scheduler.py 121 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""A scheduler that manages a tensor parallel GPU worker."""

16
import faulthandler
17
import logging
18
import os
19
import signal
20
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
21
import threading
22
import time
23
from collections import deque
Lianmin Zheng's avatar
Lianmin Zheng committed
24
from concurrent import futures
25
from dataclasses import dataclass
26
from http import HTTPStatus
27
from types import SimpleNamespace
28
from typing import Deque, Dict, List, Optional, Tuple, Union
29

30
import psutil
31
import setproctitle
32
import torch
33
import zmq
34
35
from torch.cuda import Stream as CudaStream
from torch.cuda import StreamContext as CudaStreamContext
36
from torch.distributed import barrier
37

38
from sglang.global_config import global_config
Lianmin Zheng's avatar
Lianmin Zheng committed
39
from sglang.srt.configs.model_config import ModelConfig
40
41
42
43
from sglang.srt.constrained.base_grammar_backend import (
    INVALID_GRAMMAR_OBJ,
    create_grammar_backend,
)
Byron Hsu's avatar
Byron Hsu committed
44
45
46
47
48
from sglang.srt.disaggregation.decode import (
    DecodePreallocQueue,
    DecodeTransferQueue,
    SchedulerDisaggregationDecodeMixin,
)
49
50
51
from sglang.srt.disaggregation.decode_kvcache_offload_manager import (
    DecodeKVCacheOffloadManager,
)
Byron Hsu's avatar
Byron Hsu committed
52
53
54
55
56
57
from sglang.srt.disaggregation.prefill import (
    PrefillBootstrapQueue,
    SchedulerDisaggregationPrefillMixin,
)
from sglang.srt.disaggregation.utils import (
    DisaggregationMode,
58
    MetadataBuffers,
Byron Hsu's avatar
Byron Hsu committed
59
    ReqToMetadataIdxAllocator,
60
    TransferBackend,
61
    prepare_abort,
Byron Hsu's avatar
Byron Hsu committed
62
)
63
from sglang.srt.distributed import get_pp_group, get_world_group
fzyzcjy's avatar
fzyzcjy committed
64
from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
65
from sglang.srt.layers.dp_attention import compute_dp_attention_world_info
66
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
67
from sglang.srt.layers.moe import initialize_moe_config
68
69
from sglang.srt.managers.io_struct import (
    AbortReq,
70
71
    BatchTokenizedEmbeddingReqInput,
    BatchTokenizedGenerateReqInput,
72
73
    ClearHiCacheReqInput,
    ClearHiCacheReqOutput,
74
    CloseSessionReqInput,
75
    DestroyWeightsUpdateGroupReqInput,
76
    ExpertDistributionReq,
77
    ExpertDistributionReqOutput,
78
    ExpertDistributionReqType,
79
80
    FlushCacheReqInput,
    FlushCacheReqOutput,
81
    FreezeGCReq,
82
83
    GetInternalStateReq,
    GetInternalStateReqOutput,
84
85
    GetLoadReqInput,
    GetLoadReqOutput,
86
    GetWeightsByNameReqInput,
87
    HealthCheckOutput,
88
89
    InitWeightsSendGroupForRemoteInstanceReqInput,
    InitWeightsSendGroupForRemoteInstanceReqOutput,
90
    InitWeightsUpdateGroupReqInput,
91
92
    LoadLoRAAdapterReqInput,
    LoadLoRAAdapterReqOutput,
93
    MultiTokenizerRegisterReq,
94
    MultiTokenizerWrapper,
95
96
    OpenSessionReqInput,
    OpenSessionReqOutput,
97
    ProfileReq,
98
99
    ReleaseMemoryOccupationReqInput,
    ResumeMemoryOccupationReqInput,
100
101
    RpcReqInput,
    RpcReqOutput,
102
103
    SendWeightsToRemoteInstanceReqInput,
    SendWeightsToRemoteInstanceReqOutput,
104
105
    SetInternalStateReq,
    SetInternalStateReqOutput,
106
107
    SlowDownReqInput,
    SlowDownReqOutput,
108
109
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
110
111
    UnloadLoRAAdapterReqInput,
    UnloadLoRAAdapterReqOutput,
Chayenne's avatar
Chayenne committed
112
    UpdateWeightFromDiskReqInput,
113
    UpdateWeightsFromDistributedReqInput,
114
    UpdateWeightsFromTensorReqInput,
115
)
116
from sglang.srt.managers.mm_utils import init_embedding_cache
117
from sglang.srt.managers.overlap_utils import FutureIndices, FutureMap
118
119
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
120
    ModelWorkerBatch,
Mick's avatar
Mick committed
121
    MultimodalInputs,
122
    Req,
123
    RequestStage,
124
    ScheduleBatch,
125
    global_server_args_dict,
126
)
127
128
129
130
131
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
fzyzcjy's avatar
fzyzcjy committed
132
from sglang.srt.managers.scheduler_input_blocker import SchedulerInputBlocker
133
134
135
136
from sglang.srt.managers.scheduler_metrics_mixin import (
    RECORD_STEP_TIME,
    SchedulerMetricsMixin,
)
137
138
139
from sglang.srt.managers.scheduler_output_processor_mixin import (
    SchedulerOutputProcessorMixin,
)
140
from sglang.srt.managers.scheduler_profiler_mixin import SchedulerProfilerMixin
141
from sglang.srt.managers.scheduler_recv_skipper import SchedulerRecvSkipper
142
143
144
from sglang.srt.managers.scheduler_update_weights_mixin import (
    SchedulerUpdateWeightsMixin,
)
145
from sglang.srt.managers.session_controller import Session
146
from sglang.srt.managers.utils import validate_input_length
tarinkk's avatar
tarinkk committed
147
from sglang.srt.mem_cache.chunk_cache import ChunkCache, SWAChunkCache
148
from sglang.srt.mem_cache.hiradix_cache import HiRadixCache
149
from sglang.srt.mem_cache.radix_cache import RadixCache
Hanming Lu's avatar
Hanming Lu committed
150
from sglang.srt.mem_cache.swa_radix_cache import SWARadixCache
151
from sglang.srt.model_executor.forward_batch_info import (
152
    ForwardBatch,
153
154
155
    ForwardMode,
    PPProxyTensors,
)
156
from sglang.srt.parser.reasoning_parser import ReasoningParser
157
from sglang.srt.server_args import PortArgs, ServerArgs
158
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
159
160
161
162
from sglang.srt.tracing.trace import (
    process_tracing_init,
    trace_set_proc_propagate_context,
    trace_set_thread_info,
163
    trace_slice_batch,
164
165
166
    trace_slice_end,
    trace_slice_start,
)
167
from sglang.srt.two_batch_overlap import TboDPAttentionPreparer
168
from sglang.srt.utils import (
169
    DynamicGradMode,
170
    broadcast_pyobj,
fzyzcjy's avatar
fzyzcjy committed
171
    configure_gc_logger,
172
    configure_logger,
Lianmin Zheng's avatar
Lianmin Zheng committed
173
    disable_request_logging,
174
    freeze_gc,
175
    get_available_gpu_memory,
176
    get_bool_env_var,
177
    get_int_env_var,
178
    get_zmq_socket,
Lianmin Zheng's avatar
Lianmin Zheng committed
179
    kill_itself_when_parent_died,
180
    numa_bind_to_node,
181
    point_to_point_pyobj,
182
    pyspy_dump_schedulers,
183
184
    require_mlp_sync,
    require_mlp_tp_gather,
185
    set_gpu_proc_affinity,
186
187
188
    set_random_seed,
    suppress_other_loggers,
)
189
190
191
192
193
from sglang.srt.utils.hf_transformers_utils import (
    get_processor,
    get_tokenizer,
    get_tokenizer_from_processor,
)
194
from sglang.srt.utils.torch_memory_saver_adapter import TorchMemorySaverAdapter
195
from sglang.utils import TypeBasedDispatcher, get_exception_traceback
196
197
198

logger = logging.getLogger(__name__)

199
# Test retract decode for debugging purposes
200
TEST_RETRACT = get_bool_env_var("SGLANG_TEST_RETRACT")
201
GRAMMAR_TIMEOUT = float(os.environ.get("SGLANG_GRAMMAR_TIMEOUT", 300))
202

203

204
205
@dataclass
class GenerationBatchResult:
206
207
208
209
210
    logits_output: Optional[LogitsProcessorOutput] = None
    pp_hidden_states_proxy_tensors: Optional[PPProxyTensors] = None
    next_token_ids: Optional[torch.Tensor] = None
    num_accepted_tokens: Optional[int] = None
    can_run_cuda_graph: bool = False
211
212

    # For output processing
213
214
215
216
217
218
219
    extend_input_len_per_req: Optional[List[int]] = None
    extend_logprob_start_len_per_req: Optional[List[int]] = None

    # For overlap scheduling
    copy_done: Optional[torch.cuda.Event] = None
    delay_sample_launch: bool = False
    forward_batch: Optional[ForwardBatch] = None
220
    future_indices: Optional[FutureIndices] = None
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

    def copy_to_cpu(self, return_logprob: bool = False):
        """Copy tensors to CPU in overlap scheduling.
        Only the tensors which are needed for processing results are copied,
        e.g., next_token_ids, logits outputs
        """
        if return_logprob:
            if self.logits_output.next_token_logits is not None:
                self.logits_output.next_token_logits = (
                    self.logits_output.next_token_logits.to("cpu", non_blocking=True)
                )
            if self.logits_output.input_token_logprobs is not None:
                self.logits_output.input_token_logprobs = (
                    self.logits_output.input_token_logprobs.to("cpu", non_blocking=True)
                )
        if self.logits_output.hidden_states is not None:
            self.logits_output.hidden_states = self.logits_output.hidden_states.to(
                "cpu", non_blocking=True
            )
        self.next_token_ids = self.next_token_ids.to("cpu", non_blocking=True)
        self.copy_done.record()
242
243
244
245
246

    @classmethod
    def from_pp_proxy(
        cls, logits_output, next_pp_outputs: PPProxyTensors, can_run_cuda_graph
    ):
247
        # TODO(lsyin): refactor PP and avoid using dict
248
249
250
251
252
253
254
255
256
257
258
        proxy_dict = next_pp_outputs.tensors
        return cls(
            logits_output=logits_output,
            pp_hidden_states_proxy_tensors=None,
            next_token_ids=next_pp_outputs["next_token_ids"],
            extend_input_len_per_req=proxy_dict.get("extend_input_len_per_req", None),
            extend_logprob_start_len_per_req=proxy_dict.get(
                "extend_logprob_start_len_per_req", None
            ),
            can_run_cuda_graph=can_run_cuda_graph,
        )
259
260
261
262
263
264
265


@dataclass
class EmbeddingBatchResult:
    embeddings: torch.Tensor


Byron Hsu's avatar
Byron Hsu committed
266
267
class Scheduler(
    SchedulerOutputProcessorMixin,
268
269
270
    SchedulerUpdateWeightsMixin,
    SchedulerProfilerMixin,
    SchedulerMetricsMixin,
Byron Hsu's avatar
Byron Hsu committed
271
272
273
    SchedulerDisaggregationDecodeMixin,
    SchedulerDisaggregationPrefillMixin,
):
274
275
    """A scheduler that manages a tensor parallel GPU worker."""

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    def launch_draft_worker(
        self, gpu_id, tp_rank, moe_ep_rank, server_args, port_args, dp_rank
    ):
        if self.spec_algorithm.is_eagle():
            from sglang.srt.speculative.eagle_worker import EAGLEWorker

            self.draft_worker = EAGLEWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                moe_ep_rank=moe_ep_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
        elif self.spec_algorithm.is_standalone():
            from sglang.srt.speculative.standalone_worker import StandaloneWorker

            self.draft_worker = StandaloneWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                moe_ep_rank=moe_ep_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
        elif self.spec_algorithm.is_ngram():
            from sglang.srt.speculative.ngram_worker import NGRAMWorker

            self.draft_worker = NGRAMWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                moe_ep_rank=moe_ep_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
        else:
            self.draft_worker = None

318
319
320
321
322
323
    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
Cheng Wan's avatar
Cheng Wan committed
324
        moe_ep_rank: int,
325
        pp_rank: int,
326
        dp_rank: Optional[int],
327
328
    ):
        # Parse args
329
        self.server_args = server_args
330
        self.tp_rank = tp_rank
Cheng Wan's avatar
Cheng Wan committed
331
        self.moe_ep_rank = moe_ep_rank
332
        self.pp_rank = pp_rank
333
        self.dp_rank = dp_rank
334
        self.tp_size = server_args.tp_size
Cheng Wan's avatar
Cheng Wan committed
335
        self.moe_ep_size = server_args.ep_size
336
337
        self.pp_size = server_args.pp_size
        self.dp_size = server_args.dp_size
338
        self.schedule_policy = server_args.schedule_policy
339
340
341
342
343
344
345
        self.enable_priority_scheduling = server_args.enable_priority_scheduling
        self.schedule_low_priority_values_first = (
            server_args.schedule_low_priority_values_first
        )
        self.priority_scheduling_preemption_threshold = (
            server_args.priority_scheduling_preemption_threshold
        )
346
        self.enable_lora = server_args.enable_lora
347
        self.max_loras_per_batch = server_args.max_loras_per_batch
348
        self.enable_overlap = not server_args.disable_overlap_schedule
349
        self.skip_tokenizer_init = server_args.skip_tokenizer_init
350
        self.enable_metrics = server_args.enable_metrics
351
352
353
        self.enable_metrics_for_all_schedulers = (
            server_args.enable_metrics_for_all_schedulers
        )
354
355
356
        self.enable_kv_cache_events = bool(
            server_args.kv_events_config and tp_rank == 0
        )
357
        self.enable_trace = server_args.enable_trace
358
        self.stream_interval = server_args.stream_interval
359
360
361
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
362
363
        self.gpu_id = gpu_id
        self.enable_hierarchical_cache = server_args.enable_hierarchical_cache
364
        self.enable_hicache_storage = server_args.hicache_storage_backend is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
365
        self.page_size = server_args.page_size
366

367
        self.attn_tp_rank, self.attn_tp_size, self.attn_dp_rank = (
368
369
370
371
372
373
374
375
            compute_dp_attention_world_info(
                server_args.enable_dp_attention,
                self.tp_rank,
                self.tp_size,
                self.dp_size,
            )
        )

376
377
378
        # Init model config
        self.model_config = ModelConfig.from_server_args(server_args)

379
380
        # Init inter-process communication
        context = zmq.Context(2)
381
        self.idle_sleeper = None
382
        if self.pp_rank == 0 and self.attn_tp_rank == 0:
383
            self.recv_from_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
384
                context, zmq.PULL, port_args.scheduler_input_ipc_name, False
385
            )
386
387
388
389
            self.recv_from_rpc = get_zmq_socket(
                context, zmq.DEALER, port_args.rpc_ipc_name, False
            )

390
            self.send_to_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
391
                context, zmq.PUSH, port_args.tokenizer_ipc_name, False
392
            )
393
            if server_args.skip_tokenizer_init:
394
                # Directly send to the TokenizerManager
395
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
396
                    context, zmq.PUSH, port_args.tokenizer_ipc_name, False
397
398
                )
            else:
399
                # Send to the DetokenizerManager
400
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
401
                    context, zmq.PUSH, port_args.detokenizer_ipc_name, False
402
                )
403

404
405
406
407
408
409
410
            if self.server_args.sleep_on_idle:
                self.idle_sleeper = IdleSleeper(
                    [
                        self.recv_from_tokenizer,
                        self.recv_from_rpc,
                    ]
                )
411
        else:
412
            self.recv_from_tokenizer = None
413
            self.recv_from_rpc = None
414
415
            self.send_to_tokenizer = SimpleNamespace(send_pyobj=lambda x: None)
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
416

