README.md 21.7 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
<div align="center">
2
<img src="https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png" alt="logo" width="400"></img>
Lianmin Zheng's avatar
Lianmin Zheng committed
3

Yineng Zhang's avatar
Yineng Zhang committed
4
5
6
7
8
9
[![PyPI](https://img.shields.io/pypi/v/sglang)](https://pypi.org/project/sglang)
![PyPI - Downloads](https://img.shields.io/pypi/dm/sglang)
[![license](https://img.shields.io/github/license/sgl-project/sglang.svg)](https://github.com/sgl-project/sglang/tree/main/LICENSE)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)
[![open issues](https://img.shields.io/github/issues-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)

Yineng Zhang's avatar
Yineng Zhang committed
10
11
</div>

Lianmin Zheng's avatar
Lianmin Zheng committed
12
13
--------------------------------------------------------------------------------

Ying Sheng's avatar
Ying Sheng committed
14
| [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/) | [**Paper**](https://arxiv.org/abs/2312.07104) | [**Slack**](https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2ngly9muu-t37XiH87qvD~6rVBTkTEHw) |
Lianmin Zheng's avatar
Lianmin Zheng committed
15

Ying Sheng's avatar
Ying Sheng committed
16
17
SGLang is a fast serving framework for large language models and vision language models.
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
Lianmin Zheng's avatar
Lianmin Zheng committed
18

19
The core features include:
Lianmin Zheng's avatar
Lianmin Zheng committed
20
- **Fast Backend Runtime**: Efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, FlashInfer kernels, and quantization (AWQ/FP8/GPTQ/Marlin).
Lianmin Zheng's avatar
Lianmin Zheng committed
21
- **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
Lianmin Zheng's avatar
Lianmin Zheng committed
22

Ying Sheng's avatar
Ying Sheng committed
23
## News
Ying Sheng's avatar
Ying Sheng committed
24
- [2024/07] 🔥 Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
25
- [2024/08] 🔥 LLaVA-OneVision with single-image, multi-image and video are supported ([blog](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)).
Ying Sheng's avatar
Ying Sheng committed
26
- [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
Ying Sheng's avatar
Ying Sheng committed
27

Ying Sheng's avatar
Ying Sheng committed
28
29
30
<details>
<summary>More</summary>

31
- [2024/04] SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
Ying Sheng's avatar
Ying Sheng committed
32
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
Ying Sheng's avatar
Ying Sheng committed
33
34
35
36
- [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).

</details>

Lianmin Zheng's avatar
Lianmin Zheng committed
37
38
39
## Contents
- [Install](#install)
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
Ying Sheng's avatar
Ying Sheng committed
40
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
41
42
43
44
45
46
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
47
48
### Method 1: With pip
```
49
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
50
pip install "sglang[all]"
Lianmin Zheng's avatar
Lianmin Zheng committed
51

Lianmin Zheng's avatar
Lianmin Zheng committed
52
# Install FlashInfer CUDA kernels
53
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
Lianmin Zheng's avatar
Lianmin Zheng committed
54
```
55

Lianmin Zheng's avatar
Lianmin Zheng committed
56
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
57
```
Ying Sheng's avatar
Ying Sheng committed
58
# Use the last release branch
Yineng Zhang's avatar
Yineng Zhang committed
59
git clone -b v0.2.14 https://github.com/sgl-project/sglang.git
Lianmin Zheng's avatar
Lianmin Zheng committed
60
61
cd sglang

Lianmin Zheng's avatar
Lianmin Zheng committed
62
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
63
64
pip install -e "python[all]"

Lianmin Zheng's avatar
Lianmin Zheng committed
65
# Install FlashInfer CUDA kernels
66
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
Lianmin Zheng's avatar
Lianmin Zheng committed
67
```
68

Lianmin Zheng's avatar
Lianmin Zheng committed
69
### Method 3: Using docker
Ying Sheng's avatar
Ying Sheng committed
70
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](docker).
71
Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
Ying Sheng's avatar
Ying Sheng committed
72

Liangsheng Yin's avatar
Liangsheng Yin committed
73
74
75
76
```bash
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
77
    --env "HF_TOKEN=<secret>" \
Liangsheng Yin's avatar
Liangsheng Yin committed
78
79
    --ipc=host \
    lmsysorg/sglang:latest \
80
    python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
Liangsheng Yin's avatar
Liangsheng Yin committed
81
82
```

83
84
### Method 4: Using docker compose

85
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
86
<summary>More</summary>
87

88
89
90
91
92
> This method is recommended if you plan to serve it as a service.
> A better approach is to use the [k8s-sglang-service.yaml](./docker/k8s-sglang-service.yaml).

1. Copy the [compose.yml](./docker/compose.yaml) to your local machine
2. Execute the command `docker compose up -d` in your terminal.
93
</details>
94

95
96
### Method 5: Run on Kubernetes or Clouds with SkyPilot

97
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
98
<summary>More</summary>
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
To deploy on Kubernetes or 12+ clouds, you can use [SkyPilot](https://github.com/skypilot-org/skypilot).

1. Install SkyPilot and set up Kubernetes cluster or cloud access: see [SkyPilot's documentation](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html).
2. Deploy on your own infra with a single command and get the HTTP API endpoint:
<details>
<summary>SkyPilot YAML: <code>sglang.yaml</code></summary>

```yaml
# sglang.yaml
envs:
  HF_TOKEN: null

resources:
  image_id: docker:lmsysorg/sglang:latest
  accelerators: A100
  ports: 30000

run: |
  conda deactivate
  python3 -m sglang.launch_server \
    --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \
    --host 0.0.0.0 \
    --port 30000
```
124
</details>
125
126
127
128
129
130
131
132
133

```bash
# Deploy on any cloud or Kubernetes cluster. Use --cloud <cloud> to select a specific cloud provider.
HF_TOKEN=<secret> sky launch -c sglang --env HF_TOKEN sglang.yaml

# Get the HTTP API endpoint
sky status --endpoint 30000 sglang
```
3. To further scale up your deployment with autoscaling and failure recovery, check out the [SkyServe + SGLang guide](https://github.com/skypilot-org/skypilot/tree/master/llm/sglang#serving-llama-2-with-sglang-for-more-traffic-using-skyserve).
134
</details>
135
136


Lianmin Zheng's avatar
Lianmin Zheng committed
137
### Common Notes
Yineng Zhang's avatar
Yineng Zhang committed
138
- [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is currently one of the dependencies that must be installed for SGLang. If you are using NVIDIA GPU devices below sm80, such as T4, you can't use SGLang for the time being. We expect to resolve this issue soon, so please stay tuned. If you encounter any FlashInfer-related issues on sm80+ devices (e.g., A100, L40S, H100), consider using Triton's kernel by `--disable-flashinfer --disable-flashinfer-sampling` and raise a issue.
Lianmin Zheng's avatar
Lianmin Zheng committed
139
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Ying Sheng's avatar
Ying Sheng committed
140

Ying Sheng's avatar
Ying Sheng committed
141
142
143
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is an efficient serving engine.

Ying Sheng's avatar
Ying Sheng committed
144
### Quick Start
Ying Sheng's avatar
Ying Sheng committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
```

Send a request
```
curl http://localhost:30000/generate \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Once upon a time,",
    "sampling_params": {
      "max_new_tokens": 16,
      "temperature": 0
    }
  }'
```
162
Learn more about the argument format [here](docs/en/sampling_params.md).
Ying Sheng's avatar
Ying Sheng committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

### OpenAI Compatible API
In addition, the server supports OpenAI-compatible APIs.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")

# Text completion
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
192
193
194
195
196
197
198

# Text embedding
response = client.embeddings.create(
    model="default",
    input="How are you today",
)
print(response)
Ying Sheng's avatar
Ying Sheng committed
199
200
```

Ying Sheng's avatar
Ying Sheng committed
201
It supports streaming, vision, and most features of the Chat/Completions/Models/Batch endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
Ying Sheng's avatar
Ying Sheng committed
202
203

### Additional Server Arguments
204
- Add `--tp 2` to enable multi-GPU tensor parallelism. If it reports the error "peer access is not supported between these two devices", add `--enable-p2p-check` to the server launch command.
Ying Sheng's avatar
Ying Sheng committed
205
206
207
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --tp 2
```
208
- Add `--dp 2` to enable multi-GPU data parallelism. It can also be used together with tensor parallelism. Data parallelism is better for throughput if there is enough memory.
Ying Sheng's avatar
Ying Sheng committed
209
210
211
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --dp 2 --tp 2
```
212
- If you see out-of-memory errors during serving, try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`.
Ying Sheng's avatar
Ying Sheng committed
213
214
215
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --mem-fraction-static 0.7
```
216
217
- See [hyperparameter_tuning.md](docs/en/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
- If you see out-of-memory errors during prefill for long prompts, try to set a smaller chunked prefill size.
Ying Sheng's avatar
Ying Sheng committed
218
```
219
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --chunked-prefill-size 4096
Ying Sheng's avatar
Ying Sheng committed
220
```
221
- Add `--nnodes 2` to run tensor parallelism on multiple nodes. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port.
Ying Sheng's avatar
Ying Sheng committed
222
223
```
# Node 0
224
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 0
Ying Sheng's avatar
Ying Sheng committed
225
226

# Node 1
227
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
Ying Sheng's avatar
Ying Sheng committed
228
```
229
- If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
230
- To enable experimental torch.compile support, you can add `--enable-torch-compile`. It accelerates small models on small batch sizes.
231
- To enable fp8 quantization, you can add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
Lianmin Zheng's avatar
Lianmin Zheng committed
232
 
Ying Sheng's avatar
Ying Sheng committed
233
234
### Supported Models

235
236
**Generative Models**

237
- Llama / Llama 2 / Llama 3 / Llama 3.1
238
- Mistral / Mixtral / Mistral NeMo
Ying Sheng's avatar
Ying Sheng committed
239
240
- Gemma / Gemma 2
- Qwen / Qwen 2 / Qwen 2 MoE
241
- DeepSeek / DeepSeek 2
242
243
244
245
246
247
248
- [LLaVA-OneVision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)
  - `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8 --chat-template=chatml-llava --chunked-prefill-size=16384`
  - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
- LLaVA 1.5 / 1.6 / NeXT
  - `python -m sglang.launch_server --model-path lmms-lab/llama3-llava-next-8b --port=30000 --tp-size=1 --chat-template=llava_llama_3`
  - `python -m sglang.launch_server --model-path lmms-lab/llava-next-72b --port=30000 --tp-size=8 --chat-template=chatml-llava`
  - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
Ying Sheng's avatar
Ying Sheng committed
249
250
251
252
253
254
255
256
- Yi-VL
- StableLM
- Command-R
- DBRX
- Grok
- ChatGLM
- InternLM 2

257
258
259
260
261
262
**Embedding Models**

- e5-mistral
- gte-Qwen2
  - `python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct --is-embedding`

263
Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/en/model_support.md).
Ying Sheng's avatar
Ying Sheng committed
264

Lianmin Zheng's avatar
Lianmin Zheng committed
265
#### Use Models From ModelScope
266
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
267
<summary>More</summary>
268

Lianmin Zheng's avatar
Lianmin Zheng committed
269
To use a model from [ModelScope](https://www.modelscope.cn), set the environment variable SGLANG_USE_MODELSCOPE.
Lianmin Zheng's avatar
Lianmin Zheng committed
270
271
272
273
274
275
```
export SGLANG_USE_MODELSCOPE=true
```
Launch [Qwen2-7B-Instruct](https://www.modelscope.cn/models/qwen/qwen2-7b-instruct) Server
```
SGLANG_USE_MODELSCOPE=true python -m sglang.launch_server --model-path qwen/Qwen2-7B-Instruct --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
276
277
```
  
278
</details>
Lianmin Zheng's avatar
Lianmin Zheng committed
279
280

#### Run Llama 3.1 405B
Lianmin Zheng's avatar
Lianmin Zheng committed
281
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
282
<summary>More</summary>
Ying Sheng's avatar
Ying Sheng committed
283
284

```bash
285
# Run 405B (fp8) on a single node
Ying Sheng's avatar
Ying Sheng committed
286
287
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8

288
289
290
# Run 405B (fp16) on two nodes
## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph
Ying Sheng's avatar
Ying Sheng committed
291

292
293
## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph
Ying Sheng's avatar
Ying Sheng committed
294
295
```

Lianmin Zheng's avatar
Lianmin Zheng committed
296
297
</details>

Ying Sheng's avatar
Ying Sheng committed
298
299
### Benchmark Performance

Ying Sheng's avatar
Ying Sheng committed
300
- Benchmark a single static batch by running the following command without launching a server. The arguments are the same as for `launch_server.py`. Note that this is not a dynamic batching server, so it may run out of memory for a batch size that a real server can handle. A real server truncates the prefill into several batches, while this unit test does not. For accurate large batch testing, consider using `sglang.bench_serving`.
Ying Sheng's avatar
Ying Sheng committed
301
  ```
302
  python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 32 --input-len 256 --output-len 32
Ying Sheng's avatar
Ying Sheng committed
303
304
305
  ```
- Benchmark online serving. Launch a server first and run the following command.
  ```
306
  python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Ying Sheng's avatar
Ying Sheng committed
307
308
  ```

Ying Sheng's avatar
Ying Sheng committed
309
## Frontend: Structured Generation Language (SGLang)
310
The frontend language can be used with local models or API models. It is an alternative to the OpenAI API. You may found it easier to use for complex prompting workflow.
Ying Sheng's avatar
Ying Sheng committed
311
312

### Quick Start
Lianmin Zheng's avatar
Lianmin Zheng committed
313
314
The example below shows how to use sglang to answer a mulit-turn question.

Ying Sheng's avatar
Ying Sheng committed
315
#### Using Local Models
316
First, launch a server with
Lianmin Zheng's avatar
Lianmin Zheng committed
317
```
Ying Sheng's avatar
Ying Sheng committed
318
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
319
320
```

321
322
Then, connect to the server and answer a multi-turn question.

Lianmin Zheng's avatar
Lianmin Zheng committed
323
```python
324
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
Lianmin Zheng's avatar
Lianmin Zheng committed
325
326
327
328
329
330
331
332
333

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

334
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
Lianmin Zheng's avatar
Lianmin Zheng committed
335
336
337
338
339
340
341
342

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
343
344

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
345
346
```

Ying Sheng's avatar
Ying Sheng committed
347
#### Using OpenAI Models
348
Set the OpenAI API Key
Lianmin Zheng's avatar
Lianmin Zheng committed
349
```
350
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
351
352
```

353
Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
354
```python
355
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
Lianmin Zheng's avatar
Lianmin Zheng committed
356
357
358
359
360
361
362
363
364

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

365
set_default_backend(OpenAI("gpt-3.5-turbo"))
Lianmin Zheng's avatar
Lianmin Zheng committed
366
367
368
369
370
371
372
373

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
374
375

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
376
377
```

Ying Sheng's avatar
Ying Sheng committed
378
#### More Examples
Lianmin Zheng's avatar
Lianmin Zheng committed
379

380
Anthropic and VertexAI (Gemini) models are also supported.
Lianmin Zheng's avatar
Lianmin Zheng committed
381
382
You can find more examples at [examples/quick_start](examples/quick_start).

Ying Sheng's avatar
Ying Sheng committed
383
### Language Feature
Lianmin Zheng's avatar
Lianmin Zheng committed
384
385
386
387
388
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
389
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
390
391
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
392
The system will manage the state, chat template, parallelism and batching for you.
Lianmin Zheng's avatar
Lianmin Zheng committed
393

394
395
The complete code for the examples below can be found at [readme_examples.py](examples/usage/readme_examples.py)

Ying Sheng's avatar
Ying Sheng committed
396
#### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
397
398
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
399
400
```python
@sgl.function
401
402
403
def tool_use(s, question):
    s += "To answer this question: " + question + ". "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
Lianmin Zheng's avatar
Lianmin Zheng committed
404
405
406

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
407
408
    elif s["tool"] == "search engine":
        s += "The key word to search is" + sgl.gen("word")
Lianmin Zheng's avatar
Lianmin Zheng committed
409
```
Lianmin Zheng's avatar
Lianmin Zheng committed
410

Ying Sheng's avatar
Ying Sheng committed
411
#### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
412
413
414
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
415
416
417
418
419
420
421
422
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
423
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
424
425
426
427
428
429
430
431
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
432

Lianmin Zheng's avatar
Lianmin Zheng committed
433
#### Multi-Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
434
435
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
436
437
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
438
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
439
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
440
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
441
442
```

443
444
See also [srt_example_llava.py](examples/quick_start/srt_example_llava.py).

Ying Sheng's avatar
Ying Sheng committed
445
#### Constrained Decoding
446
447
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
448

Lianmin Zheng's avatar
Lianmin Zheng committed
449
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
450
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
451
452
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
453
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
454
455
456
457
458
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
459

Ying Sheng's avatar
Ying Sheng committed
460
#### JSON Decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
461
Use `regex` to specify a JSON schema with a regular expression.
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

```python
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

@sgl.function
def character_gen(s, name):
Lianmin Zheng's avatar
Lianmin Zheng committed
483
    s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
484
485
486
    s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
487
See also [json_decode.py](examples/usage/json_decode.py) for an additional example of specifying formats with Pydantic models.
488

Ying Sheng's avatar
Ying Sheng committed
489
#### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
490
491
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
492
493
494
495
496
497
498
499
500
501
502
503
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
504
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
505
506
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
507

Ying Sheng's avatar
Ying Sheng committed
508
#### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
509
510
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
511
512
513
514
515
516
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

517
state = text_qa.run(
Lianmin Zheng's avatar
Lianmin Zheng committed
518
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
519
520
521
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
522

Lianmin Zheng's avatar
Lianmin Zheng committed
523
524
525
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
526

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
#### Roles

Use `sgl.system``sgl.user` and `sgl.assistant` to set roles when using Chat models. You can also define more complex role prompts using begin and end tokens.

```python
@sgl.function
def chat_example(s):
    s += sgl.system("You are a helpful assistant.")
    # Same as: s += s.system("You are a helpful assistant.")

    with s.user():
        s += "Question: What is the capital of France?"

    s += sgl.assistant_begin()
    s += "Answer: " + sgl.gen(max_tokens=100, stop="\n")
    s += sgl.assistant_end()
```

Ying Sheng's avatar
Ying Sheng committed
545
#### Tips and Implementation Details
546
547
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
Lianmin Zheng's avatar
Lianmin Zheng committed
548

Ying Sheng's avatar
Ying Sheng committed
549
550
551
## Benchmark And Performance
![8b_throughput](https://lmsys.org/images/blog/sglang_llama3/8b_throughput.svg)
![70b_fp8_throughput](https://lmsys.org/images/blog/sglang_llama3/70b_fp8_throughput.svg)
Lianmin Zheng's avatar
Lianmin Zheng committed
552

Ying Sheng's avatar
Ying Sheng committed
553
Learn more at this [blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/).
Lianmin Zheng's avatar
Lianmin Zheng committed
554

Lianmin Zheng's avatar
Lianmin Zheng committed
555
## Roadmap
Ying Sheng's avatar
Ying Sheng committed
556
[Development Roadmap (2024 Q3)](https://github.com/sgl-project/sglang/issues/634)
Lianmin Zheng's avatar
Lianmin Zheng committed
557
558

## Citation And Acknowledgment
Ying Sheng's avatar
Ying Sheng committed
559
560
Please cite our paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.
We also learned from the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql).