README.md 14.2 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
<div align="center">
<img src="assets/logo.png" alt="logo" width="400"></img>
</div>

--------------------------------------------------------------------------------

7
| [**Blog**](https://lmsys.org/blog/2024-01-17-sglang/) | [**Paper**](https://arxiv.org/abs/2312.07104) |
Lianmin Zheng's avatar
Lianmin Zheng committed
8
9
10
11

SGLang is a structured generation language designed for large language models (LLMs).
It makes your interaction with LLMs faster and more controllable by co-designing the frontend language and the runtime system.

12
The core features include:
Lianmin Zheng's avatar
Lianmin Zheng committed
13
- **A Flexible Front-End Language**: This allows for easy programming of LLM applications with multiple chained generation calls, advanced prompting techniques, control flow, multiple modalities, parallelism, and external interaction.
14
- **A High-Performance Runtime with RadixAttention**: This feature significantly accelerates the execution of complex LLM programs by automatically reusing the KV cache across multiple calls. It can also be used as a standalone serving engine with all common techniques implemented, such as continuous batching and tensor parallelism.
Lianmin Zheng's avatar
Lianmin Zheng committed
15

Ying Sheng's avatar
Ying Sheng committed
16
## News
Lianmin Zheng's avatar
Lianmin Zheng committed
17
- [2024/02] 🔥 SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
18
- [2024/01] 🔥 SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).
Lianmin Zheng's avatar
Lianmin Zheng committed
19
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
Ying Sheng's avatar
Ying Sheng committed
20

Lianmin Zheng's avatar
Lianmin Zheng committed
21
22
23
## Contents
- [Install](#install)
- [Quick Start](#quick-start)
24
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
25
26
27
28
29
30
31
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
32
33
34
35
### Method 1: With pip
```
pip install "sglang[all]"
```
Lianmin Zheng's avatar
Lianmin Zheng committed
36

Lianmin Zheng's avatar
Lianmin Zheng committed
37
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
38
39
40
41
42
43
44
45
```
git clone git@github.com:sgl-project/sglang.git
cd sglang

pip install --upgrade pip
pip install -e "python[all]"
```

Ying Sheng's avatar
Ying Sheng committed
46
### Notes
Lianmin Zheng's avatar
Lianmin Zheng committed
47
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`
Ying Sheng's avatar
Ying Sheng committed
48

Lianmin Zheng's avatar
Lianmin Zheng committed
49
50
51
## Quick Start
The example below shows how to use sglang to answer a mulit-turn question.

52
53
### Using Local Models
First, launch a server with
Lianmin Zheng's avatar
Lianmin Zheng committed
54
```
55
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
56
57
```

58
59
Then, connect to the server and answer a multi-turn question.

Lianmin Zheng's avatar
Lianmin Zheng committed
60
```python
61
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
Lianmin Zheng's avatar
Lianmin Zheng committed
62
63
64
65
66
67
68
69
70

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

71
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
Lianmin Zheng's avatar
Lianmin Zheng committed
72
73
74
75
76
77
78
79

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
80
81

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
82
83
```

84
85
### Using OpenAI Models
Set the OpenAI API Key
Lianmin Zheng's avatar
Lianmin Zheng committed
86
```
87
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
88
89
```

90
Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
91
```python
92
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
Lianmin Zheng's avatar
Lianmin Zheng committed
93
94
95
96
97
98
99
100
101

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

102
set_default_backend(OpenAI("gpt-3.5-turbo"))
Lianmin Zheng's avatar
Lianmin Zheng committed
103
104
105
106
107
108
109
110

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
111
112

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
113
114
115
116
```

### More Examples

117
Anthropic and VertexAI (Gemini) models are also supported.
Lianmin Zheng's avatar
Lianmin Zheng committed
118
119
You can find more examples at [examples/quick_start](examples/quick_start).

120
## Frontend: Structured Generation Language (SGLang)
Lianmin Zheng's avatar
Lianmin Zheng committed
121

Lianmin Zheng's avatar
Lianmin Zheng committed
122
123
124
125
126
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
127
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
128
129
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
130
The system will manage the state, chat template, parallelism and batching for you.
Lianmin Zheng's avatar
Lianmin Zheng committed
131

132
133
The complete code for the examples below can be found at [readme_examples.py](examples/usage/readme_examples.py)

Lianmin Zheng's avatar
Lianmin Zheng committed
134
### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
135
136
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
137
138
```python
@sgl.function
139
140
141
def tool_use(s, question):
    s += "To answer this question: " + question + ". "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
Lianmin Zheng's avatar
Lianmin Zheng committed
142
143
144

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
145
146
    elif s["tool"] == "search engine":
        s += "The key word to search is" + sgl.gen("word")
Lianmin Zheng's avatar
Lianmin Zheng committed
147
```
Lianmin Zheng's avatar
Lianmin Zheng committed
148
149

### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
150
151
152
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
153
154
155
156
157
158
159
160
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
161
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
162
163
164
165
166
167
168
169
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
170
171

### Multi Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
172
173
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
174
175
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
176
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
177
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
178
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
179
180
```

181
182
See also [srt_example_llava.py](examples/quick_start/srt_example_llava.py).

Lianmin Zheng's avatar
Lianmin Zheng committed
183
### Constrained Decoding
184
185
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
186

Lianmin Zheng's avatar
Lianmin Zheng committed
187
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
188
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
189
190
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
191
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
192
193
194
195
196
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
197

198
### JSON Decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
199
Use `regex` to specify a JSON schema with a regular expression.
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

```python
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

@sgl.function
def character_gen(s, name):
Lianmin Zheng's avatar
Lianmin Zheng committed
221
    s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
222
223
224
    s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
225
See also [json_decode.py](examples/usage/json_decode.py) for an additional example on specifying formats with Pydantic models.
226
227


Lianmin Zheng's avatar
Lianmin Zheng committed
228
### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
229
230
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
231
232
233
234
235
236
237
238
239
240
241
242
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
243
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
244
245
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
246
247

### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
248
249
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
250
251
252
253
254
255
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

256
state = text_qa.run(
Lianmin Zheng's avatar
Lianmin Zheng committed
257
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
258
259
260
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
261

Lianmin Zheng's avatar
Lianmin Zheng committed
262
263
264
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
265

Lianmin Zheng's avatar
Lianmin Zheng committed
266
267
268
269
### Tips and Implementation Details
- The `choices` argument in `sgl.gen` is implemented by computing the normalized log probabilities of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex.

Lianmin Zheng's avatar
Lianmin Zheng committed
270
271
272
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is designed to work best with the SGLang frontend.
However, it can also be used as a standalone API server.
Ying Sheng's avatar
Ying Sheng committed
273
In this case, the [RadixAttention](https://arxiv.org/abs/2312.07104) can still greatly accelerate many use cases with automatic KV cache reuse.
Lianmin Zheng's avatar
Lianmin Zheng committed
274
275
276
277
278
279
280
281
282

### Usage
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
```

Send a request
```
283
curl http://localhost:30000/generate \
Lianmin Zheng's avatar
Lianmin Zheng committed
284
285
  -H "Content-Type: application/json" \
  -d '{
286
    "text": "Once upon a time,",
287
    "sampling_params": {
288
289
290
      "max_new_tokens": 16,
      "temperature": 0
    }
Lianmin Zheng's avatar
Lianmin Zheng committed
291
292
  }'
```
293
294
Learn more about the argument format [here](docs/sampling_params.md).

295
296
297
298
299
300
301
### OpenAI Compatible API
In addition, the server supports an experimental OpenAI-compatible API.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")
Cody Yu's avatar
Cody Yu committed
302
303

# Text completion
304
305
306
307
308
309
310
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)
Cody Yu's avatar
Cody Yu committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
325
326
327
328

By default, the server uses the chat template specified in the model tokenizer from Hugging Face. It should just work for most official models such as Llama-2/Llama-3.

If needed, you can also override the chat template when launching the server:
Cody Yu's avatar
Cody Yu committed
329
330

```
331
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --chat-template llama-2
Cody Yu's avatar
Cody Yu committed
332
333
334
```

If the chat template you are looking for is missing, you are welcome to contribute it.
Lianmin Zheng's avatar
Lianmin Zheng committed
335
Meanwhile, you can also temporarily register your chat template as follows:
Cody Yu's avatar
Cody Yu committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349

```json
{
  "name": "my_model",
  "system": "<|im_start|>system",
  "user": "<|im_start|>user",
  "assistant": "<|im_start|>assistant",
  "sep_style": "CHATML",
  "sep": "<|im_end|>",
  "stop_str": ["<|im_end|>", "<|im_start|>"]
}
```

```
350
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --chat-template ./my_model_template.json
351
352
```

Lianmin Zheng's avatar
Lianmin Zheng committed
353
354
355
356
357
### Additional Arguments
- Add `--tp 2` to enable tensor parallelism.
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --tp 2
```
Lianmin Zheng's avatar
Lianmin Zheng committed
358
359
360
361
- Add `--dp 2` to enable data parallelism. It can also be used together with tp. Data parallelism is better for throughput if there is enough memory.
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --dp 2 --tp 2
```
Ying Sheng's avatar
Ying Sheng committed
362
363
364
365
- If you see out-of-memory errors during serving, please try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --mem-fraction-static 0.7
```
Lianmin Zheng's avatar
Lianmin Zheng committed
366
367
- See [flashinfer.md](docs/flashinfer.md) on accelerating inference using highly optimized CUDA kernels.
- See [hyperparameter_tuning.md](docs/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
Lianmin Zheng's avatar
Lianmin Zheng committed
368
369
370
371
372

### Supported Models
- Llama
- Mistral
- Mixtral
Lianmin Zheng's avatar
Lianmin Zheng committed
373
- Qwen / Qwen 2
374
375
376
- Gemma
  - Please add a new flag `--attention-reduce-in-fp32` to avoid some precision errors.
  - `python -m sglang.launch_server --model-path google/gemma-7b-it --port 30000 --attention-reduce-in-fp32`
Lianmin Zheng's avatar
Lianmin Zheng committed
377
- LLaVA
378
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
379
380
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.6-vicuna-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.6-34b --tokenizer-path liuhaotian/llava-v1.6-34b-tokenizer --port 3000`
381
382
- LLaVA-NeXT-Video
  - see [srt_example_llava_v.sh](examples/usage/llava_video/srt_example_llava_v.sh)
Lianmin Zheng's avatar
Lianmin Zheng committed
383
384
- Yi-VL
  - see [srt_example_yi_vl.py](examples/quick_start/srt_example_yi_vl.py).
385
386
387
388
389
390
- StableLM
- Command-R
- DBRX
- AWQ/GPTQ/Marlin quantization

Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/model_support.md).
Lianmin Zheng's avatar
Lianmin Zheng committed
391
392

## Benchmark And Performance
Lianmin Zheng's avatar
Lianmin Zheng committed
393
394
395
396
397
398
- Llama-7B on NVIDIA A10G, FP16, Tensor Parallelism=1
![llama_7b](assets/llama_7b.jpg)

- Mixtral-8x7B on NVIDIA A10G, FP16, Tensor Parallelism=8
![mixtral_8x7b](assets/mixtral_8x7b.jpg)

Lianmin Zheng's avatar
Lianmin Zheng committed
399
Learn more [here](docs/benchmark_results.md).
Lianmin Zheng's avatar
Lianmin Zheng committed
400

Lianmin Zheng's avatar
Lianmin Zheng committed
401
## Roadmap
Ying Sheng's avatar
Ying Sheng committed
402
https://github.com/sgl-project/sglang/issues/157
Lianmin Zheng's avatar
Lianmin Zheng committed
403
404
405
406
407
408
409
410
411
412
413
414
415

## Citation And Acknowledgment
```
@misc{zheng2023efficiently,
      title={Efficiently Programming Large Language Models using SGLang},
      author={Lianmin Zheng and Liangsheng Yin and Zhiqiang Xie and Jeff Huang and Chuyue Sun and Cody Hao Yu and Shiyi Cao and Christos Kozyrakis and Ion Stoica and Joseph E. Gonzalez and Clark Barrett and Ying Sheng},
      year={2023},
      eprint={2312.07104},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```

416
We learned from the design and reused some code of the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), [LMQL](https://github.com/eth-sri/lmql).