417
418
419
420
421
        if self.current_scheduler_metrics_enabled():
            self.send_metrics_from_scheduler = get_zmq_socket(
                context, zmq.PUSH, port_args.metrics_ipc_name, False
            )

422
        # Init tokenizer
423
        self.init_tokenizer()
424

425
426
427
        # Init moe config
        self.init_moe_config()

428
429
430
431
432
433
434
435
436
        # Set reasoning_parser and think_end_id if --reasoning_parser is enabled
        if self.server_args.reasoning_parser and self.tokenizer:
            reasoning_parser = ReasoningParser(
                model_type=self.server_args.reasoning_parser, stream_reasoning=False
            )
            self.tokenizer.think_end_id = self.tokenizer.encode(
                reasoning_parser.detector.think_end_token, add_special_tokens=False
            )[0]

437
438
439
440
        # Check whether overlap can be enabled
        if not self.is_generation:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for embedding models.")
441

442
        # Launch a tensor parallel worker
443

444
445
446
        from sglang.srt.managers.tp_worker import TpModelWorker

        self.tp_worker = TpModelWorker(
447
            server_args=server_args,
448
449
            gpu_id=gpu_id,
            tp_rank=tp_rank,
Cheng Wan's avatar
Cheng Wan committed
450
            moe_ep_rank=moe_ep_rank,
451
            pp_rank=pp_rank,
452
            dp_rank=dp_rank,
453
            nccl_port=port_args.nccl_port,
454
        )
455

456
        # Launch a draft worker for speculative decoding
457
458
459
        self.launch_draft_worker(
            gpu_id, tp_rank, moe_ep_rank, server_args, port_args, dp_rank
        )
460

461
462
463
464
465
466
        # Dispatch the model worker
        if self.spec_algorithm.is_none():
            self.model_worker = self.tp_worker
        else:
            self.model_worker = self.draft_worker

467
        # Get token and memory info from the model worker
468
469
470
471
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
472
            self.max_queued_requests,
473
            self.max_req_len,
474
475
            self.max_req_input_len,
            self.random_seed,
476
            self.device,
477
478
479
480
481
            worker_global_server_args_dict,
            _,
            _,
            _,
        ) = self.tp_worker.get_worker_info()
482
483
        if global_server_args_dict["pp_max_micro_batch_size"] is None:
            global_server_args_dict["pp_max_micro_batch_size"] = max(
484
485
486
487
488
489
                self.max_running_requests // server_args.pp_size, 1
            )

        self.tp_group = self.tp_worker.get_tp_group()
        self.tp_cpu_group = self.tp_group.cpu_group
        self.attn_tp_group = self.tp_worker.get_attention_tp_group()
490
        self.attn_tp_cpu_group = self.tp_worker.get_attention_tp_cpu_group()
491
492
493
        self.pp_group = get_pp_group()
        self.world_group = get_world_group()

494
        self.pad_input_ids_func = self.tp_worker.get_pad_input_ids_func()
495
        global_server_args_dict.update(worker_global_server_args_dict)
496
        set_random_seed(self.random_seed)
497

498
        # Hybrid memory pool
Hanming Lu's avatar
Hanming Lu committed
499
500
501
502
503
504
505
        self.is_hybrid = self.tp_worker.is_hybrid
        if self.is_hybrid:
            self.sliding_window_size = self.tp_worker.sliding_window_size
            self.full_tokens_per_layer, self.swa_tokens_per_layer = (
                self.tp_worker.get_tokens_per_layer_info()
            )

506
        # Print debug info
507
        if tp_rank == 0:
508
509
510
            avail_mem = get_available_gpu_memory(
                self.device, self.gpu_id, empty_cache=False
            )
511
512
513
514
515
            logger.info(
                f"max_total_num_tokens={self.max_total_num_tokens}, "
                f"chunked_prefill_size={server_args.chunked_prefill_size}, "
                f"max_prefill_tokens={self.max_prefill_tokens}, "
                f"max_running_requests={self.max_running_requests}, "
516
                f"context_len={self.model_config.context_len}, "
517
                f"{'available_cpu_mem' if self.device == 'cpu' else 'available_gpu_mem'}={avail_mem:.2f} GB"
518
            )
519

Lianmin Zheng's avatar
Lianmin Zheng committed
520
        # Init memory pool and cache
521
        self.init_memory_pool_and_cache()
522
523
524

        # Init running status
        self.waiting_queue: List[Req] = []
525
        # The running decoding batch for continuous batching
Lianmin Zheng's avatar
Lianmin Zheng committed
526
        self.running_batch: ScheduleBatch = ScheduleBatch(reqs=[], batch_is_full=False)
527
        # The current forward batch
Lianmin Zheng's avatar
Lianmin Zheng committed
528
        self.cur_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
529
        # The last forward batch
530
        self.last_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
531
532
        self.forward_ct = 0
        self.forward_ct_decode = 0
533
        self.num_generated_tokens = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
534
        self.last_prefill_tokens = 0
535
536
        self.last_decode_stats_tic = time.perf_counter()
        self.last_prefill_stats_tic = time.perf_counter()
537
        self.return_health_check_ct = 0
538
539
540
541
542
        self.num_retracted_reqs: int = 0
        self.num_paused_reqs: int = 0
        self.kv_transfer_speed_gb_s: float = 0.0
        self.kv_transfer_latency_ms: float = 0.0
        self.sessions: Dict[str, Session] = {}
543
544
545
        self.default_stream: CudaStream = torch.get_device_module(
            self.device
        ).current_stream()
546
        if self.device == "cpu":
547
            self.default_stream.synchronize = lambda: None  # No-op for CPU
548
        self.forward_sleep_time = None
549

550
551
        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
552
553
        if self.chunked_prefill_size <= 0:  # -1 means disable
            self.chunked_prefill_size = None
554
        self.chunked_req = None
555
556
557
558
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
559
        # Init the grammar backend for constrained generation
560
        self.grammar_queue: List[Req] = []
561
        if not server_args.skip_tokenizer_init:
562
            self.grammar_backend = create_grammar_backend(
563
564
565
566
                server_args,
                self.tokenizer,
                self.model_config.vocab_size,
                self.model_config.hf_eos_token_id,
567
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
568
569
        else:
            self.grammar_backend = None
570

571
        # Init schedule policy and new token estimation
572
        self.policy = SchedulePolicy(
Lianmin Zheng's avatar
Lianmin Zheng committed
573
574
575
            self.schedule_policy,
            self.tree_cache,
            self.enable_hierarchical_cache,
576
577
            self.enable_priority_scheduling,
            self.schedule_low_priority_values_first,
578
        )
579
580
581
        # Enable preemption for priority scheduling.
        self.try_preemption = self.enable_priority_scheduling

582
583
584
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
585
586
        self.init_new_token_ratio = min(
            global_config.default_init_new_token_ratio
587
588
            * server_args.schedule_conservativeness,
            1.0,
589
        )
590
591
592
593
594
595
596
597
598
599
        self.min_new_token_ratio = min(
            self.init_new_token_ratio
            * global_config.default_min_new_token_ratio_factor,
            1.0,
        )
        self.new_token_ratio_decay = (
            self.init_new_token_ratio - self.min_new_token_ratio
        ) / global_config.default_new_token_ratio_decay_steps
        self.new_token_ratio = self.init_new_token_ratio

Lianmin Zheng's avatar
Lianmin Zheng committed
600
601
602
603
        # Init watchdog thread
        self.watchdog_timeout = server_args.watchdog_timeout
        t = threading.Thread(target=self.watchdog_thread, daemon=True)
        t.start()
604
        self.parent_process = psutil.Process().parent()
605
606

        # Init memory saver, profiler and metric stats
607
608
609
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=server_args.enable_memory_saver
        )
610
        self.offload_tags = set()
limingshu's avatar
limingshu committed
611
        self.init_profiler()
612

613
        self.recv_skipper = SchedulerRecvSkipper.maybe_create(server_args)
fzyzcjy's avatar
fzyzcjy committed
614
615
616
617
618
619
        self.input_blocker = (
            SchedulerInputBlocker(noop=self.attn_tp_rank != 0)
            if get_bool_env_var("SGLANG_ENABLE_COLOCATED_BATCH_GEN")
            else None
        )

620
        # Init metrics stats
621
        self.init_metrics(tp_rank, pp_rank, dp_rank)
622

623
624
625
        if self.enable_kv_cache_events:
            self.init_kv_events(server_args.kv_events_config)

626
627
628
629
630
631
632
633
634
        # Init disaggregation
        self.disaggregation_mode = DisaggregationMode(
            self.server_args.disaggregation_mode
        )
        self.init_disaggregation()

        if get_bool_env_var("SGLANG_GC_LOG"):
            configure_gc_logger()

635
636
        # Init prefill kv split size when deterministic inference is enabled with various attention backends
        self.init_deterministic_inference_config()
637

638
639
640
        # Init overlap
        self.init_overlap()

641
642
        # Init request dispatcher
        self._request_dispatcher = TypeBasedDispatcher(
643
644
645
            [
                (TokenizedGenerateReqInput, self.handle_generate_request),
                (TokenizedEmbeddingReqInput, self.handle_embedding_request),
646
647
                (BatchTokenizedGenerateReqInput, self.handle_batch_generate_request),
                (BatchTokenizedEmbeddingReqInput, self.handle_batch_embedding_request),
648
                (FlushCacheReqInput, self.flush_cache_wrapped),
649
                (ClearHiCacheReqInput, self.clear_hicache_storage_wrapped),
650
                (AbortReq, self.abort_request),
651
652
                (OpenSessionReqInput, self.open_session),
                (CloseSessionReqInput, self.close_session),
653
654
                (UpdateWeightFromDiskReqInput, self.update_weights_from_disk),
                (InitWeightsUpdateGroupReqInput, self.init_weights_update_group),
655
                (DestroyWeightsUpdateGroupReqInput, self.destroy_weights_update_group),
656
657
658
659
660
661
662
663
                (
                    InitWeightsSendGroupForRemoteInstanceReqInput,
                    self.init_weights_send_group_for_remote_instance,
                ),
                (
                    SendWeightsToRemoteInstanceReqInput,
                    self.send_weights_to_remote_instance,
                ),
664
665
666
667
668
669
                (
                    UpdateWeightsFromDistributedReqInput,
                    self.update_weights_from_distributed,
                ),
                (UpdateWeightsFromTensorReqInput, self.update_weights_from_tensor),
                (GetWeightsByNameReqInput, self.get_weights_by_name),
670
671
                (ReleaseMemoryOccupationReqInput, self.release_memory_occupation),
                (ResumeMemoryOccupationReqInput, self.resume_memory_occupation),
672
                (SlowDownReqInput, self.slow_down),
673
                (ProfileReq, self.profile),
674
                (FreezeGCReq, self.handle_freeze_gc),
675
                (GetInternalStateReq, self.get_internal_state),
676
                (SetInternalStateReq, self.set_internal_state),
677
                (RpcReqInput, self.handle_rpc_request),
678
                (ExpertDistributionReq, self.expert_distribution_handle),
679
680
                (LoadLoRAAdapterReqInput, self.load_lora_adapter),
                (UnloadLoRAAdapterReqInput, self.unload_lora_adapter),
681
                (MultiTokenizerRegisterReq, self.register_multi_tokenizer),
682
                (GetLoadReqInput, self.get_load),
683
684
685
            ]
        )

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
    def init_deterministic_inference_config(self):
        """Initialize deterministic inference configuration for different attention backends."""
        if not self.server_args.enable_deterministic_inference:
            self.truncation_align_size = None
            return

        backend_sizes = {
            "flashinfer": ("SGLANG_FLASHINFER_PREFILL_SPLIT_TILE_SIZE", 4096),
            "triton": ("SGLANG_TRITON_PREFILL_TRUNCATION_ALIGN_SIZE", 4096),
        }
        env_var, default_size = backend_sizes.get(
            self.server_args.attention_backend, (None, None)
        )
        self.truncation_align_size = (
            get_int_env_var(env_var, default_size) if env_var else None
        )

703
704
705
    def init_tokenizer(self):
        server_args = self.server_args
        self.is_generation = self.model_config.is_generation
706

707
708
709
710
711
712
713
714
715
        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if self.model_config.is_multimodal:
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
716
                    use_fast=not server_args.disable_fast_image_processor,
717
                )
xm:D's avatar
xm:D committed
718
                self.tokenizer = get_tokenizer_from_processor(self.processor)
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
                )

    def init_memory_pool_and_cache(self):
        server_args = self.server_args

        self.req_to_token_pool, self.token_to_kv_pool_allocator = (
            self.tp_worker.get_memory_pool()
        )

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
Hanming Lu's avatar
Hanming Lu committed
738
            if self.is_hybrid:
tarinkk's avatar
tarinkk committed
739
740
741
742
                ChunkCacheClass = SWAChunkCache
            else:
                ChunkCacheClass = ChunkCache
            self.tree_cache = ChunkCacheClass(
743
744
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
745
                page_size=self.page_size,
746
747
            )
        else:
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
            if os.environ.get("SGLANG_EXPERIMENTAL_CPP_RADIX_TREE") == "1":
                # lazy import to avoid JIT overhead
                from sglang.srt.mem_cache.radix_cache_cpp import RadixCacheCpp

                self.tree_cache = RadixCacheCpp(
                    disable=False,
                    use_hicache=self.enable_hierarchical_cache,
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool=self.token_to_kv_pool_allocator,
                    tp_cache_group=self.tp_cpu_group,
                    page_size=self.page_size,
                    hicache_ratio=server_args.hicache_ratio,
                    hicache_size=server_args.hicache_size,
                    hicache_write_policy=server_args.hicache_write_policy,
                    enable_kv_cache_events=self.enable_kv_cache_events,
                )
            elif self.enable_hierarchical_cache:
765
766
767
                self.tree_cache = HiRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
768
769
770
771
772
                    tp_cache_group=(
                        self.attn_tp_cpu_group
                        if self.server_args.enable_dp_attention
                        else self.tp_cpu_group
                    ),
773
                    page_size=self.page_size,
774
                    eviction_policy=server_args.radix_eviction_policy,
775
                    hicache_ratio=server_args.hicache_ratio,
Zhiqiang Xie's avatar
Zhiqiang Xie committed
776
777
                    hicache_size=server_args.hicache_size,
                    hicache_write_policy=server_args.hicache_write_policy,
778
                    hicache_io_backend=server_args.hicache_io_backend,
779
                    hicache_mem_layout=server_args.hicache_mem_layout,
780
                    enable_metrics=self.enable_metrics,
781
                    hicache_storage_backend=server_args.hicache_storage_backend,
pansicheng's avatar
pansicheng committed
782
                    hicache_storage_prefetch_policy=server_args.hicache_storage_prefetch_policy,
783
784
                    model_name=server_args.served_model_name,
                    storage_backend_extra_config=server_args.hicache_storage_backend_extra_config,
Ke Bao's avatar
Ke Bao committed
785
                    is_eagle=self.spec_algorithm.is_eagle(),
786
                )
787
788
789
                self.tp_worker.register_hicache_layer_transfer_counter(
                    self.tree_cache.cache_controller.layer_done_counter
                )
Hanming Lu's avatar
Hanming Lu committed
790
791
792
793
794
795
796
797
798
799
            elif self.is_hybrid:
                assert (
                    self.server_args.disaggregation_mode == "null"
                ), "Hybrid mode does not support disaggregation yet"
                self.tree_cache = SWARadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    sliding_window_size=self.sliding_window_size,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
800
                    is_eagle=self.spec_algorithm.is_eagle(),
Hanming Lu's avatar
Hanming Lu committed
801
                )
802
803
804
805
806
807
808
809
810
811
812
813
814
815
            elif server_args.enable_lmcache:
                from sglang.srt.mem_cache.storage.lmcache.lmc_radix_cache import (
                    LMCRadixCache,
                )

                self.tree_cache = LMCRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
                    model_config=self.model_config,
                    tp_size=self.tp_size,
                    rank=self.tp_rank,
                    tp_group=self.tp_group,
816
                    eviction_policy=server_args.radix_eviction_policy,
817
                )
818
819
820
821
            else:
                self.tree_cache = RadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Lianmin Zheng's avatar
Lianmin Zheng committed
822
                    page_size=self.page_size,
823
                    disable=server_args.disable_radix_cache,
824
                    enable_kv_cache_events=self.enable_kv_cache_events,
825
                    eviction_policy=server_args.radix_eviction_policy,
Ke Bao's avatar
Ke Bao committed
826
                    is_eagle=self.spec_algorithm.is_eagle(),
827
828
                )

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
        if (
            server_args.disaggregation_mode == "decode"
            and server_args.disaggregation_decode_enable_offload_kvcache
        ):
            self.decode_offload_manager = DecodeKVCacheOffloadManager(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                tp_group=(
                    self.attn_tp_cpu_group
                    if self.server_args.enable_dp_attention
                    else self.tp_cpu_group
                ),
                tree_cache=self.tree_cache,
                server_args=self.server_args,
            )
        else:
            self.decode_offload_manager = None

847
848
849
850
851
852
        self.decode_mem_cache_buf_multiplier = (
            1
            if self.spec_algorithm.is_none()
            else (
                server_args.speculative_num_draft_tokens
                + (
853
854
                    (server_args.speculative_eagle_topk or 1)
                    * (server_args.speculative_num_steps or 1)
855
856
                )
            )
857
        )
858

859
860
861
        embedding_cache_size = int(os.environ.get("SGLANG_VLM_CACHE_SIZE_MB", "100"))
        init_embedding_cache(embedding_cache_size * 1024 * 1024)

Byron Hsu's avatar
Byron Hsu committed
862
    def init_disaggregation(self):
863
864
865
866
        self.transfer_backend = TransferBackend(
            self.server_args.disaggregation_transfer_backend
        )

Byron Hsu's avatar
Byron Hsu committed
867
868
869
870
        if (
            self.disaggregation_mode == DisaggregationMode.DECODE
        ):  # *2 for the headroom.
            buffer_size = (self.req_to_token_pool.size) * 2
Byron Hsu's avatar
Byron Hsu committed
871
            self.req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
Byron Hsu's avatar
Byron Hsu committed
872
873
                buffer_size
            )
874
875
            self.disagg_metadata_buffers = MetadataBuffers(
                buffer_size,
876
                hidden_size=self.model_config.hf_text_config.hidden_size,
877
                hidden_states_dtype=self.model_config.dtype,
878
879
                custom_mem_pool=self.token_to_kv_pool_allocator.get_kvcache().maybe_get_custom_mem_pool(),
            )
Byron Hsu's avatar
Byron Hsu committed
880
881
882

            # The decode requests polling kv cache
            self.disagg_decode_transfer_queue = DecodeTransferQueue(
883
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
884
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
885
                tp_rank=self.tp_rank,
886
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
887
888
                scheduler=self,
                tree_cache=self.tree_cache,
Byron Hsu's avatar
Byron Hsu committed
889
890
891
892
893
894
            )

            # The decode requests pending for pre-allocation
            self.disagg_decode_prealloc_queue = DecodePreallocQueue(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Byron Hsu's avatar
Byron Hsu committed
895
896
                draft_token_to_kv_pool=(
                    None
897
                    if self.draft_worker is None or self.spec_algorithm.is_ngram()
Byron Hsu's avatar
Byron Hsu committed
898
899
                    else self.draft_worker.model_runner.token_to_kv_pool
                ),
Byron Hsu's avatar
Byron Hsu committed
900
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
901
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
902
903
904
                scheduler=self,
                transfer_queue=self.disagg_decode_transfer_queue,
                tree_cache=self.tree_cache,
905
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
906
907
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
908
909
                dp_size=self.server_args.dp_size,
                gpu_id=self.gpu_id,
Byron Hsu's avatar
Byron Hsu committed
910
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
911
912
                max_total_num_tokens=self.max_total_num_tokens,
                prefill_pp_size=self.server_args.disaggregation_prefill_pp,
913
                num_reserved_decode_tokens=self.server_args.num_reserved_decode_tokens,
914
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
915
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
916

Byron Hsu's avatar
Byron Hsu committed
917
918
919
        elif self.disaggregation_mode == DisaggregationMode.PREFILL:
            # *2 for the headroom.
            buffer_size = self.max_running_requests * 2
Byron Hsu's avatar
Byron Hsu committed
920
            self.req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
Byron Hsu's avatar
Byron Hsu committed
921
922
                buffer_size
            )
923
924
            self.disagg_metadata_buffers = MetadataBuffers(
                buffer_size,
925
                hidden_size=self.model_config.hf_text_config.hidden_size,
926
                hidden_states_dtype=self.model_config.dtype,
927
928
                custom_mem_pool=self.token_to_kv_pool_allocator.get_kvcache().maybe_get_custom_mem_pool(),
            )
Byron Hsu's avatar
Byron Hsu committed
929

Liangsheng Yin's avatar
Liangsheng Yin committed
930
            self.disagg_prefill_bootstrap_queue = PrefillBootstrapQueue(
Byron Hsu's avatar
Byron Hsu committed
931
                token_to_kv_pool=self.token_to_kv_pool_allocator.get_kvcache(),
Byron Hsu's avatar
Byron Hsu committed
932
933
                draft_token_to_kv_pool=(
                    None
934
                    if self.draft_worker is None or self.spec_algorithm.is_ngram()
Byron Hsu's avatar
Byron Hsu committed
935
936
                    else self.draft_worker.model_runner.token_to_kv_pool
                ),
Byron Hsu's avatar
Byron Hsu committed
937
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
938
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
939
940
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
Byron Hsu's avatar
Byron Hsu committed
941
                gpu_id=self.gpu_id,
Byron Hsu's avatar
Byron Hsu committed
942
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
943
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
944
945
946
                max_total_num_tokens=self.max_total_num_tokens,
                decode_tp_size=self.server_args.disaggregation_decode_tp,
                decode_dp_size=self.server_args.disaggregation_decode_dp,
947
                scheduler=self,
Byron Hsu's avatar
Byron Hsu committed
948
949
950
                pp_rank=self.pp_rank,
                pp_size=self.pp_size,
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
951
952
            )
            # The prefill requests that are in the middle of kv sending
953
            self.disagg_prefill_inflight_queue: List[Req] = []
Byron Hsu's avatar
Byron Hsu committed
954

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
    def init_overlap(self):
        if not self.enable_overlap:
            return

        self.forward_stream: CudaStream = torch.get_device_module(self.device).Stream()
        self.forward_stream_ctx: CudaStreamContext = torch.get_device_module(
            self.device
        ).stream(self.forward_stream)
        self.copy_stream: CudaStream = torch.get_device_module(self.device).Stream()
        self.copy_stream_ctx: CudaStreamContext = torch.get_device_module(
            self.device
        ).stream(self.copy_stream)

        self.future_map = FutureMap(self.max_running_requests, self.device)
        self.batch_record_buf = [None] * 2
        self.batch_record_ct = 0

    def record_batch_in_overlap(self, model_worker_batch: ModelWorkerBatch):
        # FIXME(lsyin): hacky way to keep a reference to avoid GPU tensors being freed by torch GC
        # NOTE: More Reliable: record all tensors into the forward stream
        # NOTE: - for all future tensors, we shall always read from future map
        #       - for all non-future tensors (produced only by schedule stream),
        #       we shall keep its reference not being release during all the forwarding pass
        self.batch_record_ct = (self.batch_record_ct + 1) % 2
        self.batch_record_buf[self.batch_record_ct] = model_worker_batch

981
982
983
984
    def init_moe_config(self):
        if hasattr(self.model_config.hf_config, "num_experts_per_tok"):
            initialize_moe_config(self.server_args)

985
    @DynamicGradMode()
986
    def event_loop_normal(self):
987
        """A normal scheduler loop."""
988
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
989
990
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
991

992
            batch = self.get_next_batch_to_run()
Lianmin Zheng's avatar
Lianmin Zheng committed
993
            self.cur_batch = batch
994
995
996
997

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
Lianmin Zheng's avatar
Lianmin Zheng committed
998
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
999
                # When the server is idle, do self-check and re-init some states
1000
                self.self_check_during_idle()
1001
1002

            self.last_batch = batch
1003

1004
    @DynamicGradMode()
Lianmin Zheng's avatar
Lianmin Zheng committed
1005
    def event_loop_overlap(self):
1006
        """A scheduler loop that overlaps the CPU processing and GPU computation."""
1007
        self.result_queue: Deque[Tuple[ScheduleBatch, GenerationBatchResult]] = deque()
Lianmin Zheng's avatar
Lianmin Zheng committed
1008
1009

        while True:
1010
1011
            self.launch_last_batch_sample_if_needed()

Lianmin Zheng's avatar
Lianmin Zheng committed
1012
1013
1014
1015
1016
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)

            batch = self.get_next_batch_to_run()
            self.cur_batch = batch
1017

Lianmin Zheng's avatar
Lianmin Zheng committed
1018
1019
            if batch:
                result = self.run_batch(batch)
1020
                self.result_queue.append((batch.copy(), result))
Lianmin Zheng's avatar
Lianmin Zheng committed
1021
1022

            if self.last_batch:
1023
                # Process the results of the last batch
1024
                tmp_batch, tmp_result = self.result_queue.popleft()
1025
                self.process_batch_result(tmp_batch, tmp_result)
Lianmin Zheng's avatar
Lianmin Zheng committed
1026
            elif batch is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1027
                # When the server is idle, do self-check and re-init some states
1028
                self.self_check_during_idle()
Lianmin Zheng's avatar
Lianmin Zheng committed
1029
1030
1031

            self.last_batch = batch

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
    @DynamicGradMode()
    def event_loop_pp(self):
        """A non-overlap scheduler loop for pipeline parallelism."""
        mbs = [None] * self.pp_size
        last_mbs = [None] * self.pp_size
        self.running_mbs = [
            ScheduleBatch(reqs=[], batch_is_full=False) for _ in range(self.pp_size)
        ]
        pp_outputs: Optional[PPProxyTensors] = None
        while True:
            server_is_idle = True
            for mb_id in range(self.pp_size):
                self.running_batch = self.running_mbs[mb_id]
                self.last_batch = last_mbs[mb_id]

                recv_reqs = self.recv_requests()
                self.process_input_requests(recv_reqs)
                mbs[mb_id] = self.get_next_batch_to_run()
                self.running_mbs[mb_id] = self.running_batch

                self.cur_batch = mbs[mb_id]
                if self.cur_batch:
                    server_is_idle = False
                    result = self.run_batch(self.cur_batch)

1057
                # (last rank) send the outputs to the next step
1058
1059
                if self.pp_group.is_last_rank:
                    if self.cur_batch:
1060
                        next_token_ids = result.next_token_ids
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
                        if self.cur_batch.return_logprob:
                            pp_outputs = PPProxyTensors(
                                {
                                    "next_token_ids": next_token_ids,
                                    "extend_input_len_per_req": result.extend_input_len_per_req,
                                    "extend_logprob_start_len_per_req": result.extend_logprob_start_len_per_req,
                                }
                                | (
                                    {
                                        f"logits_output.{k}": v
                                        for k, v in result.logits_output.__dict__.items()
                                    }
                                    if result.logits_output is not None
                                    else {}
                                )
                            )
                        else:
                            pp_outputs = PPProxyTensors(
                                {
                                    "next_token_ids": next_token_ids,
                                }
                            )
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
                        # send the output from the last round to let the next stage worker run post processing
                        self.pp_group.send_tensor_dict(
                            pp_outputs.tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                # receive outputs and post-process (filter finished reqs) the coming microbatch
                next_mb_id = (mb_id + 1) % self.pp_size
                next_pp_outputs = None
                if mbs[next_mb_id] is not None:
                    next_pp_outputs: Optional[PPProxyTensors] = PPProxyTensors(
                        self.pp_group.recv_tensor_dict(
                            all_gather_group=self.attn_tp_group
                        )
                    )
                    mbs[next_mb_id].output_ids = next_pp_outputs["next_token_ids"]
1099
1100
1101
1102
1103
1104
1105
1106
1107
                    logits_output_args = {
                        k[len("logits_output.") :]: v
                        for k, v in next_pp_outputs.tensors.items()
                        if k.startswith("logits_output.")
                    }
                    if len(logits_output_args) > 0:
                        logits_output = LogitsProcessorOutput(**logits_output_args)
                    else:
                        logits_output = None
1108
1109

                    output_result = GenerationBatchResult.from_pp_proxy(
1110
                        logits_output=logits_output,
1111
                        next_pp_outputs=next_pp_outputs,
1112
                        can_run_cuda_graph=result.can_run_cuda_graph,
1113
1114
1115
1116
                    )
                    self.process_batch_result(mbs[next_mb_id], output_result)
                    last_mbs[next_mb_id] = mbs[next_mb_id]

1117
                # (not last rank)
1118
                if not self.pp_group.is_last_rank:
1119
1120
                    # carry the outputs to the next stage
                    # send the outputs from the last round to let the next stage worker run post processing
1121
1122
1123
1124
1125
1126
1127
                    if pp_outputs:
                        self.pp_group.send_tensor_dict(
                            pp_outputs.tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                    # send out reqs to the next stage
1128
                    dp_offset = self.attn_dp_rank * self.attn_tp_size
1129
1130
1131
1132
                    if self.attn_tp_rank == 0:
                        point_to_point_pyobj(
                            recv_reqs,
                            self.pp_rank * self.tp_size + dp_offset,
1133
                            self.world_group.device_group,
1134
1135
1136
1137
1138
1139
                            self.pp_rank * self.tp_size + dp_offset,
                            (self.pp_rank + 1) * self.tp_size + dp_offset,
                        )

                    # send out proxy tensors to the next stage
                    if self.cur_batch:
1140
1141
                        # FIXME(lsyin): remove this assert
                        assert result.pp_hidden_states_proxy_tensors.tensors is not None
1142
                        self.pp_group.send_tensor_dict(
1143
                            result.pp_hidden_states_proxy_tensors.tensors,
1144
1145
1146
1147
1148
1149
1150
                            all_gather_group=self.attn_tp_group,
                        )

                pp_outputs = next_pp_outputs

            # When the server is idle, self-check and re-init some states
            if server_is_idle:
1151
1152
                # When the server is idle, do self-check and re-init some states
                self.self_check_during_idle()
1153

1154
1155
    def recv_requests(self) -> List[Req]:
        """Receive results at tp_rank = 0 and broadcast it to all other TP ranks."""
1156
1157
1158
1159
1160
1161
1162
1163

        if self.recv_skipper is not None:
            last_forward_mode = (
                self.last_batch.forward_mode if self.last_batch is not None else None
            )
            if not self.recv_skipper.handle(last_forward_mode):
                return []

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
        if self.pp_rank == 0:
            if self.attn_tp_rank == 0:
                recv_reqs = []

                while True:
                    try:
                        recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                    except zmq.ZMQError:
                        break
                    recv_reqs.append(recv_req)

                while True:
                    try:
                        recv_rpc = self.recv_from_rpc.recv_pyobj(zmq.NOBLOCK)
                    except zmq.ZMQError:
                        break
                    recv_reqs.append(recv_rpc)
            else:
                recv_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1183
        else:
1184
            if self.attn_tp_rank == 0:
1185
                dp_offset = self.attn_dp_rank * self.attn_tp_size
1186
1187
1188
                recv_reqs = point_to_point_pyobj(
                    [],
                    self.pp_rank * self.tp_size + dp_offset,
1189
                    self.world_group.device_group,
1190
1191
1192
1193
1194
                    (self.pp_rank - 1) * self.tp_size + dp_offset,
                    self.pp_rank * self.tp_size + dp_offset,
                )
            else:
                recv_reqs = None
1195

fzyzcjy's avatar
fzyzcjy committed
1196
1197
1198
        if self.input_blocker is not None:
            recv_reqs = self.input_blocker.handle(recv_reqs)

1199
1200
1201
1202
1203
1204
        if self.server_args.enable_dp_attention:
            if self.attn_tp_rank == 0:
                work_reqs = [
                    req
                    for req in recv_reqs
                    if isinstance(
1205
1206
1207
1208
1209
1210
1211
                        req,
                        (
                            TokenizedGenerateReqInput,
                            TokenizedEmbeddingReqInput,
                            BatchTokenizedGenerateReqInput,
                            BatchTokenizedEmbeddingReqInput,
                        ),
1212
1213
1214
1215
1216
1217
                    )
                ]
                control_reqs = [
                    req
                    for req in recv_reqs
                    if not isinstance(
1218
1219
1220
1221
1222
1223
1224
                        req,
                        (
                            TokenizedGenerateReqInput,
                            TokenizedEmbeddingReqInput,
                            BatchTokenizedGenerateReqInput,
                            BatchTokenizedEmbeddingReqInput,
                        ),
1225
1226
1227
1228
1229
1230
1231
1232
1233
                    )
                ]
            else:
                work_reqs = None
                control_reqs = None

            if self.attn_tp_size != 1:
                work_reqs = broadcast_pyobj(
                    work_reqs,
1234
                    self.attn_tp_group.rank,
1235
                    self.attn_tp_cpu_group,
1236
                    src=self.attn_tp_group.ranks[0],
1237
1238
1239
                )
            if self.tp_size != 1:
                control_reqs = broadcast_pyobj(
1240
1241
1242
1243
                    control_reqs,
                    self.tp_group.rank,
                    self.tp_cpu_group,
                    src=self.tp_group.ranks[0],
1244
1245
1246
                )
            recv_reqs = work_reqs + control_reqs
        elif self.tp_size != 1:
1247
1248
1249
1250
1251
1252
            recv_reqs = broadcast_pyobj(
                recv_reqs,
                self.tp_group.rank,
                self.tp_cpu_group,
                src=self.tp_group.ranks[0],
            )
1253

1254
1255
1256
1257
1258
1259
1260
        if self.enable_trace:
            for req in recv_reqs:
                if isinstance(
                    req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                ):
                    trace_set_proc_propagate_context(req.rid, req.trace_context)
                    trace_slice_start("", req.rid, anonymous=True)
1261

1262
1263
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
1264
    def process_input_requests(self, recv_reqs: List):
1265
        for recv_req in recv_reqs:
1266
1267
            # If it is a health check generation request and there are running requests, ignore it.
            if is_health_check_generate_req(recv_req) and (
1268
1269
1270
                self.chunked_req is not None
                or not self.running_batch.is_empty()
                or len(self.offload_tags) > 0
1271
1272
1273
1274
            ):
                self.return_health_check_ct += 1
                continue

1275
1276
            # If it is a MultiTokenizerWrapper, unwrap it and handle the inner request.
            if isinstance(recv_req, MultiTokenizerWrapper):
1277
1278
1279
1280
                worker_id = recv_req.worker_id
                recv_req = recv_req.obj
                output = self._request_dispatcher(recv_req)
                if output is not None:
1281
                    output = MultiTokenizerWrapper(worker_id, output)
1282
1283
1284
                    self.send_to_tokenizer.send_pyobj(output)
                continue

1285
            output = self._request_dispatcher(recv_req)
1286
            if output is not None:
1287
1288
1289
1290
1291
                if isinstance(output, RpcReqOutput):
                    if self.recv_from_rpc is not None:
                        self.recv_from_rpc.send_pyobj(output)
                else:
                    self.send_to_tokenizer.send_pyobj(output)
1292

1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
    def init_req_max_new_tokens(self, req):
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
            self.max_req_len - len(req.origin_input_ids) - 1,
        )

1303
1304
1305
1306
    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
1307
        # Create a new request
1308
1309
1310
1311
1312
        if (
            recv_req.session_params is None
            or recv_req.session_params.id is None
            or recv_req.session_params.id not in self.sessions
        ):
Rin Intachuen's avatar
Rin Intachuen committed
1313
1314
1315
1316
1317
1318
            if recv_req.input_embeds is not None:
                # Generate fake input_ids based on the length of input_embeds
                seq_length = len(recv_req.input_embeds)
                fake_input_ids = [1] * seq_length
                recv_req.input_ids = fake_input_ids

1319
1320
1321
1322
            if recv_req.bootstrap_port is None:
                # Use default bootstrap port
                recv_req.bootstrap_port = self.server_args.disaggregation_bootstrap_port

1323
1324
1325
1326
1327
            req = Req(
                recv_req.rid,
                recv_req.input_text,
                recv_req.input_ids,
                recv_req.sampling_params,
Lianmin Zheng's avatar
Lianmin Zheng committed
1328
1329
                return_logprob=recv_req.return_logprob,
                top_logprobs_num=recv_req.top_logprobs_num,
1330
                token_ids_logprob=recv_req.token_ids_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
1331
                stream=recv_req.stream,
1332
                lora_id=recv_req.lora_id,
Rin Intachuen's avatar
Rin Intachuen committed
1333
                input_embeds=recv_req.input_embeds,
Lianmin Zheng's avatar
Lianmin Zheng committed
1334
                custom_logit_processor=recv_req.custom_logit_processor,
1335
                return_hidden_states=recv_req.return_hidden_states,
1336
                eos_token_ids=self.model_config.hf_eos_token_id,
1337
                bootstrap_host=recv_req.bootstrap_host,
1338
                bootstrap_port=recv_req.bootstrap_port,
1339
                bootstrap_room=recv_req.bootstrap_room,
1340
                disagg_mode=self.disaggregation_mode,
1341
                data_parallel_rank=recv_req.data_parallel_rank,
1342
                vocab_size=self.model_config.vocab_size,
1343
                priority=recv_req.priority,
1344
1345
1346
                metrics_collector=(
                    self.metrics_collector if self.enable_metrics else None
                ),
1347
1348
            )
            req.tokenizer = self.tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
1349

1350
1351
1352
            if self.disaggregation_mode != DisaggregationMode.NULL:
                # Invalid request for disaggregated mode
                if recv_req.bootstrap_room is None:
1353
                    error_msg = (
1354
1355
1356
                        f"Invalid request: Disaggregated request received without "
                        f"boostrap room id. {req.rid=}"
                    )
1357
                    logger.error(error_msg)
1358
                    prepare_abort(req, error_msg, status_code=HTTPStatus.BAD_REQUEST)
1359
1360
1361
                    self.stream_output([req], req.return_logprob)
                    return

1362
1363
1364
1365
            if (
                recv_req.session_params is not None
                and recv_req.session_params.id is not None
            ):
1366
                req.set_finish_with_abort(
1367
                    f"Invalid request: session id {recv_req.session_params.id} does not exist"
1368
                )
1369
                self.init_req_max_new_tokens(req)
1370
                self._add_request_to_queue(req)
1371
1372
                return
        else:
1373
1374
            # Create a new request from a previous session
            session = self.sessions[recv_req.session_params.id]
1375
            req = session.create_req(recv_req, self.tokenizer)
1376
            if isinstance(req.finished_reason, FINISH_ABORT):
1377
                self.init_req_max_new_tokens(req)
1378
                self._add_request_to_queue(req)
1379
                return
1380

1381
        # Handle multimodal inputs
Mick's avatar
Mick committed
1382
1383
        if recv_req.mm_inputs is not None:
            image_inputs = MultimodalInputs.from_dict(recv_req.mm_inputs)
1384
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
1385
            req.origin_input_ids = self.pad_input_ids_func(
1386
                req.origin_input_ids, image_inputs
1387
            )
1388
            req.extend_image_inputs(image_inputs)
1389

1390
            if len(req.origin_input_ids) >= self.max_req_input_len:
1391
1392
1393
1394
1395
                req.set_finish_with_abort(
                    error_msg=(
                        "Multimodal prompt is too long after expanding multimodal tokens. "
                        f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                    )
1396
                )
1397
                self.init_req_max_new_tokens(req)
1398
                self._add_request_to_queue(req)
1399
1400
                return

1401
1402
1403
        # initialize before returning
        self.init_req_max_new_tokens(req)

1404
        # Validate prompt length
1405
1406
1407
1408
1409
1410
        error_msg = validate_input_length(
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
        if error_msg:
1411
            req.set_finish_with_abort(error_msg)
1412
            self._add_request_to_queue(req)
1413
            return
1414

1415
        # Copy more attributes
1416
        if recv_req.logprob_start_len == -1 or not recv_req.return_logprob:
1417
            # By default, only return the logprobs for output tokens
1418
1419
1420
1421
1422
1423
1424
            # For prefill-only requests with logprob_start_len == -1, set logprob_start_len beyond input sequence
            # to skip input logprob computation entirely
            if req.is_prefill_only:
                req.logprob_start_len = len(req.origin_input_ids)
            else:
                # TODO: For text generation, evaluate setting logprob_start_len to len(req.origin_input_ids) as well
                req.logprob_start_len = len(req.origin_input_ids) - 1
1425
1426
1427
        else:
            req.logprob_start_len = recv_req.logprob_start_len

1428
1429
1430
        if not req.is_prefill_only and req.logprob_start_len >= len(
            req.origin_input_ids
        ):
1431
            error_msg = f"{req.logprob_start_len=} is higher than the number of input tokens {len(req.origin_input_ids)=}. Please use a smaller logprob_start_len."
1432
            req.logprob_start_len = len(req.origin_input_ids) - 1
1433
            req.set_finish_with_abort(error_msg)
1434
1435
1436
            self._add_request_to_queue(req)
            return

1437
1438
1439
1440
1441
        # Init grammar cache for this request
        add_to_grammar_queue = False
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
1442
            or req.sampling_params.ebnf is not None
1443
            or req.sampling_params.structural_tag is not None
1444
        ):
1445
1446
1447
            if self.grammar_backend is None:
                error_msg = "Grammar-based generation (json_schema, regex, ebnf, structural_tag) is not supported when the server is launched with --grammar-backend none"
                req.set_finish_with_abort(error_msg)
1448
            else:
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
                if req.sampling_params.json_schema is not None:
                    key = ("json", req.sampling_params.json_schema)
                elif req.sampling_params.regex is not None:
                    key = ("regex", req.sampling_params.regex)
                elif req.sampling_params.ebnf is not None:
                    key = ("ebnf", req.sampling_params.ebnf)
                elif req.sampling_params.structural_tag:
                    key = ("structural_tag", req.sampling_params.structural_tag)

                value, cache_hit = self.grammar_backend.get_cached_or_future_value(key)
                req.grammar = value

                if not cache_hit:
                    req.grammar_key = key
                    add_to_grammar_queue = True
                else:
                    if value is INVALID_GRAMMAR_OBJ:  # We hit a cached invalid grammar.
                        error_msg = f"Invalid grammar request with cache hit: {key=}"
                        req.set_finish_with_abort(error_msg)
1468
1469

        if add_to_grammar_queue:
1470
1471
            self.grammar_queue.append(req)
        else:
1472
1473
            self._add_request_to_queue(req)

1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
    def handle_batch_generate_request(
        self,
        recv_req: BatchTokenizedGenerateReqInput,
    ):
        """Handle optimized batch generate request."""
        logger.debug(f"Processing batch generate request with {len(recv_req)} requests")

        # Process each request in the batch
        for tokenized_req in recv_req:
            self.handle_generate_request(tokenized_req)

1485
1486
1487
    def _prefetch_kvcache(self, req: Req):
        if self.enable_hicache_storage:
            req.init_next_round_input(self.tree_cache)
1488
1489
1490
1491
1492
            if req.last_node.backuped:
                # only to initiate the prefetch if the last node is backuped
                # otherwise, the allocated GPU memory must be locked for integrity
                last_hash = req.last_host_node.get_last_hash_value()
                matched_len = len(req.prefix_indices) + req.host_hit_length
1493
1494
1495
1496
1497
                new_input_tokens = req.fill_ids[matched_len:]
                self.tree_cache.prefetch_from_storage(
                    req.rid, req.last_host_node, new_input_tokens, last_hash
                )

1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
    def _add_request_to_queue(self, req: Req, is_retracted: bool = False):
        if self.disaggregation_mode == DisaggregationMode.NULL:
            self._set_or_validate_priority(req)
            if self._abort_on_queued_limit(req):
                return
            self._prefetch_kvcache(req)
            self.waiting_queue.append(req)
            req.time_stats.wait_queue_entry_time = time.perf_counter()
            trace_slice_end("process req", req.rid, auto_next_anon=True)
        elif self.disaggregation_mode == DisaggregationMode.PREFILL:
            self._prefetch_kvcache(req)
            self.disagg_prefill_bootstrap_queue.add(
                req, self.model_config.num_key_value_heads
Byron Hsu's avatar
Byron Hsu committed
1511
            )
1512
            req.time_stats.prefill_bootstrap_queue_entry_time = time.perf_counter()
1513
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
1514
1515
1516
            self.disagg_decode_prealloc_queue.add(req, is_retracted=is_retracted)
            if not is_retracted:
                req.time_stats.decode_prealloc_queue_entry_time = time.perf_counter()
Byron Hsu's avatar
Byron Hsu committed
1517
        else:
1518
            raise ValueError(f"Invalid {self.disaggregation_mode=}")
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533

    def _set_or_validate_priority(self, req: Req):
        """Set the default priority value, or abort the request based on the priority scheduling mode."""
        if self.enable_priority_scheduling and req.priority is None:
            if self.schedule_low_priority_values_first:
                req.priority = sys.maxsize
            else:
                req.priority = -sys.maxsize - 1
        elif not self.enable_priority_scheduling and req.priority is not None:
            abort_req = AbortReq(
                finished_reason={
                    "type": "abort",
                    "status_code": HTTPStatus.SERVICE_UNAVAILABLE,
                    "message": "Using priority is disabled for this server. Please send a new request without a priority.",
                },
1534
                rid=req.rid,
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
            )
            self.send_to_tokenizer.send_pyobj(abort_req)

    def _abort_on_queued_limit(self, recv_req: Req) -> bool:
        """Abort an incoming or existing request if the waiting queue is full. Returns True if the incoming request is aborted."""
        if (
            self.max_queued_requests is None
            or len(self.waiting_queue) + 1 <= self.max_queued_requests
        ):
            return False

        # Reject the incoming request by default.
        req_to_abort = recv_req
        message = "The request queue is full."
        if self.enable_priority_scheduling:
            # With priority scheduling, consider aboritng an existing request based on the priority.
            # direction = 1  => smaller number = higher priority; -1 => larger number = higher priority.
            # max(...) + (direction * priority, queue_time_start) picks the least-preferred request.
            # Tie: later queue_time_start (newer) is evicted first. Preempt only if strictly better.
            direction = 1 if self.schedule_low_priority_values_first else -1
            key_fn = lambda item: (
                direction * item[1].priority,
1557
                item[1].time_stats.wait_queue_entry_time,
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
            )
            idx, candidate_req = max(enumerate(self.waiting_queue), key=key_fn)
            abort_existing_req = (
                direction * recv_req.priority < direction * candidate_req.priority
            )
            if abort_existing_req:
                self.waiting_queue.pop(idx)
                req_to_abort = candidate_req
                message = "The request is aborted by a higher priority request."

        self.send_to_tokenizer.send_pyobj(
            AbortReq(
                finished_reason={
                    "type": "abort",
                    "status_code": HTTPStatus.SERVICE_UNAVAILABLE,
                    "message": message,
                },
1575
                rid=req_to_abort.rid,
1576
1577
1578
            )
        )
        return req_to_abort.rid == recv_req.rid
1579
1580
1581

    def handle_embedding_request(
        self,
1582
        recv_req: TokenizedEmbeddingReqInput,
1583
1584
1585
1586
1587
1588
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
woodx's avatar
woodx committed
1589
            token_type_ids=recv_req.token_type_ids,
1590
            priority=recv_req.priority,
1591
1592
1593
        )
        req.tokenizer = self.tokenizer

1594
1595
        # Handle multimodal inputs
        if recv_req.image_inputs is not None:
Mick's avatar
Mick committed
1596
            image_inputs = MultimodalInputs.from_dict(recv_req.image_inputs)
1597
1598
1599
1600
1601
1602
1603
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
            req.origin_input_ids = self.pad_input_ids_func(
                req.origin_input_ids, image_inputs
            )
            req.extend_image_inputs(image_inputs)

            if len(req.origin_input_ids) >= self.max_req_input_len:
1604
1605
1606
1607
1608
                req.set_finish_with_abort(
                    error_msg=(
                        "Multimodal prompt is too long after expanding multimodal tokens. "
                        f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                    )
1609
                )
1610
                self._add_request_to_queue(req)
1611
1612
                return

1613
        # Validate prompts length
1614
        error_msg = validate_input_length(
1615
1616
1617
1618
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
1619
        if error_msg:
1620
            self._add_request_to_queue(req)
1621
            return
1622

1623
1624
        # Copy more attributes
        req.logprob_start_len = len(req.origin_input_ids) - 1
1625
        self._add_request_to_queue(req)
1626

1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
    def handle_batch_embedding_request(
        self,
        recv_req: BatchTokenizedEmbeddingReqInput,
    ):
        """Handle optimized batch embedding request."""
        logger.debug(
            f"Processing batch embedding request with {len(recv_req)} requests"
        )

        # Process each request in the batch
        for tokenized_req in recv_req:
            self.handle_embedding_request(tokenized_req)

1640
1641
1642
1643
1644
    def self_check_during_idle(self):
        self.check_memory()
        self.check_tree_cache()
        self.new_token_ratio = self.init_new_token_ratio
        self.maybe_sleep_on_idle()
1645

Lianmin Zheng's avatar
Lianmin Zheng committed
1646
    def check_memory(self):
Hanming Lu's avatar
Hanming Lu committed
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
        if self.is_hybrid:
            (
                full_num_used,
                swa_num_used,
                _,
                _,
                full_available_size,
                full_evictable_size,
                swa_available_size,
                swa_evictable_size,
            ) = self._get_swa_token_info()
            memory_leak = full_num_used != 0 or swa_num_used != 0
            token_msg = (
                f"{self.full_tokens_per_layer=}, {full_available_size=}, {full_evictable_size=}, {self.tree_cache.full_protected_size()=}\n"
                f"{self.swa_tokens_per_layer=}, {swa_available_size=}, {swa_evictable_size=}, {self.tree_cache.swa_protected_size()=}\n"
            )
tarinkk's avatar
tarinkk committed
1663
        else:
Hanming Lu's avatar
Hanming Lu committed
1664
1665
1666
            _, _, available_size, evictable_size = self._get_token_info()
            protected_size = self.tree_cache.protected_size()
            memory_leak = (available_size + evictable_size) != (
1667
1668
1669
                # self.max_total_num_tokens
                # if not self.enable_hierarchical_cache
                # else self.max_total_num_tokens - protected_size
Hanming Lu's avatar
Hanming Lu committed
1670
                self.max_total_num_tokens
1671
                - protected_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1672
            )
Hanming Lu's avatar
Hanming Lu committed
1673
1674
1675
1676
            token_msg = f"{self.max_total_num_tokens=}, {available_size=}, {evictable_size=}, {protected_size=}\n"

        if memory_leak:
            msg = "token_to_kv_pool_allocator memory leak detected! " f"{token_msg}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1677
            raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1678

1679
1680
1681
1682
1683
1684
1685
1686
        if self.disaggregation_mode == DisaggregationMode.DECODE:
            req_total_size = (
                self.req_to_token_pool.size + self.req_to_token_pool.pre_alloc_size
            )
        else:
            req_total_size = self.req_to_token_pool.size

        if len(self.req_to_token_pool.free_slots) != req_total_size:
1687
            msg = (
1688
                "req_to_token_pool memory leak detected!"
1689
1690
                f"available_size={len(self.req_to_token_pool.free_slots)}, "
                f"total_size={self.req_to_token_pool.size}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1691
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1692
            raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1693

1694
1695
        if (
            self.enable_metrics
1696
            and self.current_scheduler_metrics_enabled()
1697
            and time.perf_counter() > self.metrics_collector.last_log_time + 30
1698
1699
        ):
            # During idle time, also collect metrics every 30 seconds.
Hanming Lu's avatar
Hanming Lu committed
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
            if self.is_hybrid:
                (
                    full_num_used,
                    swa_num_used,
                    full_token_usage,
                    swa_token_usage,
                    _,
                    _,
                    _,
                    _,
                ) = self._get_swa_token_info()
                num_used = max(full_num_used, swa_num_used)
                token_usage = max(full_token_usage, swa_token_usage)
            else:
                num_used, token_usage, _, _ = self._get_token_info()
Lianmin Zheng's avatar
Lianmin Zheng committed
1715
            num_running_reqs = len(self.running_batch.reqs)
1716
1717
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
Hanming Lu's avatar
Hanming Lu committed
1718
            self.stats.token_usage = round(token_usage, 2)
1719
1720
            self.stats.gen_throughput = 0
            self.stats.num_queue_reqs = len(self.waiting_queue)
1721
            self.stats.num_grammar_queue_reqs = len(self.grammar_queue)
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
            if self.disaggregation_mode == DisaggregationMode.PREFILL:
                self.stats.num_prefill_prealloc_queue_reqs = len(
                    self.disagg_prefill_bootstrap_queue.queue
                )
                self.stats.num_prefill_inflight_queue_reqs = len(
                    self.disagg_prefill_inflight_queue
                )
            if self.disaggregation_mode == DisaggregationMode.DECODE:
                self.stats.num_decode_prealloc_queue_reqs = len(
                    self.disagg_decode_prealloc_queue.queue
                )
                self.stats.num_decode_transfer_queue_reqs = len(
                    self.disagg_decode_transfer_queue.queue
                )
1736
            self.metrics_collector.log_stats(self.stats)
1737
        self._publish_kv_events()
1738

Hanming Lu's avatar
Hanming Lu committed
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
    def check_tree_cache(self):
        if self.is_hybrid and isinstance(self.tree_cache, SWARadixCache):
            self.tree_cache.sanity_check()

    def _get_token_info(self):
        available_size = self.token_to_kv_pool_allocator.available_size()
        evictable_size = self.tree_cache.evictable_size()
        num_used = self.max_total_num_tokens - (available_size + evictable_size)
        token_usage = num_used / self.max_total_num_tokens
        return num_used, token_usage, available_size, evictable_size

    def _get_swa_token_info(self):
        full_available_size = self.token_to_kv_pool_allocator.full_available_size()
        full_evictable_size = self.tree_cache.full_evictable_size()
        swa_available_size = self.token_to_kv_pool_allocator.swa_available_size()
        swa_evictable_size = self.tree_cache.swa_evictable_size()
        full_num_used = self.full_tokens_per_layer - (
            full_available_size + full_evictable_size
        )
        swa_num_used = self.swa_tokens_per_layer - (
            swa_available_size + swa_evictable_size
        )
        full_token_usage = full_num_used / self.full_tokens_per_layer
        swa_token_usage = swa_num_used / self.swa_tokens_per_layer
        return (
            full_num_used,
            swa_num_used,
            full_token_usage,
            swa_token_usage,
            full_available_size,
            full_evictable_size,
            swa_available_size,
            swa_evictable_size,
        )

1774
    def get_next_batch_to_run(self) -> Optional[ScheduleBatch]:
1775
        # Merge the prefill batch into the running batch
1776
1777
1778
1779
1780
        chunked_req_to_exclude = set()
        if self.chunked_req:
            # Move the chunked request out of the batch so that we can merge
            # only finished requests to running_batch.
            chunked_req_to_exclude.add(self.chunked_req)
1781
            self.tree_cache.cache_unfinished_req(self.chunked_req, chunked=True)
1782
            # chunked request keeps its rid but will get a new req_pool_idx
1783
            if self.tp_worker.worker.model_runner.mambaish_config is not None:
Yi Zhang's avatar
Yi Zhang committed
1784
1785
1786
1787
1788
                self.req_to_token_pool.free(
                    self.chunked_req.req_pool_idx, free_mamba_cache=False
                )
            else:
                self.req_to_token_pool.free(self.chunked_req.req_pool_idx)
Lianmin Zheng's avatar
Lianmin Zheng committed
1789
        if self.last_batch and self.last_batch.forward_mode.is_extend():
1790
1791
1792
1793
            if self.last_batch.chunked_req is not None:
                # In the context pipeline parallelism, after the last chunk, the current microbatch still track outdated chunked_req.
                # We need to discard it.
                chunked_req_to_exclude.add(self.last_batch.chunked_req)
Lianmin Zheng's avatar
Lianmin Zheng committed
1794

1795
            # Filter batch
1796
            last_bs = self.last_batch.batch_size()
1797
1798
1799
            self.last_batch.filter_batch(
                chunked_req_to_exclude=list(chunked_req_to_exclude)
            )
1800
            if self.last_batch.batch_size() < last_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1801
                self.running_batch.batch_is_full = False
1802

1803
1804
1805
            # Merge the new batch into the running batch.
            # For prefill-only batch, we can avoid going through decoding step.
            if not self.last_batch.is_empty() and not self.last_batch.is_prefill_only:
Lianmin Zheng's avatar
Lianmin Zheng committed
1806
                if self.running_batch.is_empty():
1807
1808
                    self.running_batch = self.last_batch
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1809
                    # Merge running_batch with prefill batch
1810
                    self.running_batch.merge_batch(self.last_batch)
1811

1812
        new_batch = self.get_new_batch_prefill()
1813

1814
1815
1816
1817
1818
        need_dp_attn_preparation = require_mlp_sync(self.server_args)

        if need_dp_attn_preparation and not self.spec_algorithm.is_none():
            # In speculative decoding, prefill batches and decode batches cannot be processed in the same DP attention group.
            # We prepare idle batches in advance to skip preparing decode batches when there are prefill batches in the group.
1819
            new_batch = self.prepare_mlp_sync_batch(new_batch)
1820
1821
1822
            need_dp_attn_preparation = new_batch is None

        if new_batch is not None:
1823
1824
1825
1826
            # Run prefill first if possible
            ret = new_batch
        else:
            # Run decode
Lianmin Zheng's avatar
Lianmin Zheng committed
1827
            if not self.running_batch.is_empty():
1828
                self.running_batch = self.update_running_batch(self.running_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1829
1830
1831
                ret = self.running_batch if not self.running_batch.is_empty() else None
            else:
                ret = None
1832

1833
1834
        # Handle DP attention
        if need_dp_attn_preparation:
1835
            ret = self.prepare_mlp_sync_batch(ret)
1836
1837

        return ret
1838

1839
    def get_num_allocatable_reqs(self, running_bs):
1840
        res = global_server_args_dict["pp_max_micro_batch_size"] - running_bs
1841
1842
1843
1844
        if self.pp_size > 1:
            res = min(res, self.req_to_token_pool.available_size())
        return res

Lianmin Zheng's avatar
Lianmin Zheng committed
1845
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
Lianmin Zheng's avatar
Lianmin Zheng committed
1846
        # Check if the grammar is ready in the grammar queue
1847
        if self.grammar_queue:
1848
            self.move_ready_grammar_requests()
1849

1850
1851
1852
1853
        if self.try_preemption:
            # Reset batch_is_full to try preemption with a prefill adder.
            self.running_batch.batch_is_full = False

Lianmin Zheng's avatar
Lianmin Zheng committed
1854
1855
        # Handle the cases where prefill is not allowed
        if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1856
            self.running_batch.batch_is_full or len(self.waiting_queue) == 0
1857
        ) and self.chunked_req is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1858
1859
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
1860
        running_bs = len(self.running_batch.reqs)
1861
        # Ignore the check if self.chunked_req is not None.
1862
1863
1864
1865
        # In the non-PP case, when self.chunked_req is not None, num_allocatable_reqs should always be greater than 0,
        # as the space for the chunked request has just been released.
        # In PP case, a chunked req can start in one microbatch and end in another microbatch, so the max_running_requests per microbatch should not be strict.
        # Instead, we should always allow chunked request to be added, otherwise, there will be a memory leak.
1866
1867
1868
1869
1870
        if (
            self.get_num_allocatable_reqs(running_bs) <= 0
            and not self.chunked_req
            and not self.try_preemption
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1871
            self.running_batch.batch_is_full = True
1872
1873
            return None

1874
        if self.enable_hierarchical_cache:
1875
            self.tree_cache.check_hicache_events()
1876

1877
        # Get priority queue
1878
        self.policy.calc_priority(self.waiting_queue)
1879

Lianmin Zheng's avatar
Lianmin Zheng committed
1880
        # Prefill policy
1881
        adder = PrefillAdder(
1882
            self.page_size,
1883
            self.tree_cache,
1884
            self.token_to_kv_pool_allocator,
1885
1886
1887
1888
            self.running_batch,
            self.new_token_ratio,
            self.max_prefill_tokens,
            self.chunked_prefill_size,
1889
            running_bs if self.is_mixed_chunk else 0,
1890
            self.priority_scheduling_preemption_threshold,
1891
1892
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1893
        if self.chunked_req is not None:
1894
1895
            self.chunked_req.init_next_round_input()
            self.chunked_req = adder.add_chunked_req(self.chunked_req)
1896

1897
        if self.enable_lora:
1898
            lora_set = set([req.lora_id for req in self.running_batch.reqs])
Lianmin Zheng's avatar
Lianmin Zheng committed
1899

1900
        # Get requests from the waiting queue to a new prefill batch
1901
        for req in self.waiting_queue:
1902
1903
1904
1905
1906

            if self.enable_lora and not self.tp_worker.can_run_lora_batch(
                lora_set
                | set([req.lora_id for req in adder.can_run_list])
                | set([req.lora_id])
1907
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1908
                self.running_batch.batch_is_full = True
1909
1910
                break

1911
            running_bs = len(self.running_batch.reqs) - len(adder.preempt_list)
1912
            if len(adder.can_run_list) >= self.get_num_allocatable_reqs(running_bs):
Lianmin Zheng's avatar
Lianmin Zheng committed
1913
                self.running_batch.batch_is_full = True
Byron Hsu's avatar
Byron Hsu committed
1914
1915
1916
1917
1918
            if self.disaggregation_mode == DisaggregationMode.PREFILL:
                # In prefill mode, prealloc queue and transfer queue can also take memory,
                # so we need to check if the available size for the actual available size.
                if len(adder.can_run_list) >= self.req_to_token_pool.available_size():
                    self.running_batch.batch_is_full = True
1919
1920
1921
1922
1923

            if self.running_batch.batch_is_full:
                if not self.try_preemption:
                    break
                if not adder.preempt_to_schedule(req, self.server_args):
Byron Hsu's avatar
Byron Hsu committed
1924
1925
                    break

