
            num_tokens += sum(
Liangsheng Yin's avatar
Liangsheng Yin committed
2427
2428
2429
                len(req.req.origin_input_ids)
                for req in self.disagg_decode_prealloc_queue.queue
            )
2430
            num_waiting_reqs += len(self.disagg_decode_prealloc_queue.queue)
Liangsheng Yin's avatar
Liangsheng Yin committed
2431

2432
2433
2434
2435
2436
2437
        return GetLoadReqOutput(
            dp_rank=self.dp_rank,
            num_reqs=len(self.running_batch.reqs) + num_waiting_reqs,
            num_waiting_reqs=num_waiting_reqs,
            num_tokens=num_tokens,
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
2438

2439
2440
2441
    def get_internal_state(self, recv_req: GetInternalStateReq):
        ret = dict(global_server_args_dict)
        ret["last_gen_throughput"] = self.last_gen_throughput
2442
2443
2444
2445
2446
2447
2448
2449
2450
        ret["memory_usage"] = {
            "weight": round(
                self.tp_worker.worker.model_runner.weight_load_mem_usage, 2
            ),
            "kvcache": round(
                self.token_to_kv_pool_allocator.get_kvcache().mem_usage, 2
            ),
            "token_capacity": int(self.max_total_num_tokens),
        }
2451

2452
2453
2454
        ret["memory_usage"]["graph"] = round(
            self.tp_worker.worker.model_runner.graph_mem_usage, 2
        )
2455

2456
2457
2458
2459
2460
2461
        if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
            ret["avg_spec_accept_length"] = (
                self.cum_spec_accept_length / self.cum_spec_accept_count
            )
        if RECORD_STEP_TIME:
            ret["step_time_dict"] = self.step_time_dict
Liangsheng Yin's avatar
Liangsheng Yin committed
2462
2463

        return GetInternalStateReqOutput(internal_state=ret)
2464
2465
2466
2467
2468

    def set_internal_state(self, recv_req: SetInternalStateReq):
        server_args_dict = recv_req.server_args
        args_allow_update = set(
            [
2469
                "max_micro_batch_size",
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
                "speculative_accept_threshold_single",
                "speculative_accept_threshold_acc",
            ]
        )
        if_success = True
        for k, v in server_args_dict.items():
            if k not in args_allow_update:
                logging.warning(f"Updating {k} is not supported.")
                if_success = False
                break
2480
2481
2482
2483
2484
2485
2486
2487
            elif k == "max_micro_batch_size" and (
                v > self.max_running_requests // self.pp_size or v < 1
            ):
                logging.warning(
                    f"Updating {k} to {v} is rejected because it is out of the valid range [1, {self.max_running_requests // self.pp_size}]."
                )
                if_success = False
                break
2488
2489
2490
2491
2492
2493
2494
2495
2496
        if if_success:
            if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
                avg_spec_accept_length = (
                    self.cum_spec_accept_length / self.cum_spec_accept_count
                )
                logger.info(f"{avg_spec_accept_length=}")
            self.cum_spec_accept_length = self.cum_spec_accept_count = 0
            for k, v in server_args_dict.items():
                global_server_args_dict[k] = v
2497
            logger.info(f"Global server args updated! {global_server_args_dict=}")
2498
2499
2500
2501
2502
        return SetInternalStateReqOutput(
            updated=True,
            server_args=global_server_args_dict,
        )

2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
    def handle_rpc_request(self, recv_req: RpcReqInput):
        # Handle RPC requests
        logger.info(
            f"handle_rpc_request: {recv_req.method}, param: {recv_req.parameters}"
        )

        success = True
        exec = None
        try:
            func = getattr(self, recv_req.method)
            func(recv_req.parameters)
        except Exception as e:
            success = False
            exec = e
            logger.error(f"Failed to call rpc {recv_req.method}: {str(e)}")

        barrier()
        return RpcReqOutput(success, "" if not exec else str(exec))

2522
2523
    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
Lianmin Zheng's avatar
Lianmin Zheng committed
2524
        to_del = []
2525
        for i, req in enumerate(self.waiting_queue):
2526
            if recv_req.abort_all or req.rid.startswith(recv_req.rid):
Lianmin Zheng's avatar
Lianmin Zheng committed
2527
                to_del.append(i)
2528

Lianmin Zheng's avatar
Lianmin Zheng committed
2529
        # Sort in reverse order to avoid index issues when deleting
Lianmin Zheng's avatar
Lianmin Zheng committed
2530
        for i in reversed(to_del):
2531
2532
2533
            # Abort method 1: directly pop from the queue
            # This only works for requests that have not started anything.
            # We still need to send something back to TokenizerManager to clean up the state.
Lianmin Zheng's avatar
Lianmin Zheng committed
2534
            req = self.waiting_queue.pop(i)
2535
2536
2537
            if self.enable_hicache_storage:
                # to release prefetch events associated with the request
                self.tree_cache.release_aborted_request(req.rid)
Lianmin Zheng's avatar
Lianmin Zheng committed
2538
            self.send_to_tokenizer.send_pyobj(AbortReq(req.rid))
2539
2540
2541
2542
            # For disaggregation decode mode, the request in the waiting queue has KV cache allocated.
            if self.disaggregation_mode == DisaggregationMode.DECODE:
                self.tree_cache.cache_finished_req(req)

2543
            logger.debug(f"Abort queued request. {req.rid=}")
2544

2545
2546
2547
2548
2549
        # Delete the requests in the grammar queue
        for req in self.grammar_queue:
            # Abort method 2: call `set_finish_with_abort`
            # The request will still run one prefill forward pass.
            # In this case, we change the input_ids to be only one token to make this prefill cheap.
2550
            if recv_req.abort_all or req.rid.startswith(recv_req.rid):
2551
                logger.debug(f"Abort grammar queue request. {req.rid=}")
2552
2553
                if req.grammar:
                    req.grammar.cancel()
2554
2555
                req.set_finish_with_abort("Aborted by AbortReq.")

2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
        # Delete requests not in the waiting queue when PD disaggregation is enabled
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            # Abort requests that have not yet been bootstrapped
            for i, req in enumerate(self.disagg_prefill_bootstrap_queue.queue):
                logger.debug(f"Abort bootstrap queue request. {req.rid=}")
                if recv_req.abort_all or req.rid.startswith(recv_req.rid):
                    if hasattr(req.disagg_kv_sender, "abort"):
                        req.disagg_kv_sender.abort()

            # Abort in-flight requests
            for i, req in enumerate(self.disagg_prefill_inflight_queue):
                logger.debug(f"Abort inflight queue request. {req.rid=}")
                if recv_req.abort_all or req.rid.startswith(recv_req.rid):
                    if hasattr(req.disagg_kv_sender, "abort"):
                        req.disagg_kv_sender.abort()

        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            # Abort requests that have not yet finished preallocation
            for i, decode_req in enumerate(self.disagg_decode_prealloc_queue.queue):
                logger.debug(f"Abort prealloc queue request. {decode_req.req.rid=}")
                if recv_req.abort_all or decode_req.req.rid.startswith(recv_req.rid):
                    if hasattr(decode_req.kv_receiver, "abort"):
                        decode_req.kv_receiver.abort()

            # Abort requests waiting for kvcache to release tree cache
            for i, decode_req in enumerate(self.disagg_decode_transfer_queue.queue):
                logger.debug(f"Abort transfer queue request. {decode_req.req.rid=}")
                if recv_req.abort_all or decode_req.req.rid.startswith(recv_req.rid):
                    if hasattr(decode_req.kv_receiver, "abort"):
                        decode_req.kv_receiver.abort()

2587
        # Delete requests in the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
2588
2589
2590
2591
2592
2593
        if self.cur_batch is self.running_batch or self.cur_batch is None:
            reqs = self.running_batch.reqs
        else:
            reqs = self.running_batch.reqs + self.cur_batch.reqs

        for req in reqs:
2594
2595
2596
            if not req.finished() and (
                recv_req.abort_all or req.rid.startswith(recv_req.rid)
            ):
2597
2598
2599
                # Abort method 3: set `to_abort=True`
                # The request will still run one decode forward pass.
                # Then we reuse all existing code to clean up the KV cache allocation.
Lianmin Zheng's avatar
Lianmin Zheng committed
2600
2601
                logger.debug(f"Abort running request. {req.rid=}")
                req.to_abort = True
2602

2603
2604
2605
    def _pause_engine(self) -> Tuple[List[Req], int]:
        raise NotImplementedError()

2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
    def load_lora_adapter(
        self, recv_req: LoadLoRAAdapterReqInput
    ) -> LoadLoRAAdapterReqOutput:
        """In-place loading a new lora adapter from disk or huggingface."""

        result = self.tp_worker.load_lora_adapter(recv_req)
        return result

    def unload_lora_adapter(
        self, recv_req: UnloadLoRAAdapterReqInput
    ) -> UnloadLoRAAdapterReqOutput:
        """Unload the lora adapter."""

        result = self.tp_worker.unload_lora_adapter(recv_req)
        return result

2622
2623
2624
2625
    def register_multi_tokenizer(self, recv_req: MultiTokenizerRegisterReq):
        self.send_to_detokenizer.send_pyobj(recv_req)
        return recv_req

