README.md 5.18 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# SGLang

SGLang is a structured generation language designed for large language models (LLMs).
It makes your interaction with LLMs faster and more controllable by co-designing the frontend language and the runtime system.

The core features of SGLang include:
- **A Flexible Front-End Language**: This allows for easy programming of LLM applications with multiple chained generation calls, advanced prompting techniques, control flow, multiple modalities, parallelism, and external interaction.
- **A High-Performance Runtime with RadixAttention**: This feature significantly accelerates the execution of complex LLM programs by automatic KV cache reuse across multiple calls. It also supports other common techniques like continuous batching and tensor parallelism.

## Contents
- [Install](#install)
- [Quick Start](#quick-start)
- [Frontend: Structured Generation Langauge (SGLang)](#frontend-structured-generation-langauge-sglang)
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
21
22
23
24
### Method 1: With pip
```
pip install "sglang[all]"
```
Lianmin Zheng's avatar
Lianmin Zheng committed
25

Lianmin Zheng's avatar
Lianmin Zheng committed
26
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
```
git clone git@github.com:sgl-project/sglang.git
cd sglang

pip install --upgrade pip
pip install -e "python[all]"
```

## Quick Start
The example below shows how to use sglang to answer a mulit-turn question.

### Using OpenAI Models
```python
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

set_default_backend(OpenAI("gpt-3.5-turbo"))

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
```

### Using Local Models
First, launch a server with
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
```

Then, connect to the server and answer a multi-turn question.

```python
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

set_default_backend(RuntimeEndpoint("http://localhost:30000"))

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
```

### More Examples

You can find more examples at [examples/quick_start](examples/quick_start).

## Frontend: Structured Generation Langauge (SGLang)

### Control Flow

### Parallelism

### Multi Modality
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
104
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
105
106
107
108
    s += sgl.user(sgl.image(image_file) + question)
    s += sgl.assistant(sgl.gen("answer_1", max_tokens=256))
```

Lianmin Zheng's avatar
Lianmin Zheng committed
109
110
### Constrained decoding

Lianmin Zheng's avatar
Lianmin Zheng committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
### Batching

### Streaming

### Other Backends

## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is designed to work best with the SGLang frontend.
However, it can also be used as a standalone API server.
In this case, the RadixAttention can still greatly accelerate many use cases.

### Usage
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
```

Send a request
```
curl http://localhost:30000/v1/completions \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "Say this is a test",
    "max_tokens": 16,
    "temperature": 0
  }'
```

### Additional Arguments
- Add `--tp 2` to enable tensor parallelism.
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --tp 2
```

### Supported Models
- Llama
- Mistral
- Mixtral
- LLaVA
Lianmin Zheng's avatar
Lianmin Zheng committed
150
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --port 30000`
Lianmin Zheng's avatar
Lianmin Zheng committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

## Benchmark And Performance

## Roadmap
- [ ] Function call
- [ ] Quantization
- [ ] S-LoRA
- [ ] More models

## Citation And Acknowledgment
```
@misc{zheng2023efficiently,
      title={Efficiently Programming Large Language Models using SGLang},
      author={Lianmin Zheng and Liangsheng Yin and Zhiqiang Xie and Jeff Huang and Chuyue Sun and Cody Hao Yu and Shiyi Cao and Christos Kozyrakis and Ion Stoica and Joseph E. Gonzalez and Clark Barrett and Ying Sheng},
      year={2023},
      eprint={2312.07104},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```

172
We learned from the design and reused some code of the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), [LMQL](https://github.com/eth-sri/lmql).