1926
            if self.enable_hicache_storage:
pansicheng's avatar
pansicheng committed
1927
1928
1929
1930
                prefetch_done = self.tree_cache.check_prefetch_progress(req.rid)
                if not prefetch_done:
                    # skip staging requests that are ongoing prefetch
                    continue
1931

1932
            req.init_next_round_input(self.tree_cache)
1933
1934
1935
1936
1937
            res = adder.add_one_req(
                req,
                has_chunked_req=(self.chunked_req is not None),
                truncation_align_size=self.truncation_align_size,
            )
1938

1939
1940
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
1941
1942
                    if self.enable_hierarchical_cache:
                        # Set batch_is_full after making sure there are requests that can be served
Lianmin Zheng's avatar
Lianmin Zheng committed
1943
1944
                        self.running_batch.batch_is_full = len(
                            adder.can_run_list
1945
                        ) > 0 or (not self.running_batch.is_empty())
1946
                    else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1947
                        self.running_batch.batch_is_full = True
1948
1949
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1950
        # Update waiting queue
1951
        can_run_list: List[Req] = adder.can_run_list
Lianmin Zheng's avatar
Lianmin Zheng committed
1952
1953
        if len(can_run_list) == 0:
            return None
1954
1955
1956
1957

        if self.enable_metrics:
            # only record queue time when enable_metrics is True to avoid overhead
            for req in can_run_list:
1958
                req.add_latency(RequestStage.PREFILL_WAITING)
1959

Lianmin Zheng's avatar
Lianmin Zheng committed
1960
1961
1962
        self.waiting_queue = [
            x for x in self.waiting_queue if x not in set(can_run_list)
        ]
1963
        if adder.preempt_list:
1964
1965
            for req in adder.preempt_list:
                self._add_request_to_queue(req)
1966

1967
1968
1969
        if adder.new_chunked_req is not None:
            assert self.chunked_req is None
            self.chunked_req = adder.new_chunked_req
1970

1971
1972
        if self.chunked_req:
            self.chunked_req.is_chunked += 1
Lianmin Zheng's avatar
Lianmin Zheng committed
1973

1974
        # Print stats
1975
        if self.current_scheduler_metrics_enabled():
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
            self.log_prefill_stats(adder, can_run_list, running_bs, 0)

        for req in can_run_list:
            if req.time_stats.forward_entry_time == 0:
                # Avoid update chunked request many times
                req.time_stats.forward_entry_time = time.perf_counter()
                if self.enable_metrics:
                    self.metrics_collector.observe_queue_time(
                        req.time_stats.get_queueing_time(),
                    )
1986

Lianmin Zheng's avatar
Lianmin Zheng committed
1987
        # Create a new batch
1988
1989
1990
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
1991
            self.token_to_kv_pool_allocator,
1992
            self.tree_cache,
1993
            self.model_config,
1994
            self.enable_overlap,
1995
            self.spec_algorithm,
1996
            chunked_req=self.chunked_req,
1997
        )
1998
1999
        if self.enable_hierarchical_cache:
            # todo (zhiqiang): disable cuda graph execution if hicache loading triggered
2000
2001
2002
            new_batch.hicache_consumer_index = (
                self.tree_cache.ready_to_load_host_cache()
            )
2003

2004
        new_batch.prepare_for_extend()
2005

Lianmin Zheng's avatar
Lianmin Zheng committed
2006
        # Mixed-style chunked prefill
2007
2008
        if (
            self.is_mixed_chunk
Lianmin Zheng's avatar
Lianmin Zheng committed
2009
            and not self.running_batch.is_empty()
2010
2011
2012
            and not (new_batch.return_logprob or self.running_batch.return_logprob)
        ):
            # TODO (lianmin): support return_logprob + mixed chunked prefill
2013
2014
            self.running_batch.filter_batch()
            if not self.running_batch.is_empty():
2015
                self.running_batch.prepare_for_decode()
2016
2017
                new_batch.mix_with_running(self.running_batch)
                new_batch.decoding_reqs = self.running_batch.reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
2018
2019
2020
            self.running_batch = ScheduleBatch(
                reqs=[], batch_is_full=self.running_batch.batch_is_full
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
2021
2022
        else:
            new_batch.decoding_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
2023
2024
2025

        return new_batch

Lianmin Zheng's avatar
Lianmin Zheng committed
2026
    def update_running_batch(self, batch: ScheduleBatch) -> Optional[ScheduleBatch]:
2027
        """Update the current running decoding batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
2028
        initial_bs = batch.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
2029

2030
2031
        batch.filter_batch()
        if batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
2032
2033
            batch.batch_is_full = False
            return batch
2034

Lianmin Zheng's avatar
Lianmin Zheng committed
2035
        # Check if decode out of memory
2036
        if not batch.check_decode_mem(self.decode_mem_cache_buf_multiplier) or (
2037
            TEST_RETRACT and batch.batch_size() > 10
2038
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
2039
            old_ratio = self.new_token_ratio
2040
2041
2042
2043
            retracted_reqs, new_token_ratio, reqs_to_abort = batch.retract_decode(
                self.server_args
            )
            self.num_retracted_reqs = len(retracted_reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
2044
            self.new_token_ratio = new_token_ratio
2045
2046
            for req in reqs_to_abort:
                self.send_to_tokenizer.send_pyobj(
2047
                    AbortReq(abort_reason=req.to_abort_message, rid=req.rid)
2048
                )
2049

Lianmin Zheng's avatar
Lianmin Zheng committed
2050
            logger.info(
2051
                "KV cache pool is full. Retract requests. "
2052
2053
2054
                f"#retracted_reqs: {len(retracted_reqs)}, "
                f"#aborted_retracted_reqs: {len(reqs_to_abort)}, "
                f"#new_token_ratio: {old_ratio:.4f} -> {new_token_ratio:.4f}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2055
            )
2056

2057
2058
            for req in retracted_reqs:
                self._add_request_to_queue(req, is_retracted=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
2059
2060
        else:
            self.new_token_ratio = max(
2061
                self.new_token_ratio - self.new_token_ratio_decay,
Lianmin Zheng's avatar
Lianmin Zheng committed
2062
2063
2064
                self.min_new_token_ratio,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
2065
        if batch.batch_size() < initial_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
2066
            batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
2067
2068

        # Update batch tensors
2069
        batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
2070
        return batch
Lianmin Zheng's avatar
Lianmin Zheng committed
2071

2072
2073
2074
    def run_batch(
        self, batch: ScheduleBatch
    ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
2075
        """Run a batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
2076
2077
        self.forward_ct += 1

2078
2079
        # Whether to run the profiler
        self._profile_batch_predicate(batch)
2080
2081
2082
2083
        if self.forward_sleep_time is not None:
            logger.info(f"Scheduler.run_batch sleep {self.forward_sleep_time}s")
            time.sleep(self.forward_sleep_time)

2084
        # Run forward
2085
        if self.is_generation:
2086
2087
2088

            batch_or_worker_batch = batch

2089
            if self.spec_algorithm.is_none():
2090
2091
                # FIXME(lsyin): remove this if and finally unify the abstraction
                batch_or_worker_batch = batch.get_model_worker_batch()
2092

2093
2094
2095
2096
2097
2098
2099
            if self.enable_overlap:
                # FIXME: remove this assert
                assert isinstance(batch_or_worker_batch, ModelWorkerBatch)
                model_worker_batch = batch_or_worker_batch
                self.record_batch_in_overlap(model_worker_batch)

                # Sampling info will be modified during forward
2100
                model_worker_batch.sampling_info = (
2101
2102
2103
2104
                    model_worker_batch.sampling_info.copy_for_forward()
                )

                bs = len(model_worker_batch.seq_lens)
2105
                future_indices = self.future_map.alloc_future_indices(bs)
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120

                with self.forward_stream_ctx:
                    self.forward_stream.wait_stream(self.default_stream)
                    self.future_map.resolve_future(model_worker_batch)
                    if batch.sampling_info.grammars is not None:
                        model_worker_batch.delay_sample_launch = True
                    batch_result = self.model_worker.forward_batch_generation(
                        batch_or_worker_batch
                    )
                    # FIXME(lsyin): maybe move this to forward_batch_generation
                    batch_result.copy_done = torch.get_device_module(
                        self.device
                    ).Event()
                    if not model_worker_batch.delay_sample_launch:
                        self.future_map.store_to_map(
2121
                            future_indices, batch_result.next_token_ids
2122
2123
2124
                        )
                        batch_result.copy_to_cpu()
                    else:
2125
                        batch_result.future_indices = future_indices
2126
2127

                # FIXME(lsyin): move this assignment elsewhere
2128
                maybe_future_next_token_ids = -future_indices.indices
2129
2130
2131
2132
2133
            else:
                batch_result = self.model_worker.forward_batch_generation(
                    batch_or_worker_batch
                )
                maybe_future_next_token_ids = batch_result.next_token_ids
2134
2135
2136

            if not self.spec_algorithm.is_none():
                # TODO(lsyin): unify this metric-updating logic with non-spec, and move it to decode processing
2137
2138
                self.update_spec_metrics(
                    batch.batch_size(), batch_result.num_accepted_tokens
2139
2140
                )

2141
2142
2143
2144
2145
            # NOTE: maybe_future_next_token_ids is used in ScheduleBatch,
            #       which can probably be replaced by future_indices later [TODO(lsyin)].
            #       we shall still keep the original outputs, e.g. next_token_ids
            #       in the GenerationBatchOutput for processing after copy_done.
            batch.output_ids = maybe_future_next_token_ids
2146

2147
2148
2149
            # These 2 values are needed for processing the output, but the values can be
            # modified by overlap schedule. So we have to copy them here so that
            # we can use the correct values in output processing.
2150
            if batch.return_logprob or self.spec_algorithm.is_eagle():
2151
                extend_input_len_per_req = [req.extend_input_len for req in batch.reqs]
2152
2153
            else:
                extend_input_len_per_req = None
2154

2155
            if batch.return_logprob:
2156
2157
2158
2159
2160
2161
                extend_logprob_start_len_per_req = [
                    req.extend_logprob_start_len for req in batch.reqs
                ]
            else:
                extend_logprob_start_len_per_req = None

2162
2163
2164
            batch_result.extend_input_len_per_req = extend_input_len_per_req
            batch_result.extend_logprob_start_len_per_req = (
                extend_logprob_start_len_per_req
2165
            )
2166
            return batch_result
Lianmin Zheng's avatar
Lianmin Zheng committed
2167
2168
2169
        else:  # embedding or reward model
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
2170
            ret = EmbeddingBatchResult(embeddings=embeddings)
2171
        return ret
Chayenne's avatar
Chayenne committed
2172

2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
    def launch_last_batch_sample_if_needed(
        self,
    ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
        if len(self.result_queue) == 0:
            return

        tmp_batch, tmp_result = self.result_queue.popleft()

        tmp_result: GenerationBatchResult
        if not tmp_result.delay_sample_launch:
            self.result_queue.appendleft((tmp_batch, tmp_result))
            return

        with self.forward_stream_ctx:
            self.forward_stream.wait_stream(self.default_stream)
            tmp_result.next_token_ids = self.model_worker.model_runner.sample(
                tmp_result.logits_output,
                tmp_result.forward_batch,
            )
2192
2193
            future_indices = tmp_result.future_indices
            self.future_map.store_to_map(future_indices, tmp_result.next_token_ids)
2194
2195
2196
            tmp_result.copy_to_cpu()
            self.result_queue.appendleft((tmp_batch, tmp_result))

2197
2198
2199
2200
2201
    def process_batch_result(
        self,
        batch: ScheduleBatch,
        result: Union[GenerationBatchResult, EmbeddingBatchResult],
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
2202
        if batch.forward_mode.is_decode():
2203
            self.process_batch_result_decode(batch, result)
2204
2205
            if self.enable_trace:
                trace_slice_batch("decode loop", batch.reqs)
2206

2207
        elif batch.forward_mode.is_extend():
2208
            self.process_batch_result_prefill(batch, result)
2209
2210
2211
            if self.enable_trace:
                trace_slice_batch("prefill", batch.reqs)

2212
2213
        elif batch.forward_mode.is_idle():
            if self.enable_overlap:
2214
2215
                if result.copy_done is not None:
                    result.copy_done.synchronize()
Lianmin Zheng's avatar
Lianmin Zheng committed
2216

2217
2218
2219
        self.maybe_send_health_check_signal()

    def maybe_send_health_check_signal(self):
2220
2221
2222
2223
2224
2225
2226
        if self.return_health_check_ct:
            # Return some signal for the health check.
            # This is used to prevent the health check signal being blocked by long context prefill.
            # However, one minor issue is that this code path does not check the status of detokenizer manager.
            self.return_health_check_ct -= 1
            self.send_to_tokenizer.send_pyobj(HealthCheckOutput())

2227
2228
    def prepare_mlp_sync_batch(self, local_batch: ScheduleBatch):
        return self.prepare_mlp_sync_batch_raw(
2229
2230
2231
            local_batch,
            dp_size=self.server_args.dp_size,
            attn_tp_size=self.attn_tp_size,
2232
            tp_group=self.tp_group,
2233
2234
2235
2236
            get_idle_batch=self.get_idle_batch,
            disable_cuda_graph=self.server_args.disable_cuda_graph,
            spec_algorithm=self.spec_algorithm,
            speculative_num_draft_tokens=self.server_args.speculative_num_draft_tokens,
2237
            require_mlp_tp_gather=require_mlp_tp_gather(self.server_args),
2238
            disable_overlap_schedule=self.server_args.disable_overlap_schedule,
2239
2240
2241
        )

    @staticmethod
2242
    def prepare_mlp_sync_batch_raw(
2243
2244
2245
        local_batch: ScheduleBatch,
        dp_size,
        attn_tp_size: int,
2246
        tp_group,
2247
2248
2249
2250
        get_idle_batch,
        disable_cuda_graph: bool,
        spec_algorithm,
        speculative_num_draft_tokens,
2251
        require_mlp_tp_gather: bool,
2252
        disable_overlap_schedule: bool,
2253
    ):
2254
2255
2256
        # Check if other DP workers have running batches
        if local_batch is None:
            num_tokens = 0
2257
            num_tokens_for_logprob = 0
2258
2259
        elif local_batch.forward_mode.is_decode():
            num_tokens = local_batch.batch_size()
2260
            num_tokens_for_logprob = num_tokens
2261
2262
        else:
            num_tokens = local_batch.extend_num_tokens
2263
            num_tokens_for_logprob = sum(
Lianmin Zheng's avatar
Lianmin Zheng committed
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
                [
                    # We should have at least 1 token for sample in every case.
                    max(extend_len - logprob_start_len, 1)
                    for logprob_start_len, extend_len in zip(
                        local_batch.extend_logprob_start_lens, local_batch.extend_lens
                    )
                ]
            )

        if local_batch is None or local_batch.forward_mode.is_decode_or_idle():
            can_cuda_graph = 1
        else:
            can_cuda_graph = 0

        is_extend_in_batch = (
            local_batch.forward_mode.is_extend() if local_batch else False
        )
2281
2282

        tbo_preparer = TboDPAttentionPreparer()
2283
2284
2285
2286
2287
2288
        if disable_overlap_schedule:
            group = tp_group.device_group
            device = tp_group.device
        else:
            group = tp_group.cpu_group
            device = "cpu"
2289

Lianmin Zheng's avatar
Lianmin Zheng committed
2290
2291
2292
2293
        local_info = torch.tensor(
            [
                num_tokens,
                can_cuda_graph,
2294
                num_tokens_for_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
2295
                is_extend_in_batch,
2296
2297
2298
                *tbo_preparer.prepare_all_gather(
                    local_batch,
                ),
Lianmin Zheng's avatar
Lianmin Zheng committed
2299
2300
            ],
            dtype=torch.int64,
2301
            device=device,
Lianmin Zheng's avatar
Lianmin Zheng committed
2302
2303
        )
        global_info = torch.empty(
2304
            (dp_size, attn_tp_size, 6),
Lianmin Zheng's avatar
Lianmin Zheng committed
2305
            dtype=torch.int64,
2306
            device=device,
Lianmin Zheng's avatar
Lianmin Zheng committed
2307
        )
2308
        torch.distributed.all_gather_into_tensor(
Lianmin Zheng's avatar
Lianmin Zheng committed
2309
2310
            global_info.flatten(),
            local_info,
2311
            group=group,
2312
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2313
2314
2315
2316
        global_num_tokens = global_info[:, 0, 0].tolist()
        can_cuda_graph = min(global_info[:, 0, 1].tolist())
        global_num_tokens_for_logprob = global_info[:, 0, 2].tolist()
        is_extend_in_batch = global_info[:, 0, 3].tolist()
2317

2318
2319
2320
2321
        tbo_split_seq_index, global_forward_mode = tbo_preparer.compute_output(
            global_info[:, :, 4:6]
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2322
        if local_batch is None and max(global_num_tokens) > 0:
2323
            local_batch = get_idle_batch()
2324
2325

        if local_batch is not None:
2326
            # TODO: handle the case when moe_dense_tp_size != 1
2327
            if not require_mlp_tp_gather:
2328
2329
2330
2331
2332
2333
2334
                local_batch.global_num_tokens = [num_tokens]
                local_batch.global_num_tokens_for_logprob = [num_tokens_for_logprob]
            else:
                local_batch.global_num_tokens = global_num_tokens
                local_batch.global_num_tokens_for_logprob = (
                    global_num_tokens_for_logprob
                )
2335
            local_batch.is_extend_in_batch = any(is_extend_in_batch)
2336
2337
            local_batch.tbo_split_seq_index = tbo_split_seq_index
            local_batch.global_forward_mode = global_forward_mode
2338

2339
            # Check forward mode for cuda graph
2340
            if not disable_cuda_graph:
Lianmin Zheng's avatar
Lianmin Zheng committed
2341
                local_batch.can_run_dp_cuda_graph = can_cuda_graph
2342

2343
        return local_batch
2344
2345
2346
2347
2348

    def get_idle_batch(self):
        idle_batch = ScheduleBatch.init_new(
            [],
            self.req_to_token_pool,
2349
            self.token_to_kv_pool_allocator,
2350
2351
2352
            self.tree_cache,
            self.model_config,
            self.enable_overlap,
2353
            self.spec_algorithm,
2354
2355
2356
2357
        )
        idle_batch.prepare_for_idle()
        return idle_batch

2358
2359
    def move_ready_grammar_requests(self):
        """Move requests whose grammar objects are ready from grammar_queue to waiting_queue."""
2360

2361
        num_ready_reqs = 0
2362
        num_timeout_reqs = 0
2363
2364
        for req in self.grammar_queue:
            try:
2365
2366
2367
                if req.finished():  # It is aborted by AbortReq
                    num_ready_reqs += 1
                    continue
2368

2369
                req.grammar = req.grammar.result(timeout=0.03)
2370
2371
                self.grammar_backend.set_cache(req.grammar_key, req.grammar.copy())
                if req.grammar is INVALID_GRAMMAR_OBJ:
2372
2373
2374
                    error_msg = f"Invalid grammar request: {req.grammar_key=}"
                    req.set_finish_with_abort(error_msg)

2375
2376
                num_ready_reqs += 1
            except futures._base.TimeoutError:
2377
                req.grammar_wait_ct += 1
2378
2379
                # NOTE(lianmin): this timeout is the waiting time of the above line. It is
                # not the waiting time from it enters the grammar queue.
2380
                if req.grammar_wait_ct > GRAMMAR_TIMEOUT / 0.03:
2381
                    num_timeout_reqs = 1
2382
2383
                break

2384
        if self.server_args.enable_dp_attention:
2385
2386
            tp_size = self.attn_tp_size
            tp_group = self.attn_tp_cpu_group
2387
        else:
2388
2389
2390
2391
2392
            tp_size = self.tp_size
            tp_group = self.tp_cpu_group

        if tp_size > 1:
            # Sync across TP ranks to make sure they have the same number of ready requests
2393
            tensor = torch.tensor([num_ready_reqs, num_timeout_reqs], dtype=torch.int32)
2394
2395
2396
            torch.distributed.all_reduce(
                tensor, op=torch.distributed.ReduceOp.MAX, group=tp_group
            )
2397
            num_ready_reqs_max, num_timeout_reqs_max = tensor.tolist()
2398

2399
            for i in range(num_ready_reqs, num_ready_reqs_max):
2400
                req = self.grammar_queue[i]
2401
2402
                if req.finished():  # It is aborted by AbortReq
                    continue
2403
                req.grammar = req.grammar.result()
2404
2405
                self.grammar_backend.set_cache(req.grammar_key, req.grammar.copy())
                if req.grammar is INVALID_GRAMMAR_OBJ:
2406
2407
                    error_msg = f"Invalid grammar request: {req.grammar_key=}"
                    req.set_finish_with_abort(error_msg)
2408
2409
2410
        else:
            num_ready_reqs_max = num_ready_reqs
            num_timeout_reqs_max = num_timeout_reqs
2411

2412
2413
2414
        for i in range(num_ready_reqs, num_ready_reqs + num_timeout_reqs_max):
            req = self.grammar_queue[i]
            req.grammar.cancel()
2415
            self.grammar_backend.set_cache(req.grammar_key, INVALID_GRAMMAR_OBJ)
2416
2417
            error_msg = f"Grammar preprocessing timed out for {req.grammar_key=}"
            req.set_finish_with_abort(error_msg)
2418

2419
        num_ready_reqs = num_ready_reqs_max + num_timeout_reqs_max
2420

2421
2422
        for req in self.grammar_queue[:num_ready_reqs]:
            self._add_request_to_queue(req)
2423
2424
        self.grammar_queue = self.grammar_queue[num_ready_reqs:]

2425
2426
2427
    def watchdog_thread(self):
        """A watch dog thread that will try to kill the server itself if one forward batch takes too long."""
        self.watchdog_last_forward_ct = 0
2428
        self.watchdog_last_time = time.perf_counter()
2429
2430

        while True:
2431
            current = time.perf_counter()
2432
2433
2434
2435
2436
2437
2438
2439
2440
            if self.cur_batch is not None:
                if self.watchdog_last_forward_ct == self.forward_ct:
                    if current > self.watchdog_last_time + self.watchdog_timeout:
                        break
                else:
                    self.watchdog_last_forward_ct = self.forward_ct
                    self.watchdog_last_time = current
            time.sleep(self.watchdog_timeout // 2)

Lianmin Zheng's avatar
Lianmin Zheng committed
2441
2442
        if not disable_request_logging():
            # Print batch size and memory pool info to check whether there are de-sync issues.
Hanming Lu's avatar
Hanming Lu committed
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
            if self.is_hybrid:
                (
                    _,
                    _,
                    _,
                    _,
                    full_available_size,
                    full_evictable_size,
                    swa_available_size,
                    swa_evictable_size,
                ) = self._get_swa_token_info()
                info_msg = (
                    f"{full_available_size=}, "
                    f"{full_evictable_size=}, "
                    f"{swa_available_size=}, "
                    f"{swa_evictable_size=}, "
                )
            else:
                _, _, available_size, evictable_size = self._get_token_info()
                info_msg = f"{available_size=}, " f"{evictable_size=}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
2463
2464
2465
            logger.error(
                f"{self.cur_batch.batch_size()=}, "
                f"{self.cur_batch.reqs=}, "
Hanming Lu's avatar
Hanming Lu committed
2466
                f"{info_msg}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2467
2468
            )

2469
        pyspy_dump_schedulers()
Lianmin Zheng's avatar
Lianmin Zheng committed
2470
        logger.error(f"Watchdog timeout ({self.watchdog_timeout=})")
2471
2472
        print(file=sys.stderr, flush=True)
        print(file=sys.stdout, flush=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
2473
2474

        # Wait for some time so that the parent process can print the error.
2475
2476
2477
        time.sleep(5)
        self.parent_process.send_signal(signal.SIGQUIT)

2478
2479
2480
    def flush_cache_wrapped(self, recv_req: FlushCacheReqInput):
        success = self.flush_cache()
        return FlushCacheReqOutput(success=success)
2481

2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
    def clear_hicache_storage_wrapped(self, recv_req: ClearHiCacheReqInput):
        if self.enable_hierarchical_cache:
            self.tree_cache.clear_storage_backend()
            logger.info("Hierarchical cache cleared successfully!")
            if_success = True
        else:
            logging.warning("Hierarchical cache is not enabled.")
            if_success = False
        return ClearHiCacheReqOutput(success=if_success)

2492
    def flush_cache(self):
2493
        """Flush the memory pool and cache."""
2494
2495
2496
2497
2498
        if (
            len(self.waiting_queue) == 0
            and self.running_batch.is_empty()
            and (self.pp_size == 1 or all(x.is_empty() for x in self.running_mbs))
        ):
2499
2500
            self.cur_batch = None
            self.last_batch = None
2501
            self.tree_cache.reset()
2502
            if self.grammar_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
2503
                self.grammar_backend.reset()
2504
            self.req_to_token_pool.clear()
2505
            self.token_to_kv_pool_allocator.clear()
2506

2507
2508
            if self.draft_worker:
                self.draft_worker.clear_cache_pool()
2509
2510
2511
2512
2513

            self.num_generated_tokens = 0
            self.forward_ct_decode = 0
            self.spec_num_total_accepted_tokens = 0
            self.spec_num_total_forward_ct = 0
2514
2515
            self.cum_spec_accept_length = 0
            self.cum_spec_accept_count = 0
2516
2517
2518
2519
2520
2521
2522
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
2523
                f"#running-req: {len(self.running_batch.reqs)}"
2524
2525
2526
2527
            )
            if_success = False
        return if_success

2528
    def get_load(self, recv_req: GetLoadReqInput = None) -> GetLoadReqOutput:
Liangsheng Yin's avatar
Liangsheng Yin committed
2529
        # TODO(lsyin): use dynamically maintained num_waiting_tokens
2530

Hanming Lu's avatar
Hanming Lu committed
2531
        if self.is_hybrid:
2532
            num_tokens_full = (
Hanming Lu's avatar
Hanming Lu committed
2533
2534
2535
2536
                self.full_tokens_per_layer
                - self.token_to_kv_pool_allocator.full_available_size()
                - self.tree_cache.full_evictable_size()
            )
2537
            num_tokens_swa = (
Hanming Lu's avatar
Hanming Lu committed
2538
2539
2540
2541
                self.swa_tokens_per_layer
                - self.token_to_kv_pool_allocator.swa_available_size()
                - self.tree_cache.swa_evictable_size()
            )
2542
            num_tokens = max(num_tokens_full, num_tokens_swa)
Hanming Lu's avatar
Hanming Lu committed
2543
        else:
2544
            num_tokens = (
Hanming Lu's avatar
Hanming Lu committed
2545
2546
2547
2548
                self.max_total_num_tokens
                - self.token_to_kv_pool_allocator.available_size()
                - self.tree_cache.evictable_size()
            )
2549
2550
2551
2552

        # Tokens in waiting queue, bootstrap queue, prealloc queue
        num_tokens += sum(len(req.origin_input_ids) for req in self.waiting_queue)
        num_waiting_reqs = len(self.waiting_queue)
Liangsheng Yin's avatar
Liangsheng Yin committed
2553
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
2554
            num_tokens += sum(
Liangsheng Yin's avatar
Liangsheng Yin committed
2555
2556
2557
                len(req.origin_input_ids)
                for req in self.disagg_prefill_bootstrap_queue.queue
            )
2558
            num_waiting_reqs += len(self.disagg_prefill_bootstrap_queue.queue)
Liangsheng Yin's avatar
Liangsheng Yin committed
2559
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
2560
            num_tokens += sum(
Liangsheng Yin's avatar
Liangsheng Yin committed
2561
2562
2563
                len(req.req.origin_input_ids)
                for req in self.disagg_decode_prealloc_queue.queue
            )
2564
            num_waiting_reqs += len(self.disagg_decode_prealloc_queue.queue)
Liangsheng Yin's avatar
Liangsheng Yin committed
2565

2566
2567
2568
2569
2570
2571
        return GetLoadReqOutput(
            dp_rank=self.dp_rank,
            num_reqs=len(self.running_batch.reqs) + num_waiting_reqs,
            num_waiting_reqs=num_waiting_reqs,
            num_tokens=num_tokens,
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
2572

2573
2574
2575
    def get_internal_state(self, recv_req: GetInternalStateReq):
        ret = dict(global_server_args_dict)
        ret["last_gen_throughput"] = self.last_gen_throughput
2576
2577
2578
2579
2580
2581
2582
2583
2584
        ret["memory_usage"] = {
            "weight": round(
                self.tp_worker.worker.model_runner.weight_load_mem_usage, 2
            ),
            "kvcache": round(
                self.token_to_kv_pool_allocator.get_kvcache().mem_usage, 2
            ),
            "token_capacity": int(self.max_total_num_tokens),
        }
2585

2586
2587
2588
        ret["memory_usage"]["graph"] = round(
            self.tp_worker.worker.model_runner.graph_mem_usage, 2
        )
2589

2590
2591
2592
2593
2594
2595
        if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
            ret["avg_spec_accept_length"] = (
                self.cum_spec_accept_length / self.cum_spec_accept_count
            )
        if RECORD_STEP_TIME:
            ret["step_time_dict"] = self.step_time_dict
Liangsheng Yin's avatar
Liangsheng Yin committed
2596
2597

        return GetInternalStateReqOutput(internal_state=ret)
2598
2599
2600
2601
2602

    def set_internal_state(self, recv_req: SetInternalStateReq):
        server_args_dict = recv_req.server_args
        args_allow_update = set(
            [
2603
                "pp_max_micro_batch_size",
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
                "speculative_accept_threshold_single",
                "speculative_accept_threshold_acc",
            ]
        )
        if_success = True
        for k, v in server_args_dict.items():
            if k not in args_allow_update:
                logging.warning(f"Updating {k} is not supported.")
                if_success = False
                break
2614
            elif k == "pp_max_micro_batch_size" and (
2615
2616
2617
2618
2619
2620
2621
                v > self.max_running_requests // self.pp_size or v < 1
            ):
                logging.warning(
                    f"Updating {k} to {v} is rejected because it is out of the valid range [1, {self.max_running_requests // self.pp_size}]."
                )
                if_success = False
                break
2622
2623
2624
2625
2626
2627
2628
2629
2630
        if if_success:
            if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
                avg_spec_accept_length = (
                    self.cum_spec_accept_length / self.cum_spec_accept_count
                )
                logger.info(f"{avg_spec_accept_length=}")
            self.cum_spec_accept_length = self.cum_spec_accept_count = 0
            for k, v in server_args_dict.items():
                global_server_args_dict[k] = v
2631
            logger.info(f"Global server args updated! {global_server_args_dict=}")
2632
2633
2634
2635
2636
        return SetInternalStateReqOutput(
            updated=True,
            server_args=global_server_args_dict,
        )

2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
    def handle_rpc_request(self, recv_req: RpcReqInput):
        # Handle RPC requests
        logger.info(
            f"handle_rpc_request: {recv_req.method}, param: {recv_req.parameters}"
        )

        success = True
        exec = None
        try:
            func = getattr(self, recv_req.method)
            func(recv_req.parameters)
        except Exception as e:
            success = False
            exec = e
            logger.error(f"Failed to call rpc {recv_req.method}: {str(e)}")

        barrier()
        return RpcReqOutput(success, "" if not exec else str(exec))

2656
2657
    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
Lianmin Zheng's avatar
Lianmin Zheng committed
2658
        to_del = []
2659
        for i, req in enumerate(self.waiting_queue):
2660
            if recv_req.abort_all or req.rid.startswith(recv_req.rid):
Lianmin Zheng's avatar
Lianmin Zheng committed
2661
                to_del.append(i)
2662

Lianmin Zheng's avatar
Lianmin Zheng committed
2663
        # Sort in reverse order to avoid index issues when deleting
Lianmin Zheng's avatar
Lianmin Zheng committed
2664
        for i in reversed(to_del):
2665
2666
2667
            # Abort method 1: directly pop from the queue
            # This only works for requests that have not started anything.
            # We still need to send something back to TokenizerManager to clean up the state.
Lianmin Zheng's avatar
Lianmin Zheng committed
2668
            req = self.waiting_queue.pop(i)
2669
2670
2671
            if self.enable_hicache_storage:
                # to release prefetch events associated with the request
                self.tree_cache.release_aborted_request(req.rid)
2672
            self.send_to_tokenizer.send_pyobj(AbortReq(rid=req.rid))
2673
2674
2675
2676
            # For disaggregation decode mode, the request in the waiting queue has KV cache allocated.
            if self.disaggregation_mode == DisaggregationMode.DECODE:
                self.tree_cache.cache_finished_req(req)

2677
            logger.debug(f"Abort queued request. {req.rid=}")
2678

2679
2680
2681
2682
2683
        # Delete the requests in the grammar queue
        for req in self.grammar_queue:
            # Abort method 2: call `set_finish_with_abort`
            # The request will still run one prefill forward pass.
            # In this case, we change the input_ids to be only one token to make this prefill cheap.
2684
            if recv_req.abort_all or req.rid.startswith(recv_req.rid):
2685
                logger.debug(f"Abort grammar queue request. {req.rid=}")
2686
2687
                if req.grammar:
                    req.grammar.cancel()
2688
2689
                req.set_finish_with_abort("Aborted by AbortReq.")

2690
2691
2692
        # Delete requests not in the waiting queue when PD disaggregation is enabled
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            # Abort requests that have not yet been bootstrapped
2693
            for req in self.disagg_prefill_bootstrap_queue.queue:
2694
                if recv_req.abort_all or req.rid.startswith(recv_req.rid):
2695
                    logger.debug(f"Abort bootstrap queue request. {req.rid=}")
2696
2697
2698
2699
                    if hasattr(req.disagg_kv_sender, "abort"):
                        req.disagg_kv_sender.abort()

            # Abort in-flight requests
2700
            for req in self.disagg_prefill_inflight_queue:
2701
                if recv_req.abort_all or req.rid.startswith(recv_req.rid):
2702
                    logger.debug(f"Abort inflight queue request. {req.rid=}")
2703
2704
2705
2706
2707
                    if hasattr(req.disagg_kv_sender, "abort"):
                        req.disagg_kv_sender.abort()

        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            # Abort requests that have not yet finished preallocation
2708
            for decode_req in self.disagg_decode_prealloc_queue.queue:
2709
                if recv_req.abort_all or decode_req.req.rid.startswith(recv_req.rid):
2710
                    logger.debug(f"Abort prealloc queue request. {decode_req.req.rid=}")
2711
2712
2713
2714
                    if hasattr(decode_req.kv_receiver, "abort"):
                        decode_req.kv_receiver.abort()

            # Abort requests waiting for kvcache to release tree cache
2715
            for decode_req in self.disagg_decode_transfer_queue.queue:
2716
                if recv_req.abort_all or decode_req.req.rid.startswith(recv_req.rid):
2717
                    logger.debug(f"Abort transfer queue request. {decode_req.req.rid=}")
2718
2719
2720
                    if hasattr(decode_req.kv_receiver, "abort"):
                        decode_req.kv_receiver.abort()

2721
        # Delete requests in the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
2722
2723
2724
2725
2726
2727
        if self.cur_batch is self.running_batch or self.cur_batch is None:
            reqs = self.running_batch.reqs
        else:
            reqs = self.running_batch.reqs + self.cur_batch.reqs

        for req in reqs:
2728
2729
2730
            if not req.finished() and (
                recv_req.abort_all or req.rid.startswith(recv_req.rid)
            ):
2731
2732
2733
                # Abort method 3: set `to_abort=True`
                # The request will still run one decode forward pass.
                # Then we reuse all existing code to clean up the KV cache allocation.
Lianmin Zheng's avatar
Lianmin Zheng committed
2734
2735
                logger.debug(f"Abort running request. {req.rid=}")
                req.to_abort = True
2736

2737
2738
2739
    def _pause_engine(self) -> Tuple[List[Req], int]:
        raise NotImplementedError()

2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
    def load_lora_adapter(
        self, recv_req: LoadLoRAAdapterReqInput
    ) -> LoadLoRAAdapterReqOutput:
        """In-place loading a new lora adapter from disk or huggingface."""

        result = self.tp_worker.load_lora_adapter(recv_req)
        return result

    def unload_lora_adapter(
        self, recv_req: UnloadLoRAAdapterReqInput
    ) -> UnloadLoRAAdapterReqOutput:
        """Unload the lora adapter."""

        result = self.tp_worker.unload_lora_adapter(recv_req)
        return result

2756
2757
2758
2759
    def register_multi_tokenizer(self, recv_req: MultiTokenizerRegisterReq):
        self.send_to_detokenizer.send_pyobj(recv_req)
        return recv_req

2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
    def init_weights_send_group_for_remote_instance(
        self, recv_req: InitWeightsSendGroupForRemoteInstanceReqInput
    ):
        """Init the seed and client instance communication group."""
        success, message = self.tp_worker.init_weights_send_group_for_remote_instance(
            recv_req
        )
        return InitWeightsSendGroupForRemoteInstanceReqOutput(success, message)

    def send_weights_to_remote_instance(
        self, recv_req: SendWeightsToRemoteInstanceReqInput
    ):
        """Send the seed instance weights to the destination instance."""
        success, message = self.tp_worker.send_weights_to_remote_instance(recv_req)
        return SendWeightsToRemoteInstanceReqOutput(success, message)

2776
2777
2778
2779
2780
2781
2782
    def slow_down(self, recv_req: SlowDownReqInput):
        t = recv_req.forward_sleep_time
        if t is not None and t <= 0:
            t = None
        self.forward_sleep_time = t
        return SlowDownReqOutput()

2783
    def expert_distribution_handle(self, recv_req: ExpertDistributionReq):
2784
2785
        action = recv_req.action
        if action == ExpertDistributionReqType.START_RECORD:
2786
            get_global_expert_distribution_recorder().start_record()
2787
        elif action == ExpertDistributionReqType.STOP_RECORD:
2788
            get_global_expert_distribution_recorder().stop_record()
2789
        elif action == ExpertDistributionReqType.DUMP_RECORD:
2790
            get_global_expert_distribution_recorder().dump_record()
2791
        else:
2792
            raise ValueError(f"Unrecognized ExpertDistributionReq value: {recv_req=}")
2793
        return ExpertDistributionReqOutput()
2794

2795
    def open_session(self, recv_req: OpenSessionReqInput):
2796
2797
2798
2799
        # handle error
        session_id = recv_req.session_id
        if session_id in self.sessions:
            logger.warning(f"session id {session_id} already exist, cannot open.")
2800
            return OpenSessionReqOutput(session_id, False)
2801
        elif session_id is None:
2802
            logger.warning("session id is None, cannot open.")
2803
            return OpenSessionReqOutput(session_id, False)
2804
2805
2806
2807
        else:
            self.sessions[session_id] = Session(
                recv_req.capacity_of_str_len, session_id
            )
2808
            return OpenSessionReqOutput(session_id, True)
2809
2810
2811
2812
2813
2814
2815
2816
2817

    def close_session(self, recv_req: CloseSessionReqInput):
        # handle error
        session_id = recv_req.session_id
        if session_id not in self.sessions:
            logger.warning(f"session id {session_id} does not exist, cannot delete.")
        else:
            del self.sessions[session_id]

2818
2819
    def get_print_prefix(self):
        prefix = ""
2820
2821
        if self.attn_dp_rank is not None:
            prefix += f" DP{self.attn_dp_rank}"
2822
2823
2824
2825
2826
2827
        if self.server_args.tp_size > 1:
            prefix += f" TP{self.tp_rank}"
        if self.pp_size > 1:
            prefix += f" PP{self.pp_rank}"
        return prefix

2828
2829
    def current_scheduler_metrics_enabled(self):
        return self.attn_tp_rank == 0 or self.enable_metrics_for_all_schedulers
2830

2831
2832
2833
    def maybe_sleep_on_idle(self):
        if self.idle_sleeper is not None:
            self.idle_sleeper.maybe_sleep()
2834

2835
2836
2837
2838
2839
2840
    def handle_freeze_gc(self, recv_req: FreezeGCReq):
        """Handle freeze_gc request: freeze scheduler's GC and forward to detokenizer."""
        freeze_gc("Scheduler")
        self.send_to_detokenizer.send_pyobj(recv_req)
        return None

2841

2842
2843
2844
2845
2846
2847
2848
class IdleSleeper:
    """
    In setups which have long inactivity periods it is desirable to reduce
    system power consumption when sglang does nothing. This would lead not only
    to power savings, but also to more CPU thermal headroom when a request
    eventually comes. This is important in cases when multiple GPUs are connected
    as each GPU would otherwise pin one thread at 100% CPU usage.
2849

2850
2851
2852
    The simplest solution is to use zmq.Poller on all sockets that may receive
    data that needs handling immediately.
    """
2853

2854
2855
    def __init__(self, sockets):
        self.poller = zmq.Poller()
2856
        self.last_empty_time = time.time()
2857
2858
2859
2860
2861
        for s in sockets:
            self.poller.register(s, zmq.POLLIN)

    def maybe_sleep(self):
        self.poller.poll(1000)
2862
2863
2864
2865
2866
2867
2868
        if (
            global_config.torch_empty_cache_interval > 0
            and time.time() - self.last_empty_time
            > global_config.torch_empty_cache_interval
        ):
            self.last_empty_time = time.time()
            torch.cuda.empty_cache()
2869

2870

2871
def is_health_check_generate_req(recv_req):
2872
2873
    rid = getattr(recv_req, "rid", None)
    return rid is not None and rid.startswith("HEALTH_CHECK")
2874

2875
2876

def is_work_request(recv_req):
2877
2878
2879
2880
2881
2882
2883
2884
2885
    return isinstance(
        recv_req,
        (
            TokenizedGenerateReqInput,
            TokenizedEmbeddingReqInput,
            BatchTokenizedGenerateReqInput,
            BatchTokenizedEmbeddingReqInput,
        ),
    )
2886
2887


2888
2889
2890
2891
2892
def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
Cheng Wan's avatar
Cheng Wan committed
2893
    moe_ep_rank: int,
2894
    pp_rank: int,
2895
    dp_rank: Optional[int],
2896
    pipe_writer,
2897
):
2898
    # Generate the logger prefix
2899
    prefix = ""
2900
2901
2902
    if dp_rank is None and "SGLANG_DP_RANK" in os.environ:
        # [For Router] if env var "SGLANG_DP_RANK" exist, set dp_rank to the value of the env var
        dp_rank = int(os.environ["SGLANG_DP_RANK"])
2903
2904
2905
2906
    if dp_rank is not None:
        prefix += f" DP{dp_rank}"
    if server_args.tp_size > 1:
        prefix += f" TP{tp_rank}"
Cheng Wan's avatar
Cheng Wan committed
2907
2908
    if server_args.ep_size > 1:
        prefix += f" EP{moe_ep_rank}"
2909
2910
    if server_args.pp_size > 1:
        prefix += f" PP{pp_rank}"
2911

2912
    # Config the process
2913
    setproctitle.setproctitle(f"sglang::scheduler{prefix.replace(' ', '_')}")
2914
    faulthandler.enable()
2915
    kill_itself_when_parent_died()
2916
    parent_process = psutil.Process().parent()
2917

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
2918
    # Configure the logger
2919
    configure_logger(server_args, prefix=prefix)
2920
    suppress_other_loggers()
2921

2922
    # Set cpu affinity to this gpu process
2923
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
2924
2925
2926
        set_gpu_proc_affinity(
            server_args.pp_size, server_args.tp_size, server_args.nnodes, gpu_id
        )
2927
2928
2929
2930
2931
2932
2933
2934
2935
    if (numa_node := server_args.numa_node) is not None:
        numa_bind_to_node(numa_node[gpu_id])

    # Set up tracing
    if server_args.enable_trace:
        process_tracing_init(server_args.oltp_traces_endpoint, "sglang")
        if server_args.disaggregation_mode == "null":
            thread_label = "Scheduler"
            trace_set_thread_info(thread_label, tp_rank, dp_rank)
2936

2937
    # Create a scheduler and run the event loop
2938
    try:
Cheng Wan's avatar
Cheng Wan committed
2939
        scheduler = Scheduler(
2940
2941
2942
2943
2944
2945
2946
            server_args,
            port_args,
            gpu_id,
            tp_rank,
            moe_ep_rank,
            pp_rank,
            dp_rank,
Cheng Wan's avatar
Cheng Wan committed
2947
        )
2948
        pipe_writer.send(
Mick's avatar
Mick committed
2949
2950
2951
2952
2953
            {
                "status": "ready",
                "max_total_num_tokens": scheduler.max_total_num_tokens,
                "max_req_input_len": scheduler.max_req_input_len,
            }
2954
        )
Byron Hsu's avatar
Byron Hsu committed
2955

2956
        disaggregation_mode: DisaggregationMode = scheduler.disaggregation_mode
Byron Hsu's avatar
Byron Hsu committed
2957
        if disaggregation_mode == DisaggregationMode.NULL:
2958
2959
2960
            if server_args.pp_size > 1:
                scheduler.event_loop_pp()
            elif scheduler.enable_overlap:
Byron Hsu's avatar
Byron Hsu committed
2961
2962
2963
2964
                scheduler.event_loop_overlap()
            else:
                scheduler.event_loop_normal()
        elif disaggregation_mode == DisaggregationMode.PREFILL:
2965
2966
2967
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_prefill()
            else:
2968
2969
2970
2971
                if server_args.pp_size > 1:
                    scheduler.event_loop_pp_disagg_prefill()
                else:
                    scheduler.event_loop_normal_disagg_prefill()
2972

Byron Hsu's avatar
Byron Hsu committed
2973
        elif disaggregation_mode == DisaggregationMode.DECODE:
2974
2975
2976
2977
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_decode()
            else:
                scheduler.event_loop_normal_disagg_decode()
Byron Hsu's avatar
Byron Hsu committed
2978

2979
    except Exception:
2980
2981
2982
        traceback = get_exception_traceback()
        logger.error(f"Scheduler hit an exception: {traceback}")
        parent_process.send_signal(signal.SIGQUIT)