2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
    def init_weights_send_group_for_remote_instance(
        self, recv_req: InitWeightsSendGroupForRemoteInstanceReqInput
    ):
        """Init the seed and client instance communication group."""
        success, message = self.tp_worker.init_weights_send_group_for_remote_instance(
            recv_req
        )
        return InitWeightsSendGroupForRemoteInstanceReqOutput(success, message)

    def send_weights_to_remote_instance(
        self, recv_req: SendWeightsToRemoteInstanceReqInput
    ):
        """Send the seed instance weights to the destination instance."""
        success, message = self.tp_worker.send_weights_to_remote_instance(recv_req)
        return SendWeightsToRemoteInstanceReqOutput(success, message)

2642
2643
2644
2645
2646
2647
2648
    def slow_down(self, recv_req: SlowDownReqInput):
        t = recv_req.forward_sleep_time
        if t is not None and t <= 0:
            t = None
        self.forward_sleep_time = t
        return SlowDownReqOutput()

2649
2650
    def expert_distribution_handle(self, recv_req: ExpertDistributionReq):
        if recv_req == ExpertDistributionReq.START_RECORD:
2651
            get_global_expert_distribution_recorder().start_record()
2652
        elif recv_req == ExpertDistributionReq.STOP_RECORD:
2653
            get_global_expert_distribution_recorder().stop_record()
2654
        elif recv_req == ExpertDistributionReq.DUMP_RECORD:
2655
            get_global_expert_distribution_recorder().dump_record()
2656
        else:
2657
            raise ValueError(f"Unrecognized ExpertDistributionReq value: {recv_req=}")
2658
        return ExpertDistributionReqOutput()
2659

2660
    def open_session(self, recv_req: OpenSessionReqInput):
2661
2662
2663
2664
        # handle error
        session_id = recv_req.session_id
        if session_id in self.sessions:
            logger.warning(f"session id {session_id} already exist, cannot open.")
2665
            return OpenSessionReqOutput(session_id, False)
2666
        elif session_id is None:
2667
            logger.warning("session id is None, cannot open.")
2668
            return OpenSessionReqOutput(session_id, False)
2669
2670
2671
2672
        else:
            self.sessions[session_id] = Session(
                recv_req.capacity_of_str_len, session_id
            )
2673
            return OpenSessionReqOutput(session_id, True)
2674
2675
2676
2677
2678
2679
2680
2681
2682

    def close_session(self, recv_req: CloseSessionReqInput):
        # handle error
        session_id = recv_req.session_id
        if session_id not in self.sessions:
            logger.warning(f"session id {session_id} does not exist, cannot delete.")
        else:
            del self.sessions[session_id]

2683
2684
    def get_print_prefix(self):
        prefix = ""
2685
2686
        if self.attn_dp_rank is not None:
            prefix += f" DP{self.attn_dp_rank}"
2687
2688
2689
2690
2691
2692
        if self.server_args.tp_size > 1:
            prefix += f" TP{self.tp_rank}"
        if self.pp_size > 1:
            prefix += f" PP{self.pp_rank}"
        return prefix

2693
2694
    def current_scheduler_metrics_enabled(self):
        return self.attn_tp_rank == 0 or self.enable_metrics_for_all_schedulers
2695

2696
2697
2698
    def maybe_sleep_on_idle(self):
        if self.idle_sleeper is not None:
            self.idle_sleeper.maybe_sleep()
2699

2700
2701
2702
2703
2704
2705
    def handle_freeze_gc(self, recv_req: FreezeGCReq):
        """Handle freeze_gc request: freeze scheduler's GC and forward to detokenizer."""
        freeze_gc("Scheduler")
        self.send_to_detokenizer.send_pyobj(recv_req)
        return None

2706

2707
2708
2709
2710
2711
2712
2713
class IdleSleeper:
    """
    In setups which have long inactivity periods it is desirable to reduce
    system power consumption when sglang does nothing. This would lead not only
    to power savings, but also to more CPU thermal headroom when a request
    eventually comes. This is important in cases when multiple GPUs are connected
    as each GPU would otherwise pin one thread at 100% CPU usage.
2714

2715
2716
2717
    The simplest solution is to use zmq.Poller on all sockets that may receive
    data that needs handling immediately.
    """
2718

2719
2720
    def __init__(self, sockets):
        self.poller = zmq.Poller()
2721
        self.last_empty_time = time.time()
2722
2723
2724
2725
2726
        for s in sockets:
            self.poller.register(s, zmq.POLLIN)

    def maybe_sleep(self):
        self.poller.poll(1000)
2727
2728
2729
2730
2731
2732
2733
        if (
            global_config.torch_empty_cache_interval > 0
            and time.time() - self.last_empty_time
            > global_config.torch_empty_cache_interval
        ):
            self.last_empty_time = time.time()
            torch.cuda.empty_cache()
2734

2735

2736
2737
def is_health_check_generate_req(recv_req):
    return getattr(recv_req, "rid", "").startswith("HEALTH_CHECK")
2738

2739
2740

def is_work_request(recv_req):
2741
2742
2743
2744
2745
2746
2747
2748
2749
    return isinstance(
        recv_req,
        (
            TokenizedGenerateReqInput,
            TokenizedEmbeddingReqInput,
            BatchTokenizedGenerateReqInput,
            BatchTokenizedEmbeddingReqInput,
        ),
    )
2750
2751


2752
2753
2754
2755
2756
def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
Cheng Wan's avatar
Cheng Wan committed
2757
    moe_ep_rank: int,
2758
    pp_rank: int,
2759
    dp_rank: Optional[int],
2760
    pipe_writer,
2761
    balance_meta: Optional[DPBalanceMeta] = None,
2762
):
2763
2764
2765
2766
2767
2768
    if server_args.enable_trace:
        process_tracing_init(server_args.oltp_traces_endpoint, "sglang")
        if server_args.disaggregation_mode == "null":
            thread_label = "Scheduler"
            trace_set_thread_info(thread_label, tp_rank, dp_rank)

2769
2770
2771
    if (numa_node := server_args.numa_node) is not None:
        numa_bind_to_node(numa_node[gpu_id])

2772
    # Generate the prefix
2773
2774
2775
2776
2777
    prefix = ""
    if dp_rank is not None:
        prefix += f" DP{dp_rank}"
    if server_args.tp_size > 1:
        prefix += f" TP{tp_rank}"
Cheng Wan's avatar
Cheng Wan committed
2778
2779
    if server_args.ep_size > 1:
        prefix += f" EP{moe_ep_rank}"
2780
2781
    if server_args.pp_size > 1:
        prefix += f" PP{pp_rank}"
2782

2783
    # Config the process
2784
    setproctitle.setproctitle(f"sglang::scheduler{prefix.replace(' ', '_')}")
2785
    faulthandler.enable()
2786
    kill_itself_when_parent_died()
2787
    parent_process = psutil.Process().parent()
2788

2789
2790
2791
    # [For Router] if env var "SGLANG_DP_RANK" exist, set dp_rank to the value of the env var
    if dp_rank is None and "SGLANG_DP_RANK" in os.environ:
        dp_rank = int(os.environ["SGLANG_DP_RANK"])
2792

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
2793
    # Configure the logger
2794
    configure_logger(server_args, prefix=prefix)
2795
    suppress_other_loggers()
2796

2797
    # Set cpu affinity to this gpu process
2798
2799
2800
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
        set_gpu_proc_affinity(server_args.tp_size, server_args.nnodes, gpu_id)

2801
    # Create a scheduler and run the event loop
2802
    try:
Cheng Wan's avatar
Cheng Wan committed
2803
        scheduler = Scheduler(
2804
2805
2806
2807
2808
2809
2810
2811
            server_args,
            port_args,
            gpu_id,
            tp_rank,
            moe_ep_rank,
            pp_rank,
            dp_rank,
            dp_balance_meta=balance_meta,
Cheng Wan's avatar
Cheng Wan committed
2812
        )
2813
        pipe_writer.send(
Mick's avatar
Mick committed
2814
2815
2816
2817
2818
            {
                "status": "ready",
                "max_total_num_tokens": scheduler.max_total_num_tokens,
                "max_req_input_len": scheduler.max_req_input_len,
            }
2819
        )
Byron Hsu's avatar
Byron Hsu committed
2820

2821
        disaggregation_mode: DisaggregationMode = scheduler.disaggregation_mode
Byron Hsu's avatar
Byron Hsu committed
2822
        if disaggregation_mode == DisaggregationMode.NULL:
2823
2824
2825
            if server_args.pp_size > 1:
                scheduler.event_loop_pp()
            elif scheduler.enable_overlap:
Byron Hsu's avatar
Byron Hsu committed
2826
2827
2828
2829
                scheduler.event_loop_overlap()
            else:
                scheduler.event_loop_normal()
        elif disaggregation_mode == DisaggregationMode.PREFILL:
2830
2831
2832
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_prefill()
            else:
2833
2834
2835
2836
                if server_args.pp_size > 1:
                    scheduler.event_loop_pp_disagg_prefill()
                else:
                    scheduler.event_loop_normal_disagg_prefill()
2837

Byron Hsu's avatar
Byron Hsu committed
2838
        elif disaggregation_mode == DisaggregationMode.DECODE:
2839
2840
2841
2842
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_decode()
            else:
                scheduler.event_loop_normal_disagg_decode()
Byron Hsu's avatar
Byron Hsu committed
2843

2844
    except Exception:
2845
2846
2847
        traceback = get_exception_traceback()
        logger.error(f"Scheduler hit an exception: {traceback}")
        parent_process.send_signal(signal.SIGQUIT)