README.md 15.9 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
<div align="center">
<img src="assets/logo.png" alt="logo" width="400"></img>
</div>

--------------------------------------------------------------------------------

7
| [**Blog**](https://lmsys.org/blog/2024-01-17-sglang/) | [**Paper**](https://arxiv.org/abs/2312.07104) |
Lianmin Zheng's avatar
Lianmin Zheng committed
8
9
10
11

SGLang is a structured generation language designed for large language models (LLMs).
It makes your interaction with LLMs faster and more controllable by co-designing the frontend language and the runtime system.

12
The core features include:
Lianmin Zheng's avatar
Lianmin Zheng committed
13
- **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
Lianmin Zheng's avatar
Lianmin Zheng committed
14
- **High-Performance Backend Runtime**: Features RadixAttention for accelerating complex LLM programs by reusing the KV cache across multiple calls. It can also serve as a standalone inference engine with all common techniques implemented (e.g., continuous batching and tensor parallelism).
Lianmin Zheng's avatar
Lianmin Zheng committed
15

Ying Sheng's avatar
Ying Sheng committed
16
## News
Lianmin Zheng's avatar
Lianmin Zheng committed
17
- [2024/02] 🔥 SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
18
- [2024/01] 🔥 SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).
Lianmin Zheng's avatar
Lianmin Zheng committed
19
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
Ying Sheng's avatar
Ying Sheng committed
20

Lianmin Zheng's avatar
Lianmin Zheng committed
21
22
23
## Contents
- [Install](#install)
- [Quick Start](#quick-start)
24
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
25
26
27
28
29
30
31
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
32
33
34
### Method 1: With pip
```
pip install "sglang[all]"
Lianmin Zheng's avatar
Lianmin Zheng committed
35

Lianmin Zheng's avatar
Lianmin Zheng committed
36
37
38
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
```
39

Lianmin Zheng's avatar
Lianmin Zheng committed
40
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
41
```
42
git clone https://github.com/sgl-project/sglang.git
Lianmin Zheng's avatar
Lianmin Zheng committed
43
44
45
46
cd sglang

pip install -e "python[all]"

Lianmin Zheng's avatar
Lianmin Zheng committed
47
48
49
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
```
50

Lianmin Zheng's avatar
Lianmin Zheng committed
51
52
### Method 3: Using docker
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags).
Ying Sheng's avatar
Ying Sheng committed
53

Liangsheng Yin's avatar
Liangsheng Yin committed
54
55
56
57
58
59
60
61
62
63
```bash
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --env "HUGGING_FACE_HUB_TOKEN=<secret>" \
    --ipc=host \
    lmsysorg/sglang:latest \
    python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B --host 0.0.0.0 --port 30000
```

Lianmin Zheng's avatar
Lianmin Zheng committed
64
### Common Notes
65
66
67
68
69
- If you see errors from the Triton compiler, please install the [Triton Nightly](https://triton-lang.org/main/getting-started/installation.html) by
```
pip uninstall -y triton triton-nightly
pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly
```
Lianmin Zheng's avatar
Lianmin Zheng committed
70
71
- If you cannot install FlashInfer, check out its [installation](https://docs.flashinfer.ai/installation.html#) page. If you still cannot install it, you can use the slower Triton kernels by adding `--disable-flashinfer` when launching the server.
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Ying Sheng's avatar
Ying Sheng committed
72

Lianmin Zheng's avatar
Lianmin Zheng committed
73
74
75
## Quick Start
The example below shows how to use sglang to answer a mulit-turn question.

76
77
### Using Local Models
First, launch a server with
Lianmin Zheng's avatar
Lianmin Zheng committed
78
```
79
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
80
81
```

82
83
Then, connect to the server and answer a multi-turn question.

Lianmin Zheng's avatar
Lianmin Zheng committed
84
```python
85
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
Lianmin Zheng's avatar
Lianmin Zheng committed
86
87
88
89
90
91
92
93
94

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

95
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
Lianmin Zheng's avatar
Lianmin Zheng committed
96
97
98
99
100
101
102
103

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
104
105

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
106
107
```

108
109
### Using OpenAI Models
Set the OpenAI API Key
Lianmin Zheng's avatar
Lianmin Zheng committed
110
```
111
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
112
113
```

114
Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
115
```python
116
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
Lianmin Zheng's avatar
Lianmin Zheng committed
117
118
119
120
121
122
123
124
125

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

126
set_default_backend(OpenAI("gpt-3.5-turbo"))
Lianmin Zheng's avatar
Lianmin Zheng committed
127
128
129
130
131
132
133
134

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
135
136

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
137
138
139
140
```

### More Examples

141
Anthropic and VertexAI (Gemini) models are also supported.
Lianmin Zheng's avatar
Lianmin Zheng committed
142
143
You can find more examples at [examples/quick_start](examples/quick_start).

144
## Frontend: Structured Generation Language (SGLang)
Lianmin Zheng's avatar
Lianmin Zheng committed
145

Lianmin Zheng's avatar
Lianmin Zheng committed
146
147
148
149
150
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
151
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
152
153
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
154
The system will manage the state, chat template, parallelism and batching for you.
Lianmin Zheng's avatar
Lianmin Zheng committed
155

156
157
The complete code for the examples below can be found at [readme_examples.py](examples/usage/readme_examples.py)

Lianmin Zheng's avatar
Lianmin Zheng committed
158
### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
159
160
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
161
162
```python
@sgl.function
163
164
165
def tool_use(s, question):
    s += "To answer this question: " + question + ". "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
Lianmin Zheng's avatar
Lianmin Zheng committed
166
167
168

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
169
170
    elif s["tool"] == "search engine":
        s += "The key word to search is" + sgl.gen("word")
Lianmin Zheng's avatar
Lianmin Zheng committed
171
```
Lianmin Zheng's avatar
Lianmin Zheng committed
172
173

### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
174
175
176
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
177
178
179
180
181
182
183
184
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
185
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
186
187
188
189
190
191
192
193
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
194
195

### Multi Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
196
197
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
198
199
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
200
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
201
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
202
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
203
204
```

205
206
See also [srt_example_llava.py](examples/quick_start/srt_example_llava.py).

Lianmin Zheng's avatar
Lianmin Zheng committed
207
### Constrained Decoding
208
209
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
210

Lianmin Zheng's avatar
Lianmin Zheng committed
211
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
212
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
213
214
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
215
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
216
217
218
219
220
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
221

222
### JSON Decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
223
Use `regex` to specify a JSON schema with a regular expression.
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

```python
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

@sgl.function
def character_gen(s, name):
Lianmin Zheng's avatar
Lianmin Zheng committed
245
    s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
246
247
248
    s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
249
See also [json_decode.py](examples/usage/json_decode.py) for an additional example on specifying formats with Pydantic models.
250
251


Lianmin Zheng's avatar
Lianmin Zheng committed
252
### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
253
254
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
255
256
257
258
259
260
261
262
263
264
265
266
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
267
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
268
269
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
270
271

### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
272
273
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
274
275
276
277
278
279
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

280
state = text_qa.run(
Lianmin Zheng's avatar
Lianmin Zheng committed
281
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
282
283
284
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
285

Lianmin Zheng's avatar
Lianmin Zheng committed
286
287
288
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
289

Lianmin Zheng's avatar
Lianmin Zheng committed
290
### Tips and Implementation Details
291
292
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
Lianmin Zheng's avatar
Lianmin Zheng committed
293

Lianmin Zheng's avatar
Lianmin Zheng committed
294
295
296
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is designed to work best with the SGLang frontend.
However, it can also be used as a standalone API server.
Ying Sheng's avatar
Ying Sheng committed
297
In this case, the [RadixAttention](https://arxiv.org/abs/2312.07104) can still greatly accelerate many use cases with automatic KV cache reuse.
Lianmin Zheng's avatar
Lianmin Zheng committed
298
299
300
301
302
303
304
305
306

### Usage
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
```

Send a request
```
307
curl http://localhost:30000/generate \
Lianmin Zheng's avatar
Lianmin Zheng committed
308
309
  -H "Content-Type: application/json" \
  -d '{
310
    "text": "Once upon a time,",
311
    "sampling_params": {
312
313
314
      "max_new_tokens": 16,
      "temperature": 0
    }
Lianmin Zheng's avatar
Lianmin Zheng committed
315
316
  }'
```
317
318
Learn more about the argument format [here](docs/sampling_params.md).

319
320
321
322
323
324
325
### OpenAI Compatible API
In addition, the server supports an experimental OpenAI-compatible API.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")
Cody Yu's avatar
Cody Yu committed
326
327

# Text completion
328
329
330
331
332
333
334
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)
Cody Yu's avatar
Cody Yu committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
349
350
351
By default, the server uses the chat template specified in the model tokenizer from Hugging Face. It should just work for most official models such as Llama-2/Llama-3.

If needed, you can also override the chat template when launching the server:
Cody Yu's avatar
Cody Yu committed
352
353

```
354
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --chat-template llama-2
Cody Yu's avatar
Cody Yu committed
355
356
357
```

If the chat template you are looking for is missing, you are welcome to contribute it.
Lianmin Zheng's avatar
Lianmin Zheng committed
358
Meanwhile, you can also temporarily register your chat template as follows:
Cody Yu's avatar
Cody Yu committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372

```json
{
  "name": "my_model",
  "system": "<|im_start|>system",
  "user": "<|im_start|>user",
  "assistant": "<|im_start|>assistant",
  "sep_style": "CHATML",
  "sep": "<|im_end|>",
  "stop_str": ["<|im_end|>", "<|im_start|>"]
}
```

```
373
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --chat-template ./my_model_template.json
374
375
```

Lianmin Zheng's avatar
Lianmin Zheng committed
376
### Additional Arguments
377
- Add `--tp 2` to enable tensor parallelism. If it indicates `peer access is not supported between these two devices`, add `--enable-p2p-check` option.
Lianmin Zheng's avatar
Lianmin Zheng committed
378
379
380
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --tp 2
```
Lianmin Zheng's avatar
Lianmin Zheng committed
381
382
383
384
- Add `--dp 2` to enable data parallelism. It can also be used together with tp. Data parallelism is better for throughput if there is enough memory.
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --dp 2 --tp 2
```
Ying Sheng's avatar
Ying Sheng committed
385
386
387
388
- If you see out-of-memory errors during serving, please try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --mem-fraction-static 0.7
```
Lianmin Zheng's avatar
Lianmin Zheng committed
389
- See [hyperparameter_tuning.md](docs/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
390
391
392
393
394
395
396
397
- Add `--nnodes 2` to run tensor parallelism on multiple nodes. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-1` be the hostname of the first node and `50000` be an available port.
```
# Node 0
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --tp 4 --nccl-init sgl-dev-1:50000 --nnodes 2 --node-rank 0

# Node 1
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --tp 4 --nccl-init sgl-dev-1:50000 --nnodes 2 --node-rank 1
```
Lianmin Zheng's avatar
Lianmin Zheng committed
398
399
400
401
402

### Supported Models
- Llama
- Mistral
- Mixtral
403
404
- Qwen / Qwen 2 / Qwen 2 MoE
- Gemma / Gemma 2
405
  - `python -m sglang.launch_server --model-path google/gemma-7b-it --port 30000 --attention-reduce-in-fp32`
Lianmin Zheng's avatar
Lianmin Zheng committed
406
- LLaVA
407
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
408
409
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.6-vicuna-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.6-34b --tokenizer-path liuhaotian/llava-v1.6-34b-tokenizer --port 3000`
410
411
- LLaVA-NeXT-Video
  - see [srt_example_llava_v.sh](examples/usage/llava_video/srt_example_llava_v.sh)
Lianmin Zheng's avatar
Lianmin Zheng committed
412
413
- Yi-VL
  - see [srt_example_yi_vl.py](examples/quick_start/srt_example_yi_vl.py).
414
415
416
- StableLM
- Command-R
- DBRX
417
418
- Grok
- ChatGLM
419
420
421
- AWQ/GPTQ/Marlin quantization

Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/model_support.md).
Lianmin Zheng's avatar
Lianmin Zheng committed
422
423

## Benchmark And Performance
Lianmin Zheng's avatar
Lianmin Zheng committed
424
425
426
427
428
429
- Llama-7B on NVIDIA A10G, FP16, Tensor Parallelism=1
![llama_7b](assets/llama_7b.jpg)

- Mixtral-8x7B on NVIDIA A10G, FP16, Tensor Parallelism=8
![mixtral_8x7b](assets/mixtral_8x7b.jpg)

Lianmin Zheng's avatar
Lianmin Zheng committed
430
431
- Learn more about the above [results](docs/benchmark_results.md).
- Synthetic latency and throughput benchmark [scripts](https://github.com/sgl-project/sglang/tree/main/benchmark/latency_throughput).
Lianmin Zheng's avatar
Lianmin Zheng committed
432

Lianmin Zheng's avatar
Lianmin Zheng committed
433
## Roadmap
Ying Sheng's avatar
Ying Sheng committed
434
[Development Roadmap (2024 Q3)](https://github.com/sgl-project/sglang/issues/634)
Lianmin Zheng's avatar
Lianmin Zheng committed
435
436

## Citation And Acknowledgment
Ying Sheng's avatar
Ying Sheng committed
437
438
Please cite our paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.
We also learned from the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql).