README.md 20.8 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
<div align="center">
2
<img src="https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png" alt="logo" width="400"></img>
Lianmin Zheng's avatar
Lianmin Zheng committed
3

Yineng Zhang's avatar
Yineng Zhang committed
4
5
6
7
8
9
[![PyPI](https://img.shields.io/pypi/v/sglang)](https://pypi.org/project/sglang)
![PyPI - Downloads](https://img.shields.io/pypi/dm/sglang)
[![license](https://img.shields.io/github/license/sgl-project/sglang.svg)](https://github.com/sgl-project/sglang/tree/main/LICENSE)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)
[![open issues](https://img.shields.io/github/issues-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)

Yineng Zhang's avatar
Yineng Zhang committed
10
11
</div>

Lianmin Zheng's avatar
Lianmin Zheng committed
12
13
--------------------------------------------------------------------------------

Ying Sheng's avatar
Ying Sheng committed
14
| [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/) | [**Paper**](https://arxiv.org/abs/2312.07104) | [**Slack**](https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2ngly9muu-t37XiH87qvD~6rVBTkTEHw) |
Lianmin Zheng's avatar
Lianmin Zheng committed
15

Ying Sheng's avatar
Ying Sheng committed
16
17
SGLang is a fast serving framework for large language models and vision language models.
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
Lianmin Zheng's avatar
Lianmin Zheng committed
18

19
The core features include:
Ying Sheng's avatar
Ying Sheng committed
20
- **Fast Backend Runtime**: Efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, flashinfer kernels, and quantization (AWQ/FP8/GPTQ/Marlin).
Lianmin Zheng's avatar
Lianmin Zheng committed
21
- **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
Lianmin Zheng's avatar
Lianmin Zheng committed
22

Ying Sheng's avatar
Ying Sheng committed
23
## News
Ying Sheng's avatar
Ying Sheng committed
24
25
26
- [2024/07] 🔥 Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
- [2024/04] SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
- [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
Ying Sheng's avatar
Ying Sheng committed
27

Ying Sheng's avatar
Ying Sheng committed
28
29
30
<details>
<summary>More</summary>

Ying Sheng's avatar
Ying Sheng committed
31
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
Ying Sheng's avatar
Ying Sheng committed
32
33
34
35
- [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).

</details>

Lianmin Zheng's avatar
Lianmin Zheng committed
36
37
38
## Contents
- [Install](#install)
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
Ying Sheng's avatar
Ying Sheng committed
39
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
40
41
42
43
44
45
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
46
47
### Method 1: With pip
```
48
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
49
pip install "sglang[all]"
Lianmin Zheng's avatar
Lianmin Zheng committed
50

Lianmin Zheng's avatar
Lianmin Zheng committed
51
# Install FlashInfer CUDA kernels
52
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
Lianmin Zheng's avatar
Lianmin Zheng committed
53
```
54

Lianmin Zheng's avatar
Lianmin Zheng committed
55
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
56
```
Ying Sheng's avatar
Ying Sheng committed
57
# Use the last release branch
Yineng Zhang's avatar
Yineng Zhang committed
58
git clone -b v0.2.13 https://github.com/sgl-project/sglang.git
Lianmin Zheng's avatar
Lianmin Zheng committed
59
60
cd sglang

Lianmin Zheng's avatar
Lianmin Zheng committed
61
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
62
63
pip install -e "python[all]"

Lianmin Zheng's avatar
Lianmin Zheng committed
64
# Install FlashInfer CUDA kernels
65
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
Lianmin Zheng's avatar
Lianmin Zheng committed
66
```
67

Lianmin Zheng's avatar
Lianmin Zheng committed
68
### Method 3: Using docker
Ying Sheng's avatar
Ying Sheng committed
69
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](docker).
70
Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
Ying Sheng's avatar
Ying Sheng committed
71

Liangsheng Yin's avatar
Liangsheng Yin committed
72
73
74
75
```bash
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
76
    --env "HF_TOKEN=<secret>" \
Liangsheng Yin's avatar
Liangsheng Yin committed
77
78
    --ipc=host \
    lmsysorg/sglang:latest \
79
    python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
Liangsheng Yin's avatar
Liangsheng Yin committed
80
81
```

82
83
### Method 4: Using docker compose

84
<details>
85
86
87
88
89
> This method is recommended if you plan to serve it as a service.
> A better approach is to use the [k8s-sglang-service.yaml](./docker/k8s-sglang-service.yaml).

1. Copy the [compose.yml](./docker/compose.yaml) to your local machine
2. Execute the command `docker compose up -d` in your terminal.
90
</details>
91

92
93
### Method 5: Run on Kubernetes or Clouds with SkyPilot

94
<details>
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
To deploy on Kubernetes or 12+ clouds, you can use [SkyPilot](https://github.com/skypilot-org/skypilot).

1. Install SkyPilot and set up Kubernetes cluster or cloud access: see [SkyPilot's documentation](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html).
2. Deploy on your own infra with a single command and get the HTTP API endpoint:
<details>
<summary>SkyPilot YAML: <code>sglang.yaml</code></summary>

```yaml
# sglang.yaml
envs:
  HF_TOKEN: null

resources:
  image_id: docker:lmsysorg/sglang:latest
  accelerators: A100
  ports: 30000

run: |
  conda deactivate
  python3 -m sglang.launch_server \
    --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \
    --host 0.0.0.0 \
    --port 30000
```
119
</details>
120
121
122
123
124
125
126
127
128

```bash
# Deploy on any cloud or Kubernetes cluster. Use --cloud <cloud> to select a specific cloud provider.
HF_TOKEN=<secret> sky launch -c sglang --env HF_TOKEN sglang.yaml

# Get the HTTP API endpoint
sky status --endpoint 30000 sglang
```
3. To further scale up your deployment with autoscaling and failure recovery, check out the [SkyServe + SGLang guide](https://github.com/skypilot-org/skypilot/tree/master/llm/sglang#serving-llama-2-with-sglang-for-more-traffic-using-skyserve).
129
</details>
130
131


Lianmin Zheng's avatar
Lianmin Zheng committed
132
### Common Notes
Yineng Zhang's avatar
Yineng Zhang committed
133
- [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is currently one of the dependencies that must be installed for SGLang. If you are using NVIDIA GPU devices below sm80, such as T4, you can't use SGLang for the time being. We expect to resolve this issue soon, so please stay tuned. If you encounter any FlashInfer-related issues on sm80+ devices (e.g., A100, L40S, H100), consider using Triton's kernel by `--disable-flashinfer --disable-flashinfer-sampling` and raise a issue.
Lianmin Zheng's avatar
Lianmin Zheng committed
134
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Ying Sheng's avatar
Ying Sheng committed
135

Ying Sheng's avatar
Ying Sheng committed
136
137
138
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is an efficient serving engine.

Ying Sheng's avatar
Ying Sheng committed
139
### Quick Start
Ying Sheng's avatar
Ying Sheng committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
```

Send a request
```
curl http://localhost:30000/generate \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Once upon a time,",
    "sampling_params": {
      "max_new_tokens": 16,
      "temperature": 0
    }
  }'
```
157
Learn more about the argument format [here](docs/en/sampling_params.md).
Ying Sheng's avatar
Ying Sheng committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

### OpenAI Compatible API
In addition, the server supports OpenAI-compatible APIs.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")

# Text completion
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
```

Ying Sheng's avatar
Ying Sheng committed
189
It supports streaming, vision, and most features of the Chat/Completions/Models/Batch endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
Ying Sheng's avatar
Ying Sheng committed
190
191

### Additional Server Arguments
192
- Add `--tp 2` to enable multi-GPU tensor parallelism. If it reports the error "peer access is not supported between these two devices", add `--enable-p2p-check` to the server launch command.
Ying Sheng's avatar
Ying Sheng committed
193
194
195
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --tp 2
```
196
- Add `--dp 2` to enable multi-GPU data parallelism. It can also be used together with tensor parallelism. Data parallelism is better for throughput if there is enough memory.
Ying Sheng's avatar
Ying Sheng committed
197
198
199
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --dp 2 --tp 2
```
200
- If you see out-of-memory errors during serving, try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`.
Ying Sheng's avatar
Ying Sheng committed
201
202
203
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --mem-fraction-static 0.7
```
204
205
- See [hyperparameter_tuning.md](docs/en/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
- If you see out-of-memory errors during prefill for long prompts, try to set a smaller chunked prefill size.
Ying Sheng's avatar
Ying Sheng committed
206
```
207
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --chunked-prefill-size 4096
Ying Sheng's avatar
Ying Sheng committed
208
```
209
- Add `--nnodes 2` to run tensor parallelism on multiple nodes. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port.
Ying Sheng's avatar
Ying Sheng committed
210
211
```
# Node 0
212
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 0
Ying Sheng's avatar
Ying Sheng committed
213
214

# Node 1
215
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
Ying Sheng's avatar
Ying Sheng committed
216
```
217
- If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
218
- To enable experimental torch.compile support, you can add `--enable-torch-compile`. It accelerates small models on small batch sizes.
219
- To enable fp8 quantization, you can add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
Lianmin Zheng's avatar
Lianmin Zheng committed
220
 
Ying Sheng's avatar
Ying Sheng committed
221
222
### Supported Models

223
- Llama / Llama 2 / Llama 3 / Llama 3.1
224
- Mistral / Mixtral / Mistral NeMo
Ying Sheng's avatar
Ying Sheng committed
225
226
- Gemma / Gemma 2
- Qwen / Qwen 2 / Qwen 2 MoE
227
- DeepSeek / DeepSeek 2
Ying Sheng's avatar
Ying Sheng committed
228
- LLaVA 1.5 / 1.6
Ying Sheng's avatar
Ying Sheng committed
229
230
231
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.6-vicuna-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.6-34b --tokenizer-path liuhaotian/llava-v1.6-34b-tokenizer --port 30000`
Ying Sheng's avatar
Ying Sheng committed
232
- LLaVA-NeXT-Video
Ying Sheng's avatar
Ying Sheng committed
233
  - see [examples/usage/llava_video](examples/usage/llava_video)
Ying Sheng's avatar
Ying Sheng committed
234
235
236
237
238
239
240
241
242
- Yi-VL
  - see [srt_example_yi_vl.py](examples/quick_start/srt_example_yi_vl.py).
- StableLM
- Command-R
- DBRX
- Grok
- ChatGLM
- InternLM 2

243
Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/en/model_support.md).
Ying Sheng's avatar
Ying Sheng committed
244

Lianmin Zheng's avatar
Lianmin Zheng committed
245
246
247
248
249
250
251
252
253
254
255
#### Use Models From ModelScope
To use model from [ModelScope](https://www.modelscope.cn), setting environment variable SGLANG_USE_MODELSCOPE.
```
export SGLANG_USE_MODELSCOPE=true
```
Launch [Qwen2-7B-Instruct](https://www.modelscope.cn/models/qwen/qwen2-7b-instruct) Server
```
SGLANG_USE_MODELSCOPE=true python -m sglang.launch_server --model-path qwen/Qwen2-7B-Instruct --port 30000
```    

#### Run Llama 3.1 405B
Ying Sheng's avatar
Ying Sheng committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

```bash
## Run 405B (fp8) on a single node
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8

## Run 405B (fp16) on two nodes
# replace the `172.16.4.52:20000` with your own first node ip address and port, disable CUDA Graph temporarily

# on the first node
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph --mem-frac 0.75

# on the second
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph --mem-frac 0.75
```

Ying Sheng's avatar
Ying Sheng committed
271
272
### Benchmark Performance

Ying Sheng's avatar
Ying Sheng committed
273
- Benchmark a single static batch by running the following command without launching a server. The arguments are the same as for `launch_server.py`. Note that this is not a dynamic batching server, so it may run out of memory for a batch size that a real server can handle. A real server truncates the prefill into several batches, while this unit test does not. For accurate large batch testing, consider using `sglang.bench_serving`.
Ying Sheng's avatar
Ying Sheng committed
274
  ```
275
  python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 32 --input-len 256 --output-len 32
Ying Sheng's avatar
Ying Sheng committed
276
277
278
  ```
- Benchmark online serving. Launch a server first and run the following command.
  ```
279
  python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Ying Sheng's avatar
Ying Sheng committed
280
281
  ```

Ying Sheng's avatar
Ying Sheng committed
282
## Frontend: Structured Generation Language (SGLang)
283
The frontend language can be used with local models or API models. It is an alternative to the OpenAI API. You may found it easier to use for complex prompting workflow.
Ying Sheng's avatar
Ying Sheng committed
284
285

### Quick Start
Lianmin Zheng's avatar
Lianmin Zheng committed
286
287
The example below shows how to use sglang to answer a mulit-turn question.

Ying Sheng's avatar
Ying Sheng committed
288
#### Using Local Models
289
First, launch a server with
Lianmin Zheng's avatar
Lianmin Zheng committed
290
```
Ying Sheng's avatar
Ying Sheng committed
291
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
292
293
```

294
295
Then, connect to the server and answer a multi-turn question.

Lianmin Zheng's avatar
Lianmin Zheng committed
296
```python
297
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
Lianmin Zheng's avatar
Lianmin Zheng committed
298
299
300
301
302
303
304
305
306

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

307
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
Lianmin Zheng's avatar
Lianmin Zheng committed
308
309
310
311
312
313
314
315

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
316
317

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
318
319
```

Ying Sheng's avatar
Ying Sheng committed
320
#### Using OpenAI Models
321
Set the OpenAI API Key
Lianmin Zheng's avatar
Lianmin Zheng committed
322
```
323
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
324
325
```

326
Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
327
```python
328
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
Lianmin Zheng's avatar
Lianmin Zheng committed
329
330
331
332
333
334
335
336
337

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

338
set_default_backend(OpenAI("gpt-3.5-turbo"))
Lianmin Zheng's avatar
Lianmin Zheng committed
339
340
341
342
343
344
345
346

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
347
348

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
349
350
```

Ying Sheng's avatar
Ying Sheng committed
351
#### More Examples
Lianmin Zheng's avatar
Lianmin Zheng committed
352

353
Anthropic and VertexAI (Gemini) models are also supported.
Lianmin Zheng's avatar
Lianmin Zheng committed
354
355
You can find more examples at [examples/quick_start](examples/quick_start).

Ying Sheng's avatar
Ying Sheng committed
356
### Language Feature
Lianmin Zheng's avatar
Lianmin Zheng committed
357
358
359
360
361
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
362
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
363
364
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
365
The system will manage the state, chat template, parallelism and batching for you.
Lianmin Zheng's avatar
Lianmin Zheng committed
366

367
368
The complete code for the examples below can be found at [readme_examples.py](examples/usage/readme_examples.py)

Ying Sheng's avatar
Ying Sheng committed
369
#### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
370
371
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
372
373
```python
@sgl.function
374
375
376
def tool_use(s, question):
    s += "To answer this question: " + question + ". "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
Lianmin Zheng's avatar
Lianmin Zheng committed
377
378
379

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
380
381
    elif s["tool"] == "search engine":
        s += "The key word to search is" + sgl.gen("word")
Lianmin Zheng's avatar
Lianmin Zheng committed
382
```
Lianmin Zheng's avatar
Lianmin Zheng committed
383

Ying Sheng's avatar
Ying Sheng committed
384
#### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
385
386
387
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
388
389
390
391
392
393
394
395
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
396
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
397
398
399
400
401
402
403
404
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
405

Ying Sheng's avatar
Ying Sheng committed
406
#### Multi Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
407
408
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
409
410
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
411
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
412
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
413
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
414
415
```

416
417
See also [srt_example_llava.py](examples/quick_start/srt_example_llava.py).

Ying Sheng's avatar
Ying Sheng committed
418
#### Constrained Decoding
419
420
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
421

Lianmin Zheng's avatar
Lianmin Zheng committed
422
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
423
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
424
425
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
426
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
427
428
429
430
431
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
432

Ying Sheng's avatar
Ying Sheng committed
433
#### JSON Decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
434
Use `regex` to specify a JSON schema with a regular expression.
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

```python
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

@sgl.function
def character_gen(s, name):
Lianmin Zheng's avatar
Lianmin Zheng committed
456
    s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
457
458
459
    s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
460
See also [json_decode.py](examples/usage/json_decode.py) for an additional example on specifying formats with Pydantic models.
461

Ying Sheng's avatar
Ying Sheng committed
462
#### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
463
464
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
465
466
467
468
469
470
471
472
473
474
475
476
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
477
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
478
479
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
480

Ying Sheng's avatar
Ying Sheng committed
481
#### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
482
483
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
484
485
486
487
488
489
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

490
state = text_qa.run(
Lianmin Zheng's avatar
Lianmin Zheng committed
491
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
492
493
494
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
495

Lianmin Zheng's avatar
Lianmin Zheng committed
496
497
498
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
499

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
#### Roles

Use `sgl.system``sgl.user` and `sgl.assistant` to set roles when using Chat models. You can also define more complex role prompts using begin and end tokens.

```python
@sgl.function
def chat_example(s):
    s += sgl.system("You are a helpful assistant.")
    # Same as: s += s.system("You are a helpful assistant.")

    with s.user():
        s += "Question: What is the capital of France?"

    s += sgl.assistant_begin()
    s += "Answer: " + sgl.gen(max_tokens=100, stop="\n")
    s += sgl.assistant_end()
```

Ying Sheng's avatar
Ying Sheng committed
518
#### Tips and Implementation Details
519
520
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
Lianmin Zheng's avatar
Lianmin Zheng committed
521

Lianmin Zheng's avatar
Lianmin Zheng committed
522

Ying Sheng's avatar
Ying Sheng committed
523
524
525
## Benchmark And Performance
![8b_throughput](https://lmsys.org/images/blog/sglang_llama3/8b_throughput.svg)
![70b_fp8_throughput](https://lmsys.org/images/blog/sglang_llama3/70b_fp8_throughput.svg)
Lianmin Zheng's avatar
Lianmin Zheng committed
526

Ying Sheng's avatar
Ying Sheng committed
527
Learn more at this [blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/).
Lianmin Zheng's avatar
Lianmin Zheng committed
528

Lianmin Zheng's avatar
Lianmin Zheng committed
529
## Roadmap
Ying Sheng's avatar
Ying Sheng committed
530
[Development Roadmap (2024 Q3)](https://github.com/sgl-project/sglang/issues/634)
Lianmin Zheng's avatar
Lianmin Zheng committed
531
532

## Citation And Acknowledgment
Ying Sheng's avatar
Ying Sheng committed
533
534
Please cite our paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.
We also learned from the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql).