README.md 19.3 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
<div align="center">
2
<img src="https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png" alt="logo" width="400"></img>
Lianmin Zheng's avatar
Lianmin Zheng committed
3

Yineng Zhang's avatar
Yineng Zhang committed
4
5
6
7
8
9
[![PyPI](https://img.shields.io/pypi/v/sglang)](https://pypi.org/project/sglang)
![PyPI - Downloads](https://img.shields.io/pypi/dm/sglang)
[![license](https://img.shields.io/github/license/sgl-project/sglang.svg)](https://github.com/sgl-project/sglang/tree/main/LICENSE)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)
[![open issues](https://img.shields.io/github/issues-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)

Yineng Zhang's avatar
Yineng Zhang committed
10
11
</div>

Lianmin Zheng's avatar
Lianmin Zheng committed
12
13
--------------------------------------------------------------------------------

Ying Sheng's avatar
Ying Sheng committed
14
| [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/) | [**Paper**](https://arxiv.org/abs/2312.07104) | [**Slack**](https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2ngly9muu-t37XiH87qvD~6rVBTkTEHw) |
Lianmin Zheng's avatar
Lianmin Zheng committed
15

Ying Sheng's avatar
Ying Sheng committed
16
17
SGLang is a fast serving framework for large language models and vision language models.
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
Lianmin Zheng's avatar
Lianmin Zheng committed
18

19
The core features include:
Ying Sheng's avatar
Ying Sheng committed
20
- **Fast Backend Runtime**: Efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, flashinfer kernels, and quantization (AWQ/FP8/GPTQ/Marlin).
Lianmin Zheng's avatar
Lianmin Zheng committed
21
- **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
Lianmin Zheng's avatar
Lianmin Zheng committed
22

Ying Sheng's avatar
Ying Sheng committed
23
## News
Ying Sheng's avatar
Ying Sheng committed
24
25
26
- [2024/07] 🔥 Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
- [2024/04] SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
- [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
Ying Sheng's avatar
Ying Sheng committed
27

Ying Sheng's avatar
Ying Sheng committed
28
29
30
<details>
<summary>More</summary>

Ying Sheng's avatar
Ying Sheng committed
31
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
Ying Sheng's avatar
Ying Sheng committed
32
33
34
35
- [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).

</details>

Lianmin Zheng's avatar
Lianmin Zheng committed
36
37
38
## Contents
- [Install](#install)
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
Ying Sheng's avatar
Ying Sheng committed
39
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
40
41
42
43
44
45
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
46
47
### Method 1: With pip
```
48
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
49
pip install "sglang[all]"
Lianmin Zheng's avatar
Lianmin Zheng committed
50

Lianmin Zheng's avatar
Lianmin Zheng committed
51
# Install FlashInfer CUDA kernels
52
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
Lianmin Zheng's avatar
Lianmin Zheng committed
53
```
54

Lianmin Zheng's avatar
Lianmin Zheng committed
55
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
56
```
Ying Sheng's avatar
Ying Sheng committed
57
# Use the last release branch
Yineng Zhang's avatar
Yineng Zhang committed
58
git clone -b v0.2.12 https://github.com/sgl-project/sglang.git
Lianmin Zheng's avatar
Lianmin Zheng committed
59
60
cd sglang

Lianmin Zheng's avatar
Lianmin Zheng committed
61
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
62
63
pip install -e "python[all]"

Lianmin Zheng's avatar
Lianmin Zheng committed
64
# Install FlashInfer CUDA kernels
65
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
Lianmin Zheng's avatar
Lianmin Zheng committed
66
```
67

Lianmin Zheng's avatar
Lianmin Zheng committed
68
### Method 3: Using docker
Ying Sheng's avatar
Ying Sheng committed
69
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](docker).
70
Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
Ying Sheng's avatar
Ying Sheng committed
71

Liangsheng Yin's avatar
Liangsheng Yin committed
72
73
74
75
```bash
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
76
    --env "HF_TOKEN=<secret>" \
Liangsheng Yin's avatar
Liangsheng Yin committed
77
78
    --ipc=host \
    lmsysorg/sglang:latest \
79
    python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
Liangsheng Yin's avatar
Liangsheng Yin committed
80
81
```

82
83
84
85
86
87
88
89
### Method 4: Using docker compose

> This method is recommended if you plan to serve it as a service.
> A better approach is to use the [k8s-sglang-service.yaml](./docker/k8s-sglang-service.yaml).

1. Copy the [compose.yml](./docker/compose.yaml) to your local machine
2. Execute the command `docker compose up -d` in your terminal.

Lianmin Zheng's avatar
Lianmin Zheng committed
90
### Common Notes
Lianmin Zheng's avatar
Lianmin Zheng committed
91
92
- If you cannot install FlashInfer, check out its [installation](https://docs.flashinfer.ai/installation.html#) page. If you still cannot install it, you can use the slower Triton kernels by adding `--disable-flashinfer` when launching the server.
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Ying Sheng's avatar
Ying Sheng committed
93

Ying Sheng's avatar
Ying Sheng committed
94
95
96
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is an efficient serving engine.

Ying Sheng's avatar
Ying Sheng committed
97
### Quick Start
Ying Sheng's avatar
Ying Sheng committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
```

Send a request
```
curl http://localhost:30000/generate \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Once upon a time,",
    "sampling_params": {
      "max_new_tokens": 16,
      "temperature": 0
    }
  }'
```
115
Learn more about the argument format [here](docs/en/sampling_params.md).
Ying Sheng's avatar
Ying Sheng committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

### OpenAI Compatible API
In addition, the server supports OpenAI-compatible APIs.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")

# Text completion
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
```

Ying Sheng's avatar
Ying Sheng committed
147
It supports streaming, vision, and most features of the Chat/Completions/Models/Batch endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
Ying Sheng's avatar
Ying Sheng committed
148
149

### Additional Server Arguments
150
- Add `--tp 2` to enable multi-GPU tensor parallelism. If it reports the error "peer access is not supported between these two devices", add `--enable-p2p-check` to the server launch command.
Ying Sheng's avatar
Ying Sheng committed
151
152
153
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --tp 2
```
154
- Add `--dp 2` to enable multi-GPU data parallelism. It can also be used together with tensor parallelism. Data parallelism is better for throughput if there is enough memory.
Ying Sheng's avatar
Ying Sheng committed
155
156
157
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --dp 2 --tp 2
```
158
- If you see out-of-memory errors during serving, try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`.
Ying Sheng's avatar
Ying Sheng committed
159
160
161
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --mem-fraction-static 0.7
```
162
163
- See [hyperparameter_tuning.md](docs/en/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
- If you see out-of-memory errors during prefill for long prompts, try to set a smaller chunked prefill size.
Ying Sheng's avatar
Ying Sheng committed
164
```
165
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --chunked-prefill-size 4096
Ying Sheng's avatar
Ying Sheng committed
166
```
167
- Add `--nnodes 2` to run tensor parallelism on multiple nodes. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port.
Ying Sheng's avatar
Ying Sheng committed
168
169
```
# Node 0
170
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 0
Ying Sheng's avatar
Ying Sheng committed
171
172

# Node 1
173
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
Ying Sheng's avatar
Ying Sheng committed
174
```
175
- If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
176
- To enable experimental torch.compile support, you can add `--enable-torch-compile`. It accelerates small models on small batch sizes.
177
- To enable fp8 quantization, you can add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
Lianmin Zheng's avatar
Lianmin Zheng committed
178
 
Ying Sheng's avatar
Ying Sheng committed
179
180
### Supported Models

181
- Llama / Llama 2 / Llama 3 / Llama 3.1
182
- Mistral / Mixtral / Mistral NeMo
Ying Sheng's avatar
Ying Sheng committed
183
184
- Gemma / Gemma 2
- Qwen / Qwen 2 / Qwen 2 MoE
185
- DeepSeek / DeepSeek 2
Ying Sheng's avatar
Ying Sheng committed
186
- LLaVA 1.5 / 1.6
Ying Sheng's avatar
Ying Sheng committed
187
188
189
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.6-vicuna-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.6-34b --tokenizer-path liuhaotian/llava-v1.6-34b-tokenizer --port 30000`
Ying Sheng's avatar
Ying Sheng committed
190
- LLaVA-NeXT-Video
Ying Sheng's avatar
Ying Sheng committed
191
  - see [examples/usage/llava_video](examples/usage/llava_video)
Ying Sheng's avatar
Ying Sheng committed
192
193
194
195
196
197
198
199
200
- Yi-VL
  - see [srt_example_yi_vl.py](examples/quick_start/srt_example_yi_vl.py).
- StableLM
- Command-R
- DBRX
- Grok
- ChatGLM
- InternLM 2

201
Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/en/model_support.md).
Ying Sheng's avatar
Ying Sheng committed
202

Lianmin Zheng's avatar
Lianmin Zheng committed
203
204
205
206
207
208
209
210
211
212
213
#### Use Models From ModelScope
To use model from [ModelScope](https://www.modelscope.cn), setting environment variable SGLANG_USE_MODELSCOPE.
```
export SGLANG_USE_MODELSCOPE=true
```
Launch [Qwen2-7B-Instruct](https://www.modelscope.cn/models/qwen/qwen2-7b-instruct) Server
```
SGLANG_USE_MODELSCOPE=true python -m sglang.launch_server --model-path qwen/Qwen2-7B-Instruct --port 30000
```    

#### Run Llama 3.1 405B
Ying Sheng's avatar
Ying Sheng committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

```bash
## Run 405B (fp8) on a single node
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8

## Run 405B (fp16) on two nodes
# replace the `172.16.4.52:20000` with your own first node ip address and port, disable CUDA Graph temporarily

# on the first node
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph --mem-frac 0.75

# on the second
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph --mem-frac 0.75
```

Ying Sheng's avatar
Ying Sheng committed
229
230
### Benchmark Performance

Ying Sheng's avatar
Ying Sheng committed
231
- Benchmark a single static batch by running the following command without launching a server. The arguments are the same as for `launch_server.py`. Note that this is not a dynamic batching server, so it may run out of memory for a batch size that a real server can handle. A real server truncates the prefill into several batches, while this unit test does not. For accurate large batch testing, consider using `sglang.bench_serving`.
Ying Sheng's avatar
Ying Sheng committed
232
  ```
233
  python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 32 --input-len 256 --output-len 32
Ying Sheng's avatar
Ying Sheng committed
234
235
236
  ```
- Benchmark online serving. Launch a server first and run the following command.
  ```
237
  python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Ying Sheng's avatar
Ying Sheng committed
238
239
  ```

Ying Sheng's avatar
Ying Sheng committed
240
## Frontend: Structured Generation Language (SGLang)
241
The frontend language can be used with local models or API models. It is an alternative to the OpenAI API. You may found it easier to use for complex prompting workflow.
Ying Sheng's avatar
Ying Sheng committed
242
243

### Quick Start
Lianmin Zheng's avatar
Lianmin Zheng committed
244
245
The example below shows how to use sglang to answer a mulit-turn question.

Ying Sheng's avatar
Ying Sheng committed
246
#### Using Local Models
247
First, launch a server with
Lianmin Zheng's avatar
Lianmin Zheng committed
248
```
Ying Sheng's avatar
Ying Sheng committed
249
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
250
251
```

252
253
Then, connect to the server and answer a multi-turn question.

Lianmin Zheng's avatar
Lianmin Zheng committed
254
```python
255
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
Lianmin Zheng's avatar
Lianmin Zheng committed
256
257
258
259
260
261
262
263
264

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

265
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
Lianmin Zheng's avatar
Lianmin Zheng committed
266
267
268
269
270
271
272
273

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
274
275

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
276
277
```

Ying Sheng's avatar
Ying Sheng committed
278
#### Using OpenAI Models
279
Set the OpenAI API Key
Lianmin Zheng's avatar
Lianmin Zheng committed
280
```
281
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
282
283
```

284
Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
285
```python
286
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
Lianmin Zheng's avatar
Lianmin Zheng committed
287
288
289
290
291
292
293
294
295

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

296
set_default_backend(OpenAI("gpt-3.5-turbo"))
Lianmin Zheng's avatar
Lianmin Zheng committed
297
298
299
300
301
302
303
304

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
305
306

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
307
308
```

Ying Sheng's avatar
Ying Sheng committed
309
#### More Examples
Lianmin Zheng's avatar
Lianmin Zheng committed
310

311
Anthropic and VertexAI (Gemini) models are also supported.
Lianmin Zheng's avatar
Lianmin Zheng committed
312
313
You can find more examples at [examples/quick_start](examples/quick_start).

Ying Sheng's avatar
Ying Sheng committed
314
### Language Feature
Lianmin Zheng's avatar
Lianmin Zheng committed
315
316
317
318
319
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
320
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
321
322
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
323
The system will manage the state, chat template, parallelism and batching for you.
Lianmin Zheng's avatar
Lianmin Zheng committed
324

325
326
The complete code for the examples below can be found at [readme_examples.py](examples/usage/readme_examples.py)

Ying Sheng's avatar
Ying Sheng committed
327
#### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
328
329
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
330
331
```python
@sgl.function
332
333
334
def tool_use(s, question):
    s += "To answer this question: " + question + ". "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
Lianmin Zheng's avatar
Lianmin Zheng committed
335
336
337

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
338
339
    elif s["tool"] == "search engine":
        s += "The key word to search is" + sgl.gen("word")
Lianmin Zheng's avatar
Lianmin Zheng committed
340
```
Lianmin Zheng's avatar
Lianmin Zheng committed
341

Ying Sheng's avatar
Ying Sheng committed
342
#### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
343
344
345
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
346
347
348
349
350
351
352
353
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
354
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
355
356
357
358
359
360
361
362
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
363

Ying Sheng's avatar
Ying Sheng committed
364
#### Multi Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
365
366
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
367
368
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
369
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
370
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
371
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
372
373
```

374
375
See also [srt_example_llava.py](examples/quick_start/srt_example_llava.py).

Ying Sheng's avatar
Ying Sheng committed
376
#### Constrained Decoding
377
378
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
379

Lianmin Zheng's avatar
Lianmin Zheng committed
380
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
381
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
382
383
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
384
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
385
386
387
388
389
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
390

Ying Sheng's avatar
Ying Sheng committed
391
#### JSON Decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
392
Use `regex` to specify a JSON schema with a regular expression.
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

```python
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

@sgl.function
def character_gen(s, name):
Lianmin Zheng's avatar
Lianmin Zheng committed
414
    s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
415
416
417
    s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
418
See also [json_decode.py](examples/usage/json_decode.py) for an additional example on specifying formats with Pydantic models.
419

Ying Sheng's avatar
Ying Sheng committed
420
#### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
421
422
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
423
424
425
426
427
428
429
430
431
432
433
434
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
435
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
436
437
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
438

Ying Sheng's avatar
Ying Sheng committed
439
#### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
440
441
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
442
443
444
445
446
447
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

448
state = text_qa.run(
Lianmin Zheng's avatar
Lianmin Zheng committed
449
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
450
451
452
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
453

Lianmin Zheng's avatar
Lianmin Zheng committed
454
455
456
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
457

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#### Roles

Use `sgl.system``sgl.user` and `sgl.assistant` to set roles when using Chat models. You can also define more complex role prompts using begin and end tokens.

```python
@sgl.function
def chat_example(s):
    s += sgl.system("You are a helpful assistant.")
    # Same as: s += s.system("You are a helpful assistant.")

    with s.user():
        s += "Question: What is the capital of France?"

    s += sgl.assistant_begin()
    s += "Answer: " + sgl.gen(max_tokens=100, stop="\n")
    s += sgl.assistant_end()
```

Ying Sheng's avatar
Ying Sheng committed
476
#### Tips and Implementation Details
477
478
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
Lianmin Zheng's avatar
Lianmin Zheng committed
479

Lianmin Zheng's avatar
Lianmin Zheng committed
480

Ying Sheng's avatar
Ying Sheng committed
481
482
483
## Benchmark And Performance
![8b_throughput](https://lmsys.org/images/blog/sglang_llama3/8b_throughput.svg)
![70b_fp8_throughput](https://lmsys.org/images/blog/sglang_llama3/70b_fp8_throughput.svg)
Lianmin Zheng's avatar
Lianmin Zheng committed
484

Ying Sheng's avatar
Ying Sheng committed
485
Learn more at this [blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/).
Lianmin Zheng's avatar
Lianmin Zheng committed
486

Lianmin Zheng's avatar
Lianmin Zheng committed
487
## Roadmap
Ying Sheng's avatar
Ying Sheng committed
488
[Development Roadmap (2024 Q3)](https://github.com/sgl-project/sglang/issues/634)
Lianmin Zheng's avatar
Lianmin Zheng committed
489
490

## Citation And Acknowledgment
Ying Sheng's avatar
Ying Sheng committed
491
492
Please cite our paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.
We also learned from the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql).