README.md 11.1 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
# SGLang
2
| [**Blog**](https://lmsys.org/blog/2024-01-17-sglang/) | [**Paper**](https://arxiv.org/abs/2312.07104) |
Lianmin Zheng's avatar
Lianmin Zheng committed
3
4
5
6
7
8
9
10
11
12
13

SGLang is a structured generation language designed for large language models (LLMs).
It makes your interaction with LLMs faster and more controllable by co-designing the frontend language and the runtime system.

The core features of SGLang include:
- **A Flexible Front-End Language**: This allows for easy programming of LLM applications with multiple chained generation calls, advanced prompting techniques, control flow, multiple modalities, parallelism, and external interaction.
- **A High-Performance Runtime with RadixAttention**: This feature significantly accelerates the execution of complex LLM programs by automatic KV cache reuse across multiple calls. It also supports other common techniques like continuous batching and tensor parallelism.

## Contents
- [Install](#install)
- [Quick Start](#quick-start)
14
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
15
16
17
18
19
20
21
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
22
23
24
25
### Method 1: With pip
```
pip install "sglang[all]"
```
Lianmin Zheng's avatar
Lianmin Zheng committed
26

Lianmin Zheng's avatar
Lianmin Zheng committed
27
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
28
29
30
31
32
33
34
35
```
git clone git@github.com:sgl-project/sglang.git
cd sglang

pip install --upgrade pip
pip install -e "python[all]"
```

Ying Sheng's avatar
Ying Sheng committed
36
### Notes
37
38
39
- If you are using older GPUs (NVIDIA V100, T4), please pick the correct triton compiler version to avoid some known bugs.
  - For NVIDIA T4, please use `pip install "triton>=2.2.0"`.
  - For NVIDIA V100, please install the [nightly](https://triton-lang.org/main/getting-started/installation.html) version.
Ying Sheng's avatar
Ying Sheng committed
40
41
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install sglang[openai]`

Lianmin Zheng's avatar
Lianmin Zheng committed
42
43
44
45
## Quick Start
The example below shows how to use sglang to answer a mulit-turn question.

### Using OpenAI Models
Lianmin Zheng's avatar
Lianmin Zheng committed
46
47
Set the OpenAI API Key
```
48
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
49
50
51
```

Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
```python
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

set_default_backend(OpenAI("gpt-3.5-turbo"))

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
```

### Using Local Models
First, launch a server with
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
```

Then, connect to the server and answer a multi-turn question.

```python
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

set_default_backend(RuntimeEndpoint("http://localhost:30000"))

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
```

### More Examples

106
Anthropic and VertexAI (Gemini) models are also supported.
Lianmin Zheng's avatar
Lianmin Zheng committed
107
108
You can find more examples at [examples/quick_start](examples/quick_start).

109
## Frontend: Structured Generation Language (SGLang)
Lianmin Zheng's avatar
Lianmin Zheng committed
110

Lianmin Zheng's avatar
Lianmin Zheng committed
111
112
113
114
115
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
116
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
117
118
119
120
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
The system will manage the state, chat template, and parallelism for you.

Lianmin Zheng's avatar
Lianmin Zheng committed
121
### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
122
123
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
124
125
126
127
128
129
130
131
132
133
134
```python
@sgl.function
def control_flow(s, question):
    s += "To answer this question: " + question + ", "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "web browser"]) + ". "

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
    elif s["tool"] == "web browser":
        s += "The website url is" + sgl.gen("url")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
135
136

### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
137
138
139
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
140
141
142
143
144
145
146
147
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
148
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
149
150
151
152
153
154
155
156
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
157
158

### Multi Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
159
160
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
161
162
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
163
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
164
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
165
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
166
167
```

Lianmin Zheng's avatar
Lianmin Zheng committed
168
### Constrained Decoding
169
170
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
171

Lianmin Zheng's avatar
Lianmin Zheng committed
172
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
173
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
174
175
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
176
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
177
178
179
180
181
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
182

Lianmin Zheng's avatar
Lianmin Zheng committed
183
### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
184
185
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
186
187
188
189
190
191
192
193
194
195
196
197
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
198
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
199
200
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
201
202

### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
203
204
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
205
206
207
208
209
210
211
212
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run(
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
213
214
215
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
216

Lianmin Zheng's avatar
Lianmin Zheng committed
217
218
219
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
220

Lianmin Zheng's avatar
Lianmin Zheng committed
221
222
223
224
### Tips and Implementation Details
- The `choices` argument in `sgl.gen` is implemented by computing the normalized log probabilities of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex.

Lianmin Zheng's avatar
Lianmin Zheng committed
225
226
227
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is designed to work best with the SGLang frontend.
However, it can also be used as a standalone API server.
Ying Sheng's avatar
Ying Sheng committed
228
In this case, the [RadixAttention](https://arxiv.org/abs/2312.07104) can still greatly accelerate many use cases with automatic KV cache reuse.
Lianmin Zheng's avatar
Lianmin Zheng committed
229
230
231
232
233
234
235
236
237

### Usage
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
```

Send a request
```
238
curl http://localhost:30000/generate \
Lianmin Zheng's avatar
Lianmin Zheng committed
239
240
  -H "Content-Type: application/json" \
  -d '{
241
    "text": "Once upon a time,",
242
    "sampling_params": {
243
244
245
      "max_new_tokens": 16,
      "temperature": 0
    }
Lianmin Zheng's avatar
Lianmin Zheng committed
246
247
  }'
```
248
249
Learn more about the argument format [here](docs/sampling_params.md).

250
251
252
253
254
255
256
257
### OpenAI Compatible API

In addition, the server supports an experimental OpenAI-compatible API.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")
Cody Yu's avatar
Cody Yu committed
258
259

# Text completion
260
261
262
263
264
265
266
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)
Cody Yu's avatar
Cody Yu committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
```

In above example, the server uses the chat template specified in the model tokenizer.
You can override the chat template if needed when launching the server:

```
285
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --chat-template llama-2
Cody Yu's avatar
Cody Yu committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
```

If the chat template you are looking for is missing, you are welcome to contribute it.
Meanwhile, you can also temporary register your chat template as follows:

```json
{
  "name": "my_model",
  "system": "<|im_start|>system",
  "user": "<|im_start|>user",
  "assistant": "<|im_start|>assistant",
  "sep_style": "CHATML",
  "sep": "<|im_end|>",
  "stop_str": ["<|im_end|>", "<|im_start|>"]
}
```

```
304
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --chat-template ./my_model_template.json
305
306
```

Lianmin Zheng's avatar
Lianmin Zheng committed
307
308
309
310
311
### Additional Arguments
- Add `--tp 2` to enable tensor parallelism.
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --tp 2
```
Ying Sheng's avatar
Ying Sheng committed
312
313
314
315
- If you see out-of-memory errors during serving, please try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --mem-fraction-static 0.7
```
Lianmin Zheng's avatar
Lianmin Zheng committed
316
317
318
319
320
321

### Supported Models
- Llama
- Mistral
- Mixtral
- LLaVA
Lianmin Zheng's avatar
Lianmin Zheng committed
322
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --port 30000`
323
- Qwen
324
- AWQ quantization
Lianmin Zheng's avatar
Lianmin Zheng committed
325
326
327

## Benchmark And Performance

Lianmin Zheng's avatar
Lianmin Zheng committed
328
329
330
331
332
333
- Llama-7B on NVIDIA A10G, FP16, Tensor Parallelism=1
![llama_7b](assets/llama_7b.jpg)

- Mixtral-8x7B on NVIDIA A10G, FP16, Tensor Parallelism=8
![mixtral_8x7b](assets/mixtral_8x7b.jpg)

Lianmin Zheng's avatar
Lianmin Zheng committed
334
Learn more [here](docs/benchmark_results.md).
Lianmin Zheng's avatar
Lianmin Zheng committed
335

Lianmin Zheng's avatar
Lianmin Zheng committed
336
## Roadmap
Lianmin Zheng's avatar
Lianmin Zheng committed
337
- [ ] Function call APIs
Ying Sheng's avatar
Ying Sheng committed
338
- [ ] S-LoRA (expect by Feb. 5)
Lianmin Zheng's avatar
Lianmin Zheng committed
339
340
- [ ] Support more models
- [ ] Support more hardware backends
Lianmin Zheng's avatar
Lianmin Zheng committed
341
342
343
344
345
346
347
348
349
350
351
352
353

## Citation And Acknowledgment
```
@misc{zheng2023efficiently,
      title={Efficiently Programming Large Language Models using SGLang},
      author={Lianmin Zheng and Liangsheng Yin and Zhiqiang Xie and Jeff Huang and Chuyue Sun and Cody Hao Yu and Shiyi Cao and Christos Kozyrakis and Ion Stoica and Joseph E. Gonzalez and Clark Barrett and Ying Sheng},
      year={2023},
      eprint={2312.07104},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```

354
We learned from the design and reused some code of the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), [LMQL](https://github.com/eth-sri/lmql).