"vscode:/vscode.git/clone" did not exist on "b73ac629cd3e2229a3feb116f82536b802ab88dc"
deepseek_v2.py 139 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
fzyzcjy's avatar
fzyzcjy committed
18
from __future__ import annotations
19

20
import concurrent.futures
21
import logging
22
import os
23
from enum import IntEnum, auto
24
from typing import Any, Dict, Iterable, Optional, Tuple, Union
Liangsheng Yin's avatar
Liangsheng Yin committed
25
26

import torch
Ke Bao's avatar
Ke Bao committed
27
import torch.nn.functional as F
28
import tqdm
Liangsheng Yin's avatar
Liangsheng Yin committed
29
30
from torch import nn
from transformers import PretrainedConfig
31

fzyzcjy's avatar
fzyzcjy committed
32
33
34
35
36
37
from sglang.srt.configs.model_config import (
    get_nsa_index_head_dim,
    get_nsa_index_n_heads,
    get_nsa_index_topk,
    is_deepseek_nsa,
)
38
from sglang.srt.distributed import (
39
    get_moe_expert_parallel_world_size,
40
    get_pp_group,
Liangsheng Yin's avatar
Liangsheng Yin committed
41
    get_tensor_model_parallel_world_size,
42
    parallel_state,
Liangsheng Yin's avatar
Liangsheng Yin committed
43
44
    tensor_model_parallel_all_reduce,
)
45
46
47
from sglang.srt.distributed.device_communicators.pynccl_allocator import (
    use_symmetric_memory,
)
48
from sglang.srt.environ import envs
fzyzcjy's avatar
fzyzcjy committed
49
50
51
from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
from sglang.srt.eplb.expert_location import ModelConfigForExpertLocation
from sglang.srt.eplb.expert_location_dispatch import ExpertLocationDispatchInfo
52
from sglang.srt.layers import deep_gemm_wrapper
53
from sglang.srt.layers.activation import SiluAndMul
54
from sglang.srt.layers.amx_utils import PackWeightMethod
55
56
57
58
from sglang.srt.layers.attention.npu_ops.mla_preprocess import (
    NPUFusedMLAPreprocess,
    is_mla_preprocess_enabled,
)
fzyzcjy's avatar
fzyzcjy committed
59
from sglang.srt.layers.attention.nsa.nsa_indexer import Indexer
60
61
62
63
64
from sglang.srt.layers.communicator import (
    LayerCommunicator,
    LayerScatterModes,
    enable_moe_dense_fully_dp,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
65
66
67
from sglang.srt.layers.dp_attention import (
    get_attention_tp_rank,
    get_attention_tp_size,
68
    is_dp_attention_enabled,
Lianmin Zheng's avatar
Lianmin Zheng committed
69
)
70
from sglang.srt.layers.layernorm import RMSNorm
71
72
73
74
75
76
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
77
from sglang.srt.layers.logits_processor import LogitsProcessor
78
79
80
from sglang.srt.layers.moe import (
    get_moe_a2a_backend,
    should_use_flashinfer_cutlass_moe_fp4_allgather,
81
    should_use_flashinfer_trtllm_moe,
82
)
83
from sglang.srt.layers.moe.ep_moe.layer import DeepEPMoE, get_moe_impl_class
84
85
from sglang.srt.layers.moe.fused_moe_triton.layer import FusedMoE
from sglang.srt.layers.moe.topk import TopK, TopKOutputFormat
86
from sglang.srt.layers.quantization import CompressedTensorsConfig
87
from sglang.srt.layers.quantization.base_config import QuantizationConfig
88
89
90
91
from sglang.srt.layers.quantization.compressed_tensors.compressed_tensors_moe import (
    CompressedTensorsWNA16AMXEPMoEMethod,
)
from sglang.srt.layers.quantization.fp8 import Fp8Config
92
from sglang.srt.layers.quantization.fp8_kernel import (
93
    is_fp8_fnuz,
94
    per_tensor_quant_mla_fp8,
95
    per_token_group_quant_mla_deep_gemm_masked_fp8,
96
)
HandH1998's avatar
HandH1998 committed
97
from sglang.srt.layers.quantization.fp8_utils import (
98
    block_quant_dequant,
HandH1998's avatar
HandH1998 committed
99
    block_quant_to_tensor_quant,
100
    channel_quant_to_tensor_quant,
101
    normalize_e4m3fn_to_e4m3fnuz,
102
    quant_weight_ue8m0,
103
    requant_weight_ue8m0_inplace,
104
    transform_scale_ue8m0_inplace,
HandH1998's avatar
HandH1998 committed
105
)
106
107
108
from sglang.srt.layers.quantization.int8_utils import (
    block_dequant as int8_block_dequant,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
109
from sglang.srt.layers.radix_attention import RadixAttention
110
111
from sglang.srt.layers.rotary_embedding import get_rope_wrapper
from sglang.srt.layers.utils import PPMissingLayer, get_layer_id
112
113
114
115
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
116
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
117
from sglang.srt.model_loader.weight_utils import default_weight_loader
118
from sglang.srt.server_args import get_global_server_args
119
from sglang.srt.single_batch_overlap import SboFlags
120
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
121
from sglang.srt.two_batch_overlap import model_forward_maybe_tbo
122
123
from sglang.srt.utils import (
    BumpAllocator,
124
    LazyValue,
125
    add_prefix,
126
    bind_or_assign,
127
    cpu_has_amx_support,
128
    get_bool_env_var,
129
    get_device_sm,
130
    get_int_env_var,
131
    is_cpu,
132
    is_cuda,
133
    is_flashinfer_available,
134
    is_gfx95_supported,
135
    is_hip,
136
    is_non_idle_and_non_empty,
137
    is_npu,
138
    is_nvidia_cublas_cu12_version_ge_12_9,
139
    is_sm100_supported,
140
    log_info_on_rank0,
141
    make_layers,
142
    use_intel_amx_backend,
143
)
maxiao1's avatar
maxiao1 committed
144
from sglang.srt.layers.attention.lightop_concat import concat_decode_opt
145

146
_is_hip = is_hip()
Yineng Zhang's avatar
Yineng Zhang committed
147
_is_cuda = is_cuda()
148
_is_npu = is_npu()
149
_is_fp8_fnuz = is_fp8_fnuz()
150
_use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
151
152
_is_cpu_amx_available = cpu_has_amx_support()
_is_cpu = is_cpu()
153
_device_sm = get_device_sm()
154
_is_gfx95_supported = is_gfx95_supported()
maxiao1's avatar
maxiao1 committed
155
156
_user_lightop_moe_sum_mul_add = get_bool_env_var("SGLANG_USE_LIGHTOP_MOE_SUM_MUL_ADD")
_use_fused_silu_mul_quant = get_bool_env_var("SGLANG_USE_FUSED_SILU_MUL_QUANT")
157
_use_aiter_gfx95 = _use_aiter and _is_gfx95_supported
maxiao1's avatar
maxiao1 committed
158
_use_opt_cat_decode = get_bool_env_var("SGLANG_USE_OPT_CAT")
159
160
161
162
163
164
165
166
167
168
169
170
171

if _use_aiter_gfx95:
    from sglang.srt.layers.quantization.quark.utils import quark_post_load_weights
    from sglang.srt.layers.quantization.rocm_mxfp4_utils import (
        batched_gemm_afp4wfp4_pre_quant,
        fused_flatten_mxfp4_quant,
        fused_rms_mxfp4_quant,
    )
    from sglang.srt.layers.rocm_linear_utils import (
        aiter_dsv3_router_gemm,
        fused_qk_rope_cat,
        get_dsv3_gemm_output_zero_allocator_size,
    )
172

Yineng Zhang's avatar
Yineng Zhang committed
173
if _is_cuda:
174
175
176
    from sgl_kernel import (
        awq_dequantize,
        bmm_fp8,
177
        concat_mla_k,
178
179
180
181
        dsv3_fused_a_gemm,
        dsv3_router_gemm,
        merge_state_v2,
    )
182
183
elif _is_cpu and _is_cpu_amx_available:
    pass
184
elif _is_hip:
fzyzcjy's avatar
fzyzcjy committed
185
186
187
    from sglang.srt.layers.attention.triton_ops.rocm_mla_decode_rope import (
        decode_attention_fwd_grouped_rope,
    )
188
189
190
    from sglang.srt.layers.quantization.awq_triton import (
        awq_dequantize_triton as awq_dequantize,
    )
lizhigong's avatar
lizhigong committed
191
    from sgl_kernel import merge_state_v2
fzyzcjy's avatar
fzyzcjy committed
192
elif _is_npu:
193
194
195
    import custom_ops  # noqa: F401
    import sgl_kernel_npu  # noqa: F401
    import torch_npu  # noqa: F401
196
197
198
199

    from sglang.srt.layers.quantization.awq_triton import (
        awq_dequantize_decomposition as awq_dequantize,
    )
Yineng Zhang's avatar
Yineng Zhang committed
200
else:
201
    pass
Liangsheng Yin's avatar
Liangsheng Yin committed
202

203
204
_is_flashinfer_available = is_flashinfer_available()
_is_sm100_supported = is_cuda() and is_sm100_supported()
205
_is_cublas_ge_129 = is_nvidia_cublas_cu12_version_ge_12_9()
206

207
208
logger = logging.getLogger(__name__)

209
210
211
212
213
214
215
216
217

def enable_nextn_moe_bf16_cast_to_fp8(quant_config):
    return (
        quant_config is not None
        and quant_config.get_name() == "modelopt_fp4"
        and get_moe_a2a_backend().is_deepep()
    )


218
219
FORWARD_ABSORB_CORE_ATTENTION_BACKENDS = [
    "fa3",
fzyzcjy's avatar
fzyzcjy committed
220
    "nsa",
221
222
223
224
225
226
227
228
229
230
231
232
    "flashinfer",
    "cutlass_mla",
    "trtllm_mla",
    "ascend",
]


def add_forward_absorb_core_attention_backend(backend_name):
    if backend_name not in FORWARD_ABSORB_CORE_ATTENTION_BACKENDS:
        FORWARD_ABSORB_CORE_ATTENTION_BACKENDS.append(backend_name)
        logger.info(f"Added {backend_name} to FORWARD_ABSORB_CORE_ATTENTION_BACKENDS.")

Liangsheng Yin's avatar
Liangsheng Yin committed
233

234
235
236
237
238
239
240
class AttnForwardMethod(IntEnum):
    # Use multi-head attention
    MHA = auto()

    # Use absorbed multi-latent attention
    MLA = auto()

fzyzcjy's avatar
fzyzcjy committed
241
242
243
    # Use Deepseek V3.2 sparse multi-latent attention
    NPU_MLA_SPARSE = auto()

244
245
246
247
    # Use multi-head attention, but with KV cache chunked.
    # This method can avoid OOM when prefix lengths are long.
    MHA_CHUNKED_KV = auto()

248
249
250
    # Use MLA but with fused RoPE
    MLA_FUSED_ROPE = auto()

251
252
253
    # Use MLA with fused RoPE kernel for CPU
    MLA_FUSED_ROPE_CPU = auto()

254

255
256
257
258
259
260
261
262
263
264
265
266
267
def _dispatch_mla_subtype(attn, forward_batch):
    if _is_hip:
        if attn.rocm_fused_decode_mla and forward_batch.forward_mode.is_decode():
            return AttnForwardMethod.MLA_FUSED_ROPE
        else:
            return AttnForwardMethod.MLA
    else:
        if hasattr(attn, "fused_qkv_a_proj_with_mqa") and use_intel_amx_backend(attn):
            return AttnForwardMethod.MLA_FUSED_ROPE_CPU
        else:
            return AttnForwardMethod.MLA


fzyzcjy's avatar
fzyzcjy committed
268
class AttentionBackendRegistry:
269
270
271
272
273
274
275
276
277
278
279
    _handlers = {}

    @classmethod
    def register(cls, backend_name, handler_func):
        cls._handlers[backend_name] = handler_func

    @classmethod
    def get_handler(cls, backend_name):
        return cls._handlers.get(backend_name, cls._handlers.get("triton"))


fzyzcjy's avatar
fzyzcjy committed
280
def handle_attention_ascend(attn, forward_batch):
281
282
283
284
285
    if (
        forward_batch.forward_mode.is_extend()
        and not forward_batch.forward_mode.is_target_verify()
        and not forward_batch.forward_mode.is_draft_extend()
    ):
fzyzcjy's avatar
fzyzcjy committed
286
287
288
289
        if hasattr(attn, "indexer"):
            return AttnForwardMethod.NPU_MLA_SPARSE
        else:
            return AttnForwardMethod.MHA
290
    else:
fzyzcjy's avatar
fzyzcjy committed
291
292
293
294
        if hasattr(attn, "indexer"):
            return AttnForwardMethod.NPU_MLA_SPARSE
        else:
            return AttnForwardMethod.MLA
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312


def _get_sum_extend_prefix_lens(forward_batch):
    return (
        sum(forward_batch.extend_prefix_lens_cpu)
        if forward_batch.extend_prefix_lens_cpu is not None
        else 0
    )


def _is_extend_without_speculative(forward_batch):
    return (
        forward_batch.forward_mode.is_extend()
        and not forward_batch.forward_mode.is_target_verify()
        and not forward_batch.forward_mode.is_draft_extend()
    )


fzyzcjy's avatar
fzyzcjy committed
313
314
315
def _handle_attention_backend(
    attn: DeepseekV2AttentionMLA, forward_batch, backend_name
):
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    sum_extend_prefix_lens = _get_sum_extend_prefix_lens(forward_batch)
    disable_ragged = (
        backend_name in ["flashinfer", "flashmla"]
    ) and attn.flashinfer_mla_disable_ragged

    if (
        not disable_ragged
        and _is_extend_without_speculative(forward_batch)
        and (
            (
                sum_extend_prefix_lens >= attn.chunked_prefix_cache_threshold
                and not attn.disable_chunked_prefix_cache
            )
            or sum_extend_prefix_lens == 0
        )
    ):
        return AttnForwardMethod.MHA_CHUNKED_KV
    else:
        return _dispatch_mla_subtype(attn, forward_batch)


fzyzcjy's avatar
fzyzcjy committed
337
338
def handle_attention_flashinfer(attn, forward_batch):
    return _handle_attention_backend(attn, forward_batch, "flashinfer")
339
340


fzyzcjy's avatar
fzyzcjy committed
341
342
def handle_attention_fa3(attn, forward_batch):
    return _handle_attention_backend(attn, forward_batch, "fa3")
343
344


fzyzcjy's avatar
fzyzcjy committed
345
346
def handle_attention_flashmla(attn, forward_batch):
    return _handle_attention_backend(attn, forward_batch, "flashmla")
347
348


linhai1's avatar
linhai1 committed
349
350
351
352
def handle_attention_dcu_mla(attn, forward_batch):
    return _handle_attention_backend(attn, forward_batch, "dcu_mla")


fzyzcjy's avatar
fzyzcjy committed
353
354
def handle_attention_cutlass_mla(attn, forward_batch):
    return _handle_attention_backend(attn, forward_batch, "cutlass_mla")
355
356


fzyzcjy's avatar
fzyzcjy committed
357
def handle_attention_fa4(attn, forward_batch):
358
359
360
361
    # TODO(cicirori): use FA4 MHA for DeepSeekV3 for now
    return AttnForwardMethod.MHA_CHUNKED_KV


fzyzcjy's avatar
fzyzcjy committed
362
def handle_attention_trtllm_mla(attn, forward_batch):
363
364
365
366
367
368
369
370
371
    sum_extend_prefix_lens = _get_sum_extend_prefix_lens(forward_batch)
    if _is_extend_without_speculative(forward_batch) and (
        not attn.disable_chunked_prefix_cache or sum_extend_prefix_lens == 0
    ):
        return AttnForwardMethod.MHA_CHUNKED_KV
    else:
        return _dispatch_mla_subtype(attn, forward_batch)


fzyzcjy's avatar
fzyzcjy committed
372
def handle_attention_aiter(attn, forward_batch):
373
374
375
376
377
378
379
380
381
382
383
384
    if _is_extend_without_speculative(forward_batch):
        if is_dp_attention_enabled():
            if sum(forward_batch.extend_prefix_lens_cpu) == 0:
                return AttnForwardMethod.MHA
            else:
                return AttnForwardMethod.MLA
        else:
            return AttnForwardMethod.MHA
    else:
        return AttnForwardMethod.MLA


fzyzcjy's avatar
fzyzcjy committed
385
386
387
388
def handle_attention_nsa(attn, forward_batch):
    return AttnForwardMethod.MLA


fzyzcjy's avatar
fzyzcjy committed
389
def handle_attention_triton(attn, forward_batch):
390
391
392
393
394
395
396
397
398
    if (
        _is_extend_without_speculative(forward_batch)
        and sum(forward_batch.extend_prefix_lens_cpu) == 0
    ):
        return AttnForwardMethod.MHA
    else:
        return _dispatch_mla_subtype(attn, forward_batch)


Liangsheng Yin's avatar
Liangsheng Yin committed
399
400
401
402
403
404
405
406
class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
407
        prefix: str = "",
408
409
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
410
411
    ) -> None:
        super().__init__()
412
413
        self.tp_size = tp_size

Liangsheng Yin's avatar
Liangsheng Yin committed
414
        self.gate_up_proj = MergedColumnParallelLinear(
415
416
417
418
419
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
420
421
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
422
423
424
425
426
427
428
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
429
            prefix=add_prefix("down_proj", prefix),
430
431
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
432
433
434
435
436
437
438
439
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

440
441
442
443
    def forward(
        self,
        x,
        forward_batch=None,
444
        should_allreduce_fusion: bool = False,
445
        use_reduce_scatter: bool = False,
446
        gemm_output_zero_allocator: BumpAllocator = None,
447
    ):
448
449
450
        if (self.tp_size == 1) and x.shape[0] == 0:
            return x

451
452
453
454
455
        if (
            gemm_output_zero_allocator is not None
            and x.shape[0] <= 256
            and self.gate_up_proj.weight.dtype == torch.uint8
        ):
456
457
458
459
460
            y = gemm_output_zero_allocator.allocate(
                x.shape[0] * self.gate_up_proj.output_size_per_partition
            ).view(x.shape[0], self.gate_up_proj.output_size_per_partition)
            x = (x, None, y)

Liangsheng Yin's avatar
Liangsheng Yin committed
461
        gate_up, _ = self.gate_up_proj(x)
maxiao1's avatar
maxiao1 committed
462
463
464
465
466
467
468
        if _use_fused_silu_mul_quant:
            x, _ = self.down_proj(gate_up, skip_all_reduce=should_allreduce_fusion or use_reduce_scatter, use_fused_silu_mul_quant=True)
        else:
            x = self.act_fn(gate_up)
            x, _ = self.down_proj(
                x, skip_all_reduce=should_allreduce_fusion or use_reduce_scatter
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
469
470
471
        return x


Ke Bao's avatar
Ke Bao committed
472
class MoEGate(nn.Module):
473
474
475
    def __init__(
        self,
        config,
476
        quant_config,
477
        prefix: str = "",
478
        is_nextn: bool = False,
479
    ):
Ke Bao's avatar
Ke Bao committed
480
        super().__init__()
481
        self.is_nextn = is_nextn
Ke Bao's avatar
Ke Bao committed
482
483
484
485
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
486
487
488
489
490
491
492
            correction_bias_dtype = (
                torch.bfloat16
                if quant_config is not None
                and quant_config.get_name() == "modelopt_fp4"
                and should_use_flashinfer_trtllm_moe()
                else torch.float32
            )
Ke Bao's avatar
Ke Bao committed
493
            self.e_score_correction_bias = nn.Parameter(
494
                torch.empty((config.n_routed_experts), dtype=correction_bias_dtype)
Ke Bao's avatar
Ke Bao committed
495
496
497
            )
        else:
            self.e_score_correction_bias = None
498
499
        if _is_cpu and _is_cpu_amx_available:
            self.quant_method = PackWeightMethod(weight_names=["weight"])
Ke Bao's avatar
Ke Bao committed
500

501
    def forward(self, hidden_states, gemm_output_zero_allocator: BumpAllocator = None):
502
        if use_intel_amx_backend(self):
503
504
505
506
507
508
509
            return torch.ops.sgl_kernel.weight_packed_linear(
                hidden_states,
                self.weight,
                None,  # bias
                True,  # is_vnni
            )

510
        # NOTE: For some unknown reason, router_gemm seems degrade accept length.
511
        if (
512
            _is_cuda
513
            and hidden_states.shape[0] <= 16
514
            and hidden_states.shape[1] == 7168
515
            and (self.weight.shape[0] == 256 or self.weight.shape[0] == 384)
516
517
            and _device_sm >= 90
        ):
518
            # router gemm output float32
519
520
521
            logits = dsv3_router_gemm(
                hidden_states, self.weight, out_dtype=torch.float32
            )
522
523
524
525
        elif _use_aiter_gfx95 and hidden_states.shape[0] <= 256:
            logits = aiter_dsv3_router_gemm(
                hidden_states, self.weight, gemm_output_zero_allocator
            )
526
527
528
        else:
            logits = F.linear(hidden_states, self.weight, None)

Ke Bao's avatar
Ke Bao committed
529
530
531
        return logits


Liangsheng Yin's avatar
Liangsheng Yin committed
532
533
534
535
536
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
fzyzcjy's avatar
fzyzcjy committed
537
        layer_id: int,
Liangsheng Yin's avatar
Liangsheng Yin committed
538
        quant_config: Optional[QuantizationConfig] = None,
539
        prefix: str = "",
540
        alt_stream: Optional[torch.cuda.Stream] = None,
541
        is_nextn: bool = False,
Liangsheng Yin's avatar
Liangsheng Yin committed
542
543
544
545
546
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
547
548
        self.num_fused_shared_experts = (
            0
549
            if get_global_server_args().disable_shared_experts_fusion
550
551
            else config.n_shared_experts
        )
552
        self.config = config
fzyzcjy's avatar
fzyzcjy committed
553
        self.layer_id = layer_id
554
        self.alt_stream = alt_stream
555
        self.is_nextn = is_nextn
556

Liangsheng Yin's avatar
Liangsheng Yin committed
557
558
559
560
561
562
563
564
565
566
567
568
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

569
        self.gate = MoEGate(
570
571
572
573
            config=config,
            quant_config=quant_config,
            prefix=add_prefix("gate", prefix),
            is_nextn=is_nextn,
574
        )
Ke Bao's avatar
Ke Bao committed
575

576
        self.experts = get_moe_impl_class(quant_config)(
577
            num_experts=config.n_routed_experts
578
            + self.num_fused_shared_experts
579
            + get_global_server_args().ep_num_redundant_experts,
Cheng Wan's avatar
Cheng Wan committed
580
            num_fused_shared_experts=self.num_fused_shared_experts,
581
            top_k=config.num_experts_per_tok + self.num_fused_shared_experts,
582
583
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
fzyzcjy's avatar
fzyzcjy committed
584
            layer_id=self.layer_id,
585
            quant_config=quant_config,
586
            routed_scaling_factor=self.routed_scaling_factor,
587
588
            prefix=add_prefix("experts", prefix),
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
589

590
591
592
593
594
595
596
        self.topk = TopK(
            top_k=config.num_experts_per_tok + self.num_fused_shared_experts,
            renormalize=config.norm_topk_prob,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
            num_fused_shared_experts=self.num_fused_shared_experts,
            topk_group=config.topk_group,
597
598
            correction_bias=self.gate.e_score_correction_bias,
            quant_config=quant_config,
599
            routed_scaling_factor=self.routed_scaling_factor,
fzyzcjy's avatar
fzyzcjy committed
600
            apply_routed_scaling_factor_on_output=self.experts.should_fuse_routed_scaling_factor_in_topk,
601
602
603
            # Some Fp4 MoE backends require the output format to be bypassed but the MTP layers are unquantized
            # and requires the output format to be standard. We use quant_config to determine the output format.
            output_format=TopKOutputFormat.STANDARD if quant_config is None else None,
604
605
        )

606
607
608
        self.shared_experts_is_int8 = False
        self.shared_experts_is_fp8 = False
        self.shared_experts_weight_block_size = None
609
        if config.n_shared_experts is not None and self.num_fused_shared_experts == 0:
Liangsheng Yin's avatar
Liangsheng Yin committed
610
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
611
            # disable tp for shared experts when enable deepep moe, or with fp4 allgather
612
613
614
615
616
617
618
619
620
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
                prefix=add_prefix("shared_experts", prefix),
                **(
                    dict(tp_rank=0, tp_size=1)
621
                    if get_moe_a2a_backend().is_deepep()
622
                    or get_moe_a2a_backend().is_mooncake()
623
                    or should_use_flashinfer_cutlass_moe_fp4_allgather()
624
625
626
                    else {}
                ),
            )
AniZpZ's avatar
AniZpZ committed
627
628
629
630
            is_packed_weight = hasattr(
                self.shared_experts.gate_up_proj.quant_method, "quant_config"
            ) and self.shared_experts.gate_up_proj.quant_method.quant_config.get_name() in {
                "awq",
631
                "awq_marlin",
AniZpZ's avatar
AniZpZ committed
632
633
                "moe_wna16",
            }
634
            self.shared_experts_is_int8 = (
635
636
                not is_packed_weight
                and self.shared_experts.gate_up_proj.weight.dtype == torch.int8
637
638
            )
            self.shared_experts_is_fp8 = (
639
640
                not is_packed_weight
                and self.shared_experts.gate_up_proj.weight.dtype == torch.float8_e4m3fn
641
642
643
644
645
646
647
648
649
            )
            if self.shared_experts_is_fp8:
                assert (
                    self.shared_experts.gate_up_proj.quant_method.quant_config.weight_block_size
                    == self.shared_experts.down_proj.quant_method.quant_config.weight_block_size
                )
                self.shared_experts_weight_block_size = (
                    self.shared_experts.gate_up_proj.quant_method.quant_config.weight_block_size
                )
650

651
652
        self.top_k = config.num_experts_per_tok

653
        if get_moe_a2a_backend().is_deepep() or get_moe_a2a_backend().is_mooncake():
654
            # TODO: we will support tp < ep in the future
655
            self.ep_size = get_moe_expert_parallel_world_size()
656
657
            self.num_experts = (
                config.n_routed_experts
658
                + get_global_server_args().ep_num_redundant_experts
659
            )
660
661
662
663
664
665
666
667
668
            self.renormalize = config.norm_topk_prob
            self.topk_group = config.topk_group
            self.num_expert_group = config.n_group
            self.correction_bias = (
                self.gate.e_score_correction_bias.data
                if self.gate.e_score_correction_bias is not None
                else None
            )

669
670
671
        self._enable_a2a_moe = (
            get_moe_a2a_backend().is_deepep() or get_moe_a2a_backend().is_mooncake()
        )
672
        self._fuse_shared_experts_inside_sbo = SboFlags.fuse_shared_experts_inside_sbo()
673

674
675
676
677
678
679
680
    def get_moe_weights(self):
        return [
            x.data
            for name, x in self.experts.named_parameters()
            if name not in ["correction_bias"]
        ]

681
    def forward(
682
683
684
        self,
        hidden_states: torch.Tensor,
        forward_batch: Optional[ForwardBatch] = None,
685
        should_allreduce_fusion: bool = False,
686
        use_reduce_scatter: bool = False,
687
        gemm_output_zero_allocator: BumpAllocator = None,
688
    ) -> torch.Tensor:
689
        if not self._enable_a2a_moe:
690
691
692
693
            DUAL_STREAM_TOKEN_THRESHOLD = 1024
            if (
                self.alt_stream is not None
                and self.num_fused_shared_experts == 0
694
                and hidden_states.shape[0] > 0
695
696
                and hidden_states.shape[0] <= DUAL_STREAM_TOKEN_THRESHOLD
            ):
697
                return self.forward_normal_dual_stream(
698
699
700
                    hidden_states,
                    should_allreduce_fusion,
                    use_reduce_scatter,
701
                    gemm_output_zero_allocator,
702
                )
703
            else:
704
                return self.forward_normal(
705
706
707
                    hidden_states,
                    should_allreduce_fusion,
                    use_reduce_scatter,
708
                    gemm_output_zero_allocator,
709
                )
710
711
712
        else:
            return self.forward_deepep(hidden_states, forward_batch)

713
    def forward_normal_dual_stream(
714
715
        self,
        hidden_states: torch.Tensor,
716
        should_allreduce_fusion: bool = False,
717
        use_reduce_scatter: bool = False,
718
        gemm_output_zero_allocator: BumpAllocator = None,
719
    ) -> torch.Tensor:
720

721
722
        current_stream = torch.cuda.current_stream()
        self.alt_stream.wait_stream(current_stream)
723
724
725
        shared_output = self._forward_shared_experts(
            hidden_states, gemm_output_zero_allocator
        )
726

727
        with torch.cuda.stream(self.alt_stream):
728
            # router_logits: (num_tokens, n_experts)
729
            router_logits = self.gate(hidden_states, gemm_output_zero_allocator)
Cheng Wan's avatar
Cheng Wan committed
730
            topk_output = self.topk(hidden_states, router_logits)
731
732
733
734
            if isinstance(
                self.experts.quant_method, CompressedTensorsWNA16AMXEPMoEMethod
            ):
                topk_output.topk_weights.mul_(self.routed_scaling_factor)
Cheng Wan's avatar
Cheng Wan committed
735
            final_hidden_states = self.experts(hidden_states, topk_output)
736
737
            if not _is_cuda:
                final_hidden_states *= self.routed_scaling_factor
Cheng Wan's avatar
Cheng Wan committed
738

739
        current_stream.wait_stream(self.alt_stream)
740
741
        with use_symmetric_memory(parallel_state.get_tp_group()) as sm:
            final_hidden_states_out = torch.empty_like(final_hidden_states)
Cheng Wan's avatar
Cheng Wan committed
742

743
744
745
        torch.add(final_hidden_states, shared_output, out=final_hidden_states_out)
        final_hidden_states = final_hidden_states_out
        sm.tag(final_hidden_states)
746
747
748
749
750
751
        if (
            self.tp_size > 1
            and not should_allreduce_fusion
            and not use_reduce_scatter
            and not should_use_flashinfer_cutlass_moe_fp4_allgather()
        ):
752
753
754
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

755
    def forward_normal(
756
757
        self,
        hidden_states: torch.Tensor,
758
        should_allreduce_fusion: bool = False,
759
        use_reduce_scatter: bool = False,
760
        gemm_output_zero_allocator: BumpAllocator = None,
761
    ) -> torch.Tensor:
762
763
        if hasattr(self, "shared_experts") and use_intel_amx_backend(
            self.shared_experts.gate_up_proj
764
        ):
765
            return self.forward_cpu(hidden_states, should_allreduce_fusion)
maxiao1's avatar
maxiao1 committed
766
767
768
769
770
771
772
773
774
775
        if _user_lightop_moe_sum_mul_add:
            if hidden_states.shape[0] > 0:
                if not self._fuse_shared_experts_inside_sbo:
                    shared_output = self._forward_shared_experts(
                        hidden_states, gemm_output_zero_allocator
                    )
                # router_logits: (num_tokens, n_experts)
                router_logits = self.gate(hidden_states, gemm_output_zero_allocator)
                topk_output = self.topk(hidden_states, router_logits)
                final_hidden_states = self.experts(hidden_states, topk_output, shared_output=shared_output)
776
        else:
maxiao1's avatar
maxiao1 committed
777
778
779
780
781
782
783
784
785
786
787
            if hidden_states.shape[0] > 0:
                if not self._fuse_shared_experts_inside_sbo:
                    shared_output = self._forward_shared_experts(
                        hidden_states, gemm_output_zero_allocator
                    )
                # router_logits: (num_tokens, n_experts)
                router_logits = self.gate(hidden_states, gemm_output_zero_allocator)
                topk_output = self.topk(hidden_states, router_logits)
            else:
                shared_output = None
                topk_output = self.topk.empty_topk_output(hidden_states.device)
788

maxiao1's avatar
maxiao1 committed
789
790
            if self._fuse_shared_experts_inside_sbo:
                shared_output = None
791

maxiao1's avatar
maxiao1 committed
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
                def _forward_shared_experts_and_put_results():
                    nonlocal shared_output
                    shared_output = self._forward_shared_experts(
                        hidden_states, gemm_output_zero_allocator
                    )
            final_hidden_states = self.experts(
                hidden_states,
                topk_output,
                **(
                    dict(
                        forward_shared_experts=_forward_shared_experts_and_put_results,
                        alt_stream=self.alt_stream,
                    )
                    if self._fuse_shared_experts_inside_sbo
                    else {}
                ),
            )
            if not _is_cuda and not _use_aiter:
                # fused in biased_grouped_topk so we can skip here
                final_hidden_states *= self.routed_scaling_factor
            if shared_output is not None:
                with use_symmetric_memory(parallel_state.get_tp_group()) as sm:
                    final_hidden_states_out = torch.empty_like(final_hidden_states)
                torch.add(final_hidden_states, shared_output, out=final_hidden_states_out)
                final_hidden_states = final_hidden_states_out
                sm.tag(final_hidden_states)
818
819
820
821
822
823
        if (
            self.tp_size > 1
            and not should_allreduce_fusion
            and not use_reduce_scatter
            and not should_use_flashinfer_cutlass_moe_fp4_allgather()
        ):
824
825
826
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

827
    def forward_cpu(
828
829
830
        self,
        hidden_states: torch.Tensor,
        should_allreduce_fusion: bool = False,
831
    ) -> torch.Tensor:
832
833
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)
834
        topk_output = self.topk(hidden_states, router_logits)
835
        fused_experts_out = self.experts(
836
            hidden_states=hidden_states, topk_output=topk_output
837
838
        )

839
840
841
        assert use_intel_amx_backend(
            self.shared_experts.gate_up_proj
        ) == use_intel_amx_backend(self.shared_experts.down_proj)
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
        # [Note] inplace should be False in fused_experts.
        # If inplace is True in fused_experts (self.experts), hidden_states will be changed after fused_experts
        # While hidden_states is still needed in shared_expert.
        final_hidden_states = torch.ops.sgl_kernel.shared_expert_cpu(
            hidden_states,
            self.shared_experts.gate_up_proj.weight,
            self.shared_experts.down_proj.weight,
            fused_experts_out,
            self.routed_scaling_factor,
            True,  # inplace
            self.shared_experts_is_int8,  # use_int8_w8a8
            self.shared_experts_is_fp8,  # use_fp8_w8a16
            (
                self.shared_experts.gate_up_proj.weight_scale
                if self.shared_experts_is_int8
                else (
                    self.shared_experts.gate_up_proj.weight_scale_inv
                    if self.shared_experts_is_fp8
                    else None
                )
            ),  # w1_scale
            (
                self.shared_experts.down_proj.weight_scale
                if self.shared_experts_is_int8
                else (
                    self.shared_experts.down_proj.weight_scale_inv
                    if self.shared_experts_is_fp8
                    else None
                )
            ),  # w2_scale
            (
                self.shared_experts_weight_block_size
                if self.shared_experts_is_fp8
                else None
            ),  # block_size
            None,  # a1_scale
            None,  # a2_scale
            True,  # is_vnni
        )
881
        if self.tp_size > 1 and not should_allreduce_fusion:
882
883
884
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

885
886
887
888
    def forward_deepep(
        self, hidden_states: torch.Tensor, forward_batch: ForwardBatch
    ) -> torch.Tensor:
        shared_output = None
Cheng Wan's avatar
Cheng Wan committed
889
        if hidden_states.shape[0] > 0:
890
891
            # router_logits: (num_tokens, n_experts)
            router_logits = self.gate(hidden_states)
892
            if not self._fuse_shared_experts_inside_sbo:
893
                shared_output = self._forward_shared_experts(hidden_states)
894
            topk_output = self.topk(
895
896
                hidden_states,
                router_logits,
897
                num_token_non_padded=forward_batch.num_token_non_padded,
898
899
900
                expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                    layer_id=self.layer_id,
                ),
901
902
            )
        else:
903
            topk_output = self.topk.empty_topk_output(hidden_states.device)
904

905
906
907
908
909
910
911
912
        if self._fuse_shared_experts_inside_sbo:
            shared_output = None

            def _forward_shared_experts_and_put_results():
                nonlocal shared_output
                shared_output = self._forward_shared_experts(hidden_states)

        final_hidden_states = self.experts(
913
            hidden_states=hidden_states,
914
            topk_output=topk_output,
915
916
917
918
            **(
                dict(
                    forward_shared_experts=_forward_shared_experts_and_put_results,
                    alt_stream=self.alt_stream,
919
920
                    # SBO is not yet implemented for NextN
                    disable_sbo=self.is_nextn,
921
922
923
924
                )
                if self._fuse_shared_experts_inside_sbo
                else {}
            ),
925
926
927
        )

        if shared_output is not None:
928
            x = shared_output
fzyzcjy's avatar
fzyzcjy committed
929
            if self.experts.should_fuse_routed_scaling_factor_in_topk:
930
931
932
                x.add_(final_hidden_states)
            else:
                x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
933
934
            final_hidden_states = x
        else:
fzyzcjy's avatar
fzyzcjy committed
935
            if not self.experts.should_fuse_routed_scaling_factor_in_topk:
936
                final_hidden_states *= self.routed_scaling_factor
937
938
939

        return final_hidden_states

940
941
942
    def _forward_shared_experts(
        self, hidden_states, gemm_output_zero_allocator: BumpAllocator = None
    ):
943
        if (hidden_states.shape[0] > 0) and (self.num_fused_shared_experts == 0):
944
945
946
            return self.shared_experts(
                hidden_states, gemm_output_zero_allocator=gemm_output_zero_allocator
            )
947
948
949
        else:
            return None

950
    def op_gate(self, state):
951
        if is_non_idle_and_non_empty(
952
            state.forward_batch.forward_mode, state.hidden_states_mlp_input
953
        ):
954
            # router_logits: (num_tokens, n_experts)
955
            state.router_logits = self.gate(state.hidden_states_mlp_input)
956
        else:
957
            state.router_logits = None
958

959
    def op_shared_experts(self, state):
960
        hidden_states_mlp_input = state.pop("hidden_states_mlp_input")
961
        if (self.num_fused_shared_experts == 0) and is_non_idle_and_non_empty(
962
            state.forward_batch.forward_mode, hidden_states_mlp_input
963
        ):
964
            state.shared_output = self.shared_experts(hidden_states_mlp_input)
965
        else:
966
            state.shared_output = None
967

968
    def op_select_experts(self, state):
969
        router_logits = state.pop("router_logits")
970
971
        hidden_states = state.hidden_states_mlp_input

972
        if router_logits is not None:
973
974
975
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
976
                state.topk_output = self.topk(
977
978
979
980
981
982
983
                    hidden_states=hidden_states,
                    router_logits=router_logits,
                    num_token_non_padded=state.forward_batch.num_token_non_padded,
                    expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                        layer_id=self.layer_id,
                    ),
                )
984
        else:
985
            state.topk_output = self.topk.empty_topk_output(hidden_states.device)
986

987
    def op_dispatch_a(self, state):
988
        if self.ep_size > 1:
989
            self.experts.dispatcher.dispatch_a(
990
                hidden_states=state.hidden_states_mlp_input,
991
                topk_output=state.pop("topk_output"),
992
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
993
            )
994

995
    def op_dispatch_b(self, state):
996
997
998
999
        if self.ep_size > 1:
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
1000
                state.dispatch_output = self.experts.dispatcher.dispatch_b(
1001
1002
                    tbo_subbatch_index=state.get("tbo_subbatch_index"),
                )
1003
1004

    def op_experts(self, state):
1005
        state.hidden_states_experts_output = self.experts.run_moe_core(
1006
            dispatch_output=state.dispatch_output,
1007
        )
1008

1009
    def op_combine_a(self, state):
1010
        if self.ep_size > 1:
1011
            self.experts.dispatcher.combine_a(
1012
                hidden_states=state.pop("hidden_states_experts_output"),
1013
                topk_ids=state.dispatch_output.topk_ids,
1014
                topk_weights=state.dispatch_output.topk_weights,
1015
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
1016
            )
1017
            state.pop("dispatch_output")
1018

1019
    def op_combine_b(self, state):
1020
        if self.ep_size > 1:
1021
1022
            state.hidden_states_after_combine = self.experts.dispatcher.combine_b(
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
1023
            )
1024
1025

    def op_output(self, state):
1026
        final_hidden_states = state.pop("hidden_states_after_combine")
1027
1028
1029
1030
1031
1032
1033

        if (shared_output := state.pop("shared_output")) is not None:
            x = shared_output
            x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
            final_hidden_states = x
        else:
            final_hidden_states *= self.routed_scaling_factor
Liangsheng Yin's avatar
Liangsheng Yin committed
1034

1035
        state.hidden_states_mlp_output = final_hidden_states
1036

Liangsheng Yin's avatar
Liangsheng Yin committed
1037
1038
1039
1040
1041
1042
1043
1044
1045

def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
1062
1063
        reduce_results: bool = True,
        layer_id: int = None,
1064
        prefix: str = "",
1065
        alt_stream: Optional[torch.cuda.Stream] = None,
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
1076
1077
1078
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

1079
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
1080
1081
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
1082
1083
1084
1085
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

fzyzcjy's avatar
fzyzcjy committed
1086
1087
1088
1089
        # NOTE modification to rope_scaling must be done early enough, b/c e.g. Indexer needs it
        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

Lianmin Zheng's avatar
Lianmin Zheng committed
1090
1091
        # For tensor parallel attention
        if self.q_lora_rank is not None:
1092
            self.fused_qkv_a_proj_with_mqa = ReplicatedLinear(
Ke Bao's avatar
Ke Bao committed
1093
                self.hidden_size,
1094
                self.q_lora_rank + self.kv_lora_rank + self.qk_rope_head_dim,
1095
1096
                bias=False,
                quant_config=quant_config,
1097
                prefix=add_prefix("fused_qkv_a_proj_with_mqa", prefix),
1098
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1099
1100
1101
1102
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
Ke Bao's avatar
Ke Bao committed
1103
                bias=False,
1104
                quant_config=self._get_q_b_proj_quant_config(quant_config),
Lianmin Zheng's avatar
Lianmin Zheng committed
1105
1106
1107
                prefix=add_prefix("q_b_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Ke Bao's avatar
Ke Bao committed
1108
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1109
1110
        else:
            self.q_proj = ColumnParallelLinear(
1111
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
1112
                self.num_heads * self.qk_head_dim,
1113
1114
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
1115
1116
1117
                prefix=add_prefix("q_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
1118
            )
1119
1120
1121
1122
1123
1124
1125
1126
            self.kv_a_proj_with_mqa = ReplicatedLinear(
                self.hidden_size,
                self.kv_lora_rank + self.qk_rope_head_dim,
                bias=False,
                quant_config=quant_config,
                prefix=add_prefix("kv_a_proj_with_mqa", prefix),
            )

fzyzcjy's avatar
fzyzcjy committed
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
        self.use_nsa = is_deepseek_nsa(config)
        if self.use_nsa:
            self.indexer = Indexer(
                hidden_size=hidden_size,
                index_n_heads=get_nsa_index_n_heads(config),
                index_head_dim=get_nsa_index_head_dim(config),
                rope_head_dim=qk_rope_head_dim,
                index_topk=get_nsa_index_topk(config),
                q_lora_rank=q_lora_rank,
                max_position_embeddings=max_position_embeddings,
                rope_theta=rope_theta,
                scale_fmt="ue8m0",
                block_size=128,
                rope_scaling=rope_scaling,
                prefix=add_prefix("indexer", prefix),
                quant_config=quant_config,
                layer_id=layer_id,
                alt_stream=alt_stream,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("kv_b_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=add_prefix("o_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
1167
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
1168

1169
        self.rotary_emb = get_rope_wrapper(
1170
1171
1172
1173
1174
1175
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
1176
            device=get_global_server_args().device,
1177
1178
1179
1180
1181
1182
1183
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
1184
1185
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
1186

1187
        self.attn_mqa = RadixAttention(
1188
1189
1190
1191
1192
1193
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
1194
            quant_config=quant_config,
1195
            prefix=add_prefix("attn_mqa", prefix),
1196
1197
        )

1198
1199
1200
1201
1202
1203
1204
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
1205
            quant_config=quant_config,
1206
            prefix=add_prefix("attn_mha", prefix),
1207
1208
        )

1209
        self.alt_stream = alt_stream
1210
        self.attn_mha.kv_b_proj = None
1211

Ke Bao's avatar
Ke Bao committed
1212
1213
        self.w_kc = None
        self.w_vc = None
1214
        self.w_scale = 1.0
1215

1216
1217
1218
1219
        self.w_scale_k = None
        self.w_scale_v = None
        self.use_deep_gemm_bmm = False

1220
1221
1222
1223
1224
1225
        self.flashinfer_mla_disable_ragged = (
            get_global_server_args().flashinfer_mla_disable_ragged
        )
        self.disable_chunked_prefix_cache = (
            get_global_server_args().disable_chunked_prefix_cache
        )
1226
1227
1228
1229

        self.current_attention_backend = (
            None  # Attention backend used by current forward batch
        )
1230
1231
1232
        self.rocm_fused_decode_mla = get_bool_env_var(
            "SGLANG_ROCM_FUSED_DECODE_MLA", "false"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1233

1234
        # TODO: Design a finer way to determine the threshold
1235
1236
1237
        self.chunked_prefix_cache_threshold = get_int_env_var(
            "SGL_CHUNKED_PREFIX_CACHE_THRESHOLD", 8192
        )
1238

1239
1240
1241
        # If we have self.fused_qkv_a_proj_with_mqa and we're running on CPU, we will choose the torch.ops.sgl_kernel.qkv_proj_with_rope_fused_weight kernel
        # which requires self.w_kc and self.w_vc to be packed.
        # If not, we will use torch.bmm and weight shouldn't be packed in this case
AniZpZ's avatar
AniZpZ committed
1242
1243
        has_fused_proj = hasattr(self, "fused_qkv_a_proj_with_mqa")
        if has_fused_proj and _is_cpu and _is_cpu_amx_available:
1244
1245
1246
1247
            self.quant_method = PackWeightMethod(
                weight_names=["w_kc", "w_vc"], transpose_dims=[[1, 2], [1, 2]]
            )

1248
        is_packed_weight = (
AniZpZ's avatar
AniZpZ committed
1249
1250
1251
            has_fused_proj
            and hasattr(self.fused_qkv_a_proj_with_mqa.quant_method, "quant_config")
            and self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.get_name()
1252
            in {"awq", "awq_marlin", "moe_wna16"}
1253
        )
1254
        self.use_min_latency_fused_a_gemm = (
AniZpZ's avatar
AniZpZ committed
1255
            has_fused_proj
1256
            and not is_packed_weight
1257
1258
1259
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.bfloat16
            and self.fused_qkv_a_proj_with_mqa.weight.shape[0] == 2112
            and self.fused_qkv_a_proj_with_mqa.weight.shape[1] == 7168
1260
            and _is_cuda
1261
            and _device_sm >= 90
1262
1263
        )

1264
        self.qkv_proj_with_rope_is_int8 = (
AniZpZ's avatar
AniZpZ committed
1265
            has_fused_proj
1266
            and not is_packed_weight
1267
1268
1269
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.int8
        )
        self.qkv_proj_with_rope_is_fp8 = (
AniZpZ's avatar
AniZpZ committed
1270
            has_fused_proj
1271
            and not is_packed_weight
1272
1273
1274
1275
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.float8_e4m3fn
        )

        self.weight_block_size = None
1276
1277
1278
1279
1280
1281
        if self.qkv_proj_with_rope_is_fp8 and _is_cpu and _is_cpu_amx_available:
            assert getattr(
                self.fused_qkv_a_proj_with_mqa.quant_method, "block_quant", False
            ) == getattr(self.q_b_proj.quant_method, "block_quant", False)
            use_block_quant = getattr(
                self.fused_qkv_a_proj_with_mqa.quant_method, "block_quant", False
1282
1283
            )

1284
1285
1286
1287
1288
1289
1290
1291
            if use_block_quant:
                assert (
                    self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.weight_block_size
                    == self.q_b_proj.quant_method.quant_config.weight_block_size
                )
                self.weight_block_size = (
                    self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.weight_block_size
                )
1292
1293
1294
        self.is_mla_preprocess_enabled = is_mla_preprocess_enabled()
        if self.is_mla_preprocess_enabled:
            assert (
fzyzcjy's avatar
fzyzcjy committed
1295
1296
                quant_config is None or quant_config.get_name() == "w8a8_int8"
            ), "MLA Preprocess only works with Unquant or W8A8Int8"
1297
            self.mla_preprocess = None
1298

1299
1300
1301
    def dispatch_attn_forward_method(
        self, forward_batch: ForwardBatch
    ) -> AttnForwardMethod:
1302
1303
        # Determine attention backend used by current forward batch
        if forward_batch.forward_mode.is_decode_or_idle():
1304
            attention_backend = get_global_server_args().decode_attention_backend
1305
1306
1307
1308
1309
        elif (
            forward_batch.forward_mode.is_target_verify()
            or forward_batch.forward_mode.is_draft_extend()
        ):
            # Use the specified backend for speculative operations (both verify and draft extend)
1310
1311
            if get_global_server_args().speculative_attention_mode == "decode":
                attention_backend = get_global_server_args().decode_attention_backend
1312
            else:  # default to prefill
1313
                attention_backend = get_global_server_args().prefill_attention_backend
1314
        else:
1315
            attention_backend = get_global_server_args().prefill_attention_backend
1316
1317
        self.current_attention_backend = attention_backend

fzyzcjy's avatar
fzyzcjy committed
1318
        handler = AttentionBackendRegistry.get_handler(attention_backend)
1319
        return handler(self, forward_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1320

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
    def op_prepare(self, state):
        state.attn_intermediate_state = self.forward_prepare(
            positions=state.positions,
            hidden_states=state.pop("hidden_states_after_comm_pre_attn"),
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
        )

    def op_core(self, state):
        state.hidden_states_after_attn = self.forward_core(
            state.pop("attn_intermediate_state")
        )

1334
1335
1336
1337
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1338
        forward_batch: ForwardBatch,
1339
        zero_allocator: BumpAllocator,
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
    ):
        s = self.forward_prepare(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )
        return self.forward_core(s)

    def forward_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
1356
1357
1358
        if self.attn_mha.kv_b_proj is None:
            self.attn_mha.kv_b_proj = self.kv_b_proj

1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
        # when hidden_states is a tuple of tensors, the tuple will include quantized weight and scale tensor
        if isinstance(hidden_states, tuple):
            if hidden_states[0].shape[0] == 0:
                assert (
                    not self.o_proj.reduce_results
                ), "short-circuiting allreduce will lead to hangs"
                return hidden_states[0]
        else:
            if hidden_states.shape[0] == 0:
                assert (
                    not self.o_proj.reduce_results
                ), "short-circuiting allreduce will lead to hangs"
                return hidden_states, None, forward_batch, None
1372

1373
1374
        attn_forward_method = self.dispatch_attn_forward_method(forward_batch)
        if attn_forward_method == AttnForwardMethod.MHA:
1375
1376
1377
            inner_state = self.forward_normal_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
1378
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
1379
1380
            inner_state = self.forward_normal_chunked_kv_prepare(
                positions, hidden_states, forward_batch, zero_allocator
1381
            )
1382
        elif attn_forward_method == AttnForwardMethod.MLA:
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
            if not self.is_mla_preprocess_enabled:
                inner_state = self.forward_absorb_prepare(
                    positions, hidden_states, forward_batch, zero_allocator
                )
            else:
                # TODO(iforgetmyname): to be separated as a standalone func
                if self.mla_preprocess is None:
                    self.mla_preprocess = NPUFusedMLAPreprocess(
                        self.fused_qkv_a_proj_with_mqa,
                        self.q_a_layernorm,
                        self.kv_a_layernorm,
                        self.q_b_proj,
                        self.w_kc,
                        self.rotary_emb,
                        self.layer_id,
                        self.num_local_heads,
                        self.qk_nope_head_dim,
                        self.qk_rope_head_dim,
                    )
                inner_state = self.mla_preprocess.forward(
                    positions, hidden_states, forward_batch, zero_allocator
                )
1405
                inner_state = (*inner_state, None)  # add a position for topk_indices
fzyzcjy's avatar
fzyzcjy committed
1406
1407
1408
1409
        elif attn_forward_method == AttnForwardMethod.NPU_MLA_SPARSE:
            inner_state = self.forward_npu_sparse_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
1410
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
1411
1412
            inner_state = self.forward_absorb_fused_mla_rope_prepare(
                positions, hidden_states, forward_batch, zero_allocator
1413
            )
1414
1415
1416
1417
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE_CPU:
            inner_state = self.forward_absorb_fused_mla_rope_cpu_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
1418
        else:
1419
            raise NotImplementedError
1420
        return None, attn_forward_method, forward_batch, inner_state
1421

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
    def forward_core(self, intermediate_state):
        hidden_states, attn_forward_method, forward_batch, inner_state = (
            intermediate_state
        )
        if inner_state is None:
            return hidden_states

        if attn_forward_method == AttnForwardMethod.MHA:
            return self.forward_normal_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
            return self.forward_normal_chunked_kv_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA:
            return self.forward_absorb_core(*inner_state)
fzyzcjy's avatar
fzyzcjy committed
1435
1436
        elif attn_forward_method == AttnForwardMethod.NPU_MLA_SPARSE:
            return self.forward_npu_sparse_core(*inner_state)
1437
1438
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
            return self.forward_absorb_fused_mla_rope_core(*inner_state)
1439
1440
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE_CPU:
            return self.forward_absorb_fused_mla_rope_cpu_core(*inner_state)
1441
1442
1443
1444
        else:
            raise NotImplementedError

    def forward_normal_prepare(
1445
1446
1447
1448
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1449
1450
        zero_allocator: BumpAllocator,
    ):
1451
        if self.q_lora_rank is not None:
1452
1453
1454
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1455
1456
1457
1458
1459
1460
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1461
1462
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]

1463
1464
1465
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
1466
        kv_a = self.kv_a_layernorm(kv_a)
1467
1468
1469
1470
1471
1472
1473
1474
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486

        # Temporary for DeepSeek V3/R1 only, but can generalize if needed
        if (
            _is_cuda
            and (self.num_local_heads == 128)
            and (self.qk_nope_head_dim == 128)
            and (self.qk_rope_head_dim == 64)
        ):
            concat_mla_k(k=k, k_nope=k_nope, k_rope=k_pe)
        else:
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe
1487

1488
1489
1490
        if not _is_npu:
            latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
            latent_cache[:, :, self.kv_lora_rank :] = k_pe
1491

1492
1493
1494
1495
1496
1497
1498
1499
1500
            # Save latent cache
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
            )
        else:
            # To reduce a time-costing split operation
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mha, forward_batch.out_cache_loc, kv_a.unsqueeze(1), k_pe
            )
1501
1502
1503
1504

        return q, k, v, forward_batch

    def forward_normal_core(self, q, k, v, forward_batch):
1505
1506
1507
1508
1509
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

Faraz's avatar
Faraz committed
1510
1511
1512
1513
1514
1515
    def _fuse_rope_for_trtllm_mla(self, forward_batch: ForwardBatch) -> bool:
        """
        Check if we should skip rope and do fused rope+quantize for TRTLLM MLA decode in fp8_e4m3 path.
        """
        return (
            self.current_attention_backend == "trtllm_mla"
1516
1517
1518
1519
            and (
                forward_batch.forward_mode.is_decode_or_idle()
                or forward_batch.forward_mode.is_target_verify()
            )
Faraz's avatar
Faraz committed
1520
1521
1522
            and forward_batch.attn_backend.data_type == torch.float8_e4m3fn
        )

1523
    def forward_absorb_prepare(
1524
1525
1526
1527
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1528
        zero_allocator: BumpAllocator,
1529
    ):
1530
        from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode
1531

fzyzcjy's avatar
fzyzcjy committed
1532
        q_lora = None
1533
        if self.q_lora_rank is not None:
1534
1535
1536
1537
1538
            if (
                (not isinstance(hidden_states, tuple))
                and hidden_states.shape[0] <= 16
                and self.use_min_latency_fused_a_gemm
            ):
1539
1540
1541
1542
1543
1544
                fused_qkv_a_proj_out = dsv3_fused_a_gemm(
                    hidden_states, self.fused_qkv_a_proj_with_mqa.weight.T
                )
            else:
                fused_qkv_a_proj_out = self.fused_qkv_a_proj_with_mqa(hidden_states)[0]
            q, latent_cache = fused_qkv_a_proj_out.split(
1545
1546
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1547
1548
1549
            k_nope = latent_cache[..., : self.kv_lora_rank]

            # overlap qk norm
1550
            if self.alt_stream is not None and get_is_capture_mode():
1551
1552
1553
1554
1555
1556
1557
                current_stream = torch.cuda.current_stream()
                self.alt_stream.wait_stream(current_stream)
                q = self.q_a_layernorm(q)
                with torch.cuda.stream(self.alt_stream):
                    k_nope = self.kv_a_layernorm(k_nope)
                current_stream.wait_stream(self.alt_stream)
            else:
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
                if _use_aiter_gfx95 and self.q_b_proj.weight.dtype == torch.uint8:
                    q, k_nope = fused_rms_mxfp4_quant(
                        q,
                        self.q_a_layernorm.weight,
                        self.q_a_layernorm.variance_epsilon,
                        k_nope,
                        self.kv_a_layernorm.weight,
                        self.kv_a_layernorm.variance_epsilon,
                    )
                else:
                    q = self.q_a_layernorm(q)
                    k_nope = self.kv_a_layernorm(k_nope)
1570

fzyzcjy's avatar
fzyzcjy committed
1571
1572
1573
1574
            # q_lora needed by indexer
            if self.use_nsa:
                q_lora = q

1575
            k_nope = k_nope.unsqueeze(1)
1576
1577
1578
1579
1580
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1581
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1582
1583
1584
            k_nope = latent_cache[..., : self.kv_lora_rank]
            k_nope = self.kv_a_layernorm(k_nope).unsqueeze(1)

1585
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
1586
        k_pe = latent_cache[..., self.kv_lora_rank :].unsqueeze(1)
1587

1588
1589
        if self.use_deep_gemm_bmm:
            q_nope_val, q_nope_scale, masked_m, expected_m, aligned_m = (
1590
                per_token_group_quant_mla_deep_gemm_masked_fp8(q_nope.transpose(0, 1))
1591
1592
1593
1594
            )
            q_nope_out = q_nope.new_empty(
                (self.num_local_heads, aligned_m, self.kv_lora_rank)
            )
1595
            deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
1596
1597
1598
1599
1600
1601
1602
                (q_nope_val, q_nope_scale),
                (self.w_kc, self.w_scale_k),
                q_nope_out,
                masked_m,
                expected_m,
            )
            q_nope_out = q_nope_out[:, :expected_m, :]
1603
1604
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
            if _use_aiter_gfx95 and self.w_kc.dtype == torch.uint8:
                x = q_nope.transpose(0, 1)
                q_nope_out = torch.empty(
                    x.shape[0],
                    x.shape[1],
                    self.w_kc.shape[2],
                    device=x.device,
                    dtype=torch.bfloat16,
                )
                batched_gemm_afp4wfp4_pre_quant(
                    x,
                    self.w_kc.transpose(-2, -1),
                    self.w_scale_k.transpose(-2, -1),
                    torch.bfloat16,
                    q_nope_out,
                )
1621
1622
1623
1624
1625
1626
1627
            else:  # TODO: 手写融合算子
                _q_nope_safe = q_nope.to(torch.bfloat16).transpose(0, 1)
                _w_kc_safe = self.w_kc.to(torch.bfloat16)
                if abs(self.w_scale - 1) < 1e-6:
                    q_nope_out = torch.bmm(_q_nope_safe, _w_kc_safe)
                else:
                    q_nope_out = torch.bmm(_q_nope_safe, _w_kc_safe * self.w_scale,
1628
                )
1629
1630
1631
1632
                # q_nope_out = torch.bmm(
                #     q_nope.to(torch.bfloat16).transpose(0, 1),
                #     self.w_kc.to(torch.bfloat16) * self.w_scale,
                # )
1633
        elif self.w_kc.dtype == torch.float8_e4m3fn:
1634
1635
1636
1637
1638
1639
1640
1641
1642
            # fix bmm_fp8 error under cublas12.9 caused by bumpallocator, detail in pr#11612
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
                q_nope.transpose(0, 1),
                (
                    torch.zeros((1,), dtype=torch.float32, device=q_nope.device)
                    if _is_cublas_ge_129
                    else zero_allocator.allocate(1)
                ),
            )
1643
1644
1645
1646
1647
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
1648
1649

        q_nope_out = q_nope_out.transpose(0, 1)
Faraz's avatar
Faraz committed
1650

1651
        if not self._fuse_rope_for_trtllm_mla(forward_batch) and (
fzyzcjy's avatar
fzyzcjy committed
1652
            not _use_aiter or not _is_gfx95_supported or self.use_nsa
1653
        ):
Faraz's avatar
Faraz committed
1654
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
1655

fzyzcjy's avatar
fzyzcjy committed
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
        topk_indices = None
        if q_lora is not None:
            topk_indices = self.indexer(
                x=hidden_states,
                q_lora=q_lora,
                positions=positions,
                forward_batch=forward_batch,
                layer_id=self.layer_id,
            )

        return (
            q_pe,
            k_pe,
            q_nope_out,
            k_nope,
            forward_batch,
            zero_allocator,
            positions,
            topk_indices,
        )
1676
1677

    def forward_absorb_core(
fzyzcjy's avatar
fzyzcjy committed
1678
1679
1680
1681
1682
1683
1684
1685
1686
        self,
        q_pe,
        k_pe,
        q_nope_out,
        k_nope,
        forward_batch,
        zero_allocator,
        positions,
        topk_indices,
1687
    ):
1688
        if self.current_attention_backend in FORWARD_ABSORB_CORE_ATTENTION_BACKENDS:
Faraz's avatar
Faraz committed
1689
1690
1691
1692
1693
1694
            extra_args = {}
            if self._fuse_rope_for_trtllm_mla(forward_batch):
                extra_args = {
                    "cos_sin_cache": self.rotary_emb.cos_sin_cache,
                    "is_neox": self.rotary_emb.is_neox_style,
                }
fzyzcjy's avatar
fzyzcjy committed
1695

1696
            attn_output = self.attn_mqa(
Faraz's avatar
Faraz committed
1697
1698
1699
1700
1701
1702
1703
                q_nope_out,
                k_nope,
                k_nope,
                forward_batch,
                q_rope=q_pe,
                k_rope=k_pe,
                **extra_args,
fzyzcjy's avatar
fzyzcjy committed
1704
                **(dict(topk_indices=topk_indices) if topk_indices is not None else {}),
1705
1706
            )
        else:
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
            if _use_aiter_gfx95:
                cos = self.rotary_emb.cos_cache
                sin = self.rotary_emb.sin_cache
                q, k = fused_qk_rope_cat(
                    q_nope_out,
                    q_pe,
                    k_nope,
                    k_pe,
                    positions,
                    cos,
                    sin,
                    self.rotary_emb.is_neox_style,
                )
            else:
maxiao1's avatar
maxiao1 committed
1721
1722
1723
1724
                if _use_opt_cat_decode and q_nope_out.shape[0] < 1024:
                    q = concat_decode_opt(q_nope_out, q_pe, dim=2)
                else:
                    q = torch.cat([q_nope_out, q_pe], dim=-1)
1725
1726
                k = torch.cat([k_nope, k_pe], dim=-1)

fzyzcjy's avatar
fzyzcjy committed
1727
1728
1729
1730
1731
1732
1733
            attn_output = self.attn_mqa(
                q,
                k,
                k_nope,
                forward_batch,
                **(dict(topk_indices=topk_indices) if topk_indices is not None else {}),
            )
1734
1735
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1736
1737
        if self.use_deep_gemm_bmm:
            attn_output_val, attn_output_scale, masked_m, expected_m, aligned_m = (
1738
1739
                per_token_group_quant_mla_deep_gemm_masked_fp8(
                    attn_output.transpose(0, 1)
1740
1741
1742
1743
1744
                )
            )
            attn_bmm_output = attn_output.new_empty(
                (self.num_local_heads, aligned_m, self.v_head_dim)
            )
1745
            deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
1746
1747
1748
1749
1750
1751
                (attn_output_val, attn_output_scale),
                (self.w_vc, self.w_scale_v),
                attn_bmm_output,
                masked_m,
                expected_m,
            )
Ke Bao's avatar
Ke Bao committed
1752
1753
1754
            attn_bmm_output = (
                attn_bmm_output[:, :expected_m, :].transpose(0, 1).flatten(1, 2)
            )
1755
1756
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
            if _use_aiter_gfx95 and self.w_vc.dtype == torch.uint8:
                x = attn_output.transpose(0, 1)
                attn_bmm_output = torch.empty(
                    x.shape[0],
                    x.shape[1],
                    self.w_vc.shape[2],
                    device=x.device,
                    dtype=torch.bfloat16,
                )
                batched_gemm_afp4wfp4_pre_quant(
                    x,
                    self.w_vc.transpose(-2, -1),
                    self.w_scale_v.transpose(-2, -1),
                    torch.bfloat16,
                    attn_bmm_output,
                )
1773
1774
1775
1776
1777
1778
1779
            else:  # TODO: 手写融合算子
                _attn_output_safe = attn_output.to(torch.bfloat16).transpose(0, 1)
                _w_vc_safe = self.w_vc.to(torch.bfloat16)
                if abs(self.w_scale - 1) < 1e-6:
                    attn_bmm_output = torch.bmm(_attn_output_safe, _w_vc_safe)
                else:
                    attn_bmm_output = torch.bmm(_attn_output_safe, _w_vc_safe * self.w_scale,
1780
                )
1781
1782
1783
1784
                # attn_bmm_output = torch.bmm(
                #     attn_output.to(torch.bfloat16).transpose(0, 1),
                #     self.w_vc.to(torch.bfloat16) * self.w_scale,
                # )
1785
1786
1787
1788
1789
1790
1791

            if self.o_proj.weight.dtype == torch.uint8:
                attn_bmm_output = attn_bmm_output.transpose(0, 1)
                attn_bmm_output = fused_flatten_mxfp4_quant(attn_bmm_output)
            else:
                attn_bmm_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)

1792
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1793
1794
1795
1796
1797
1798
1799
1800
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
                attn_output.transpose(0, 1),
                (
                    torch.zeros((1,), dtype=torch.float32, device=attn_output.device)
                    if _is_cublas_ge_129
                    else zero_allocator.allocate(1)
                ),
            )
1801
1802
1803
1804
1805
1806
1807
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
Ke Bao's avatar
Ke Bao committed
1808
            attn_bmm_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1809
        else:
Ke Bao's avatar
Ke Bao committed
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
            attn_bmm_output = torch.empty(
                (attn_output.shape[0], self.num_local_heads * self.v_head_dim),
                dtype=attn_output.dtype,
                device=attn_output.device,
            )
            torch.bmm(
                attn_output.transpose(0, 1),
                self.w_vc,
                out=attn_bmm_output.view(
                    -1, self.num_local_heads, self.v_head_dim
                ).transpose(0, 1),
            )
        output, _ = self.o_proj(attn_bmm_output)
1823
1824
1825

        return output

fzyzcjy's avatar
fzyzcjy committed
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
    def forward_npu_sparse_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
        """
        Reuse `self.q_lora_rank is not None` branch from forward_absorb_prepare
        """
        if self.is_mla_preprocess_enabled and forward_batch.forward_mode.is_decode():
            if self.mla_preprocess is None:
                self.mla_preprocess = NPUFusedMLAPreprocess(
                    self.fused_qkv_a_proj_with_mqa,
                    self.q_a_layernorm,
                    self.kv_a_layernorm,
                    self.q_b_proj,
                    self.w_kc,
                    self.rotary_emb,
                    self.layer_id,
                    self.num_local_heads,
                    self.qk_nope_head_dim,
                    self.qk_rope_head_dim,
                )
            (
                q_pe,
                k_pe,
                q_nope_out,
                k_nope,
                forward_batch,
                zero_allocator,
                positions,
            ) = self.mla_preprocess.forward(
                positions, hidden_states, forward_batch, zero_allocator
            )

            fused_qkv_a_proj_out = self.fused_qkv_a_proj_with_mqa(hidden_states)[0]
            q, _ = fused_qkv_a_proj_out.split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
            q_lora = self.q_a_layernorm(q)
        else:
            from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode

            if (
                (not isinstance(hidden_states, tuple))
                and hidden_states.shape[0] <= 16
                and self.use_min_latency_fused_a_gemm
            ):
                fused_qkv_a_proj_out = dsv3_fused_a_gemm(
                    hidden_states, self.fused_qkv_a_proj_with_mqa.weight.T
                )
            else:
                fused_qkv_a_proj_out = self.fused_qkv_a_proj_with_mqa(hidden_states)[0]
            q, latent_cache = fused_qkv_a_proj_out.split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
            k_nope = latent_cache[..., : self.kv_lora_rank]

            # overlap qk norm
            if self.alt_stream is not None and get_is_capture_mode():
                current_stream = torch.cuda.current_stream()
                self.alt_stream.wait_stream(current_stream)
                q = self.q_a_layernorm(q)
                with torch.cuda.stream(self.alt_stream):
                    k_nope = self.kv_a_layernorm(k_nope)
                current_stream.wait_stream(self.alt_stream)
            else:
                if _use_aiter_gfx95 and self.q_b_proj.weight.dtype == torch.uint8:
                    q, k_nope = fused_rms_mxfp4_quant(
                        q,
                        self.q_a_layernorm.weight,
                        self.q_a_layernorm.variance_epsilon,
                        k_nope,
                        self.kv_a_layernorm.weight,
                        self.kv_a_layernorm.variance_epsilon,
                    )
                else:
                    q = self.q_a_layernorm(q)
                    k_nope = self.kv_a_layernorm(k_nope)

            q_lora = q.clone()  # required for topk_indices
            k_nope = k_nope.unsqueeze(1)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)

            q_nope, q_pe = q.split(
                [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
            )
            k_pe = latent_cache[..., self.kv_lora_rank :].unsqueeze(1)

            if self.use_deep_gemm_bmm:
                q_nope_val, q_nope_scale, masked_m, expected_m, aligned_m = (
                    per_token_group_quant_mla_deep_gemm_masked_fp8(
                        q_nope.transpose(0, 1)
                    )
                )
                q_nope_out = q_nope.new_empty(
                    (self.num_local_heads, aligned_m, self.kv_lora_rank)
                )
                deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
                    (q_nope_val, q_nope_scale),
                    (self.w_kc, self.w_scale_k),
                    q_nope_out,
                    masked_m,
                    expected_m,
                )
                q_nope_out = q_nope_out[:, :expected_m, :]
            elif _is_hip:
                # TODO(haishaw): add bmm_fp8 to ROCm
                if _use_aiter_gfx95 and self.w_kc.dtype == torch.uint8:
                    x = q_nope.transpose(0, 1)
                    q_nope_out = torch.empty(
                        x.shape[0],
                        x.shape[1],
                        self.w_kc.shape[2],
                        device=x.device,
                        dtype=torch.bfloat16,
                    )
                    batched_gemm_afp4wfp4_pre_quant(
                        x,
                        self.w_kc.transpose(-2, -1),
                        self.w_scale_k.transpose(-2, -1),
                        torch.bfloat16,
                        q_nope_out,
                    )
                else:
                    q_nope_out = torch.bmm(
                        q_nope.to(torch.bfloat16).transpose(0, 1),
                        self.w_kc.to(torch.bfloat16) * self.w_scale,
                    )
            elif self.w_kc.dtype == torch.float8_e4m3fn:
                q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
                    q_nope.transpose(0, 1),
                    zero_allocator.allocate(1),
                )
                q_nope_out = bmm_fp8(
                    q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
                )
            else:
                q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)

            q_nope_out = q_nope_out.transpose(0, 1)

            if not self._fuse_rope_for_trtllm_mla(forward_batch) and (
                not _use_aiter or not _is_gfx95_supported
            ):
                q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)

        # TODO: multi-stream indexer
        topk_indices = self.indexer(
            hidden_states, q_lora, positions, forward_batch, self.layer_id
        )

        return (
            q_pe,
            k_pe,
            q_nope_out,
            k_nope,
            topk_indices,
            forward_batch,
            zero_allocator,
            positions,
        )

    def forward_npu_sparse_core(
        self,
        q_pe,
        k_pe,
        q_nope_out,
        k_nope,
        topk_indices,
        forward_batch,
        zero_allocator,
        positions,
    ):
        attn_output = self.attn_mqa(
            q_nope_out.contiguous(),
            k_nope.contiguous(),
            k_nope.contiguous(),
            forward_batch,
            save_kv_cache=True,  # False if forward_batch.forward_mode.is_extend() else True,
            q_rope=q_pe.contiguous(),
            k_rope=k_pe.contiguous(),
            topk_indices=topk_indices,
        )
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

        attn_bmm_output = torch.empty(
            (attn_output.shape[0], self.num_local_heads, self.v_head_dim),
            dtype=attn_output.dtype,
            device=attn_output.device,
        )

        if not forward_batch.forward_mode.is_decode():
            attn_output = attn_output.transpose(0, 1)
            torch.bmm(
                attn_output,
                self.w_vc,
                out=attn_bmm_output.view(
                    -1, self.num_local_heads, self.v_head_dim
                ).transpose(0, 1),
            )
        else:
            attn_output = attn_output.contiguous()
            torch.ops.npu.batch_matmul_transpose(
                attn_output, self.w_vc, attn_bmm_output
            )

        attn_bmm_output = attn_bmm_output.reshape(
            -1, self.num_local_heads * self.v_head_dim
        )

        output, _ = self.o_proj(attn_bmm_output)
        return output

2041
    def forward_absorb_fused_mla_rope_prepare(
2042
2043
2044
2045
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
2046
        zero_allocator: BumpAllocator,
2047
    ):
2048
2049
2050
2051
2052
2053
2054
2055
        enable_rope_fusion = (
            os.getenv("SGLANG_FUSED_MLA_ENABLE_ROPE_FUSION", "1") == "1"
        )
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
2056
2057
2058
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
2059
2060
2061
2062
2063
2064
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
2065
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
2066
2067
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

2068
2069
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
2070
2071
2072
2073
2074
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
2075
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
2076
2077
2078
                q_nope.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
        k_input[..., : self.kv_lora_rank] = v_input

        if not enable_rope_fusion:
            k_pe = k_input[..., self.kv_lora_rank :]
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
            q_input[..., self.kv_lora_rank :] = q_pe
            k_input[..., self.kv_lora_rank :] = k_pe
            k_pe_output = None
        else:
            k_pe_output = torch.empty_like(k_input[..., self.kv_lora_rank :])

        q_input[..., self.kv_lora_rank :] = q_pe

        # attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        # Use Fused ROPE with use_rope=OFF.
        attn_output = torch.empty(
            (q_len, self.num_local_heads, self.kv_lora_rank),
            dtype=q.dtype,
            device=q.device,
        )
        attn_logits, _, kv_indptr, kv_indices, _, _, _ = (
            forward_batch.attn_backend.forward_metadata
        )
        cos_sin_cache = self.rotary_emb.cos_sin_cache
        num_kv_split = forward_batch.attn_backend.num_kv_splits
        sm_scale = self.attn_mqa.scaling
        if attn_logits is None:
            attn_logits = torch.empty(
                (
                    forward_batch.batch_size,
                    self.num_local_heads,
                    num_kv_split,
                    self.kv_lora_rank + 1,
                ),
                dtype=torch.float32,
                device=q.device,
            )

        # save current latent cache.
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mqa, forward_batch.out_cache_loc, k_input, None
        )
        key_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
            self.attn_mqa.layer_id
        )
        val_cache_buf = key_cache_buf[..., : self.kv_lora_rank]

2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
        return (
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            enable_rope_fusion,
            k_input,
            forward_batch,
            zero_allocator,
        )

2155
2156
2157
2158
2159
2160
2161
    def forward_absorb_fused_mla_rope_cpu_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
2162
2163
        assert self.q_lora_rank is not None and use_intel_amx_backend(
            self
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
        ), "forward_absorb_fused_mla_rope_cpu_prepare requires q_lora_rank is not None and use_intel_amx_backend"

        q_input, k_input, v_input = (
            torch.ops.sgl_kernel.qkv_proj_with_rope_fused_weight(
                hidden_states,
                self.fused_qkv_a_proj_with_mqa.weight,
                self.q_b_proj.weight,
                self.w_kc,
                self.q_a_layernorm.weight,
                self.kv_a_layernorm.weight,
                positions,
                self.rotary_emb.cos_sin_cache,
                self.kv_a_layernorm.variance_epsilon,
                self.qkv_proj_with_rope_is_int8,
                self.qkv_proj_with_rope_is_fp8,
                (
                    self.fused_qkv_a_proj_with_mqa.weight_scale
                    if self.qkv_proj_with_rope_is_int8
                    else (
                        self.fused_qkv_a_proj_with_mqa.weight_scale_inv
                        if self.qkv_proj_with_rope_is_fp8
                        else None
                    )
                ),
                (
                    self.q_b_proj.weight_scale
                    if self.qkv_proj_with_rope_is_int8
                    else (
                        self.q_b_proj.weight_scale_inv
                        if self.qkv_proj_with_rope_is_fp8
                        else None
                    )
                ),
                True,  # is_vnni
                self.weight_block_size,
                self.q_lora_rank,
                self.kv_lora_rank,
                self.qk_rope_head_dim,
            )
        )
        return (q_input, k_input, v_input, forward_batch, zero_allocator)

2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
    def forward_absorb_fused_mla_rope_core(
        self,
        q_input,
        key_cache_buf,
        val_cache_buf,
        attn_output,
        kv_indptr,
        kv_indices,
        k_pe_output,
        cos_sin_cache,
        positions,
        attn_logits,
        num_kv_split,
        sm_scale,
        enable_rope_fusion,
        k_input,
        forward_batch,
        zero_allocator,
    ):
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
        decode_attention_fwd_grouped_rope(
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            self.kv_lora_rank,
            self.rotary_emb.rotary_dim,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            logit_cap=self.attn_mqa.logit_cap,
            use_rope=enable_rope_fusion,
            is_neox_style=self.rotary_emb.is_neox_style,
        )

        if enable_rope_fusion:
            k_input[..., self.kv_lora_rank :] = k_pe_output
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mqa, forward_batch.out_cache_loc, k_input, None
            )

        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

2253
2254
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
2255
2256
2257
2258
2259
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
2260
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
2261
2262
2263
                attn_output.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
2275
2276
2277
2278
        output, _ = self.o_proj(attn_output)

        return output

2279
2280
2281
    def forward_absorb_fused_mla_rope_cpu_core(
        self, q_input, k_input, v_input, forward_batch, zero_allocator
    ):
2282
2283
        assert self.q_lora_rank is not None and use_intel_amx_backend(
            self
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
        ), "forward_absorb_fused_mla_rope_cpu_core requires q_lora_rank is not None and use_intel_amx_backend"

        attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

        # [Note] Align shapes of bmm inputs.
        # Shapes of inputs:
        #   q_nope: [M, B, K]
        #   original self.w_kc: [B, K, N]
        #   current self.w_kc (which has been converted in PackWeightMethod): [B, N, K]

        # Shapes of inputs to sgl_kernel.cpu.bmm:
        #   out: [B, M, N]
        #   mat1: [B, M, K]
        #   mat2: [B, N, K]
        B = self.w_vc.size(0)
        N = self.w_vc.size(1)
        M = attn_output.size(0)
        output = torch.empty([M, int(B * N)], dtype=attn_output.dtype)
        attn_bmm_output = output.view([M, B, N]).transpose_(0, 1)
        torch.ops.sgl_kernel.bmm_cpu(
            attn_bmm_output,
            attn_output.transpose(0, 1),
            self.w_vc,
            True,  # is_vnni
            None,  # scale
        )
        attn_output = output
        output, _ = self.o_proj(attn_output)

        return output

2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
    def _chunked_prefix_attn_mha(
        self,
        q: torch.Tensor,
        accum_output: torch.Tensor,
        accum_lse: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:

        assert forward_batch.num_prefix_chunks is not None
        for i in range(forward_batch.num_prefix_chunks):
            forward_batch.set_prefix_chunk_idx(i)

            # Fetch latent cache from memory pool with precomputed chunked kv indices
2329
            latent_cache_buf, dtype = forward_batch.token_to_kv_pool.get_key_buffer_DeepSeekV2(
2330
                self.attn_mha.layer_id
2331
            )
2332
2333
2334
            latent_cache = (
                latent_cache_buf[forward_batch.prefix_chunk_kv_indices[i]]
                .contiguous()
2335
                .view(dtype)
2336
2337
                .to(q.dtype)
            )
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366

            kv_a_normed, k_pe = latent_cache.split(
                [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
            )
            kv_a_normed = kv_a_normed.squeeze(1).contiguous()
            kv = self.kv_b_proj(kv_a_normed)[0]
            kv = kv.view(
                -1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim
            )
            v = kv[..., self.qk_nope_head_dim :]
            k_nope = kv[..., : self.qk_nope_head_dim]

            k = torch.empty(
                (
                    k_nope.shape[0],
                    self.num_local_heads,
                    self.qk_nope_head_dim + self.qk_rope_head_dim,
                ),
                dtype=v.dtype,
                device=v.device,
            )
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe

            output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
            tmp_output = torch.empty_like(accum_output)
            tmp_lse = torch.empty_like(accum_lse)
            merge_state_v2(output, lse, accum_output, accum_lse, tmp_output, tmp_lse)
            accum_output, accum_lse = tmp_output, tmp_lse
2367
            del kv, k, v, output, lse, tmp_output, tmp_lse
2368
2369
2370

        return accum_output

2371
    def forward_normal_chunked_kv_prepare(
2372
2373
2374
2375
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
2376
2377
        zero_allocator: BumpAllocator,
    ):
2378
2379
2380
2381
2382
2383
2384
        # In normal mha, the k and v tensors will become overly large when the prefix length is long.
        # To avoid this, we split the kv cache into chunks and process them one after another.
        # Since mha is compute friendly, the for loop induced here will not introduce significant overhead.
        # The top comments in https://github.com/vllm-project/vllm/blob/main/vllm/v1/attention/backends/mla/common.py
        # will be helpful for understanding the purpose of this function.

        # First do normal mha forward to get output for extended part
2385
2386
        return self.forward_normal_prepare(
            positions, hidden_states, forward_batch, zero_allocator
2387
2388
        )

2389
    def forward_normal_chunked_kv_core(self, q, k, v, forward_batch):
2390
2391
2392
2393
2394
2395
2396
2397
        has_extend_prefix = any(forward_batch.extend_prefix_lens_cpu)
        # Only initialize the info once
        if has_extend_prefix and forward_batch.num_prefix_chunks is None:
            forward_batch.prepare_chunked_prefix_cache_info(q.device)
            if hasattr(forward_batch.attn_backend, "init_mha_chunk_metadata"):
                forward_batch.attn_backend.init_mha_chunk_metadata(forward_batch)

        forward_batch.mha_return_lse = has_extend_prefix
2398
2399
        # Do mha for extended part without prefix
        forward_batch.set_attn_attend_prefix_cache(False)
2400
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
2401
2402

        # Do mha attention with chunked prefix cache if there are any sequence with prefix
2403
2404
        if has_extend_prefix:
            attn_output, lse = attn_output
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
            forward_batch.set_attn_attend_prefix_cache(True)
            attn_output = self._chunked_prefix_attn_mha(
                q=q,
                accum_output=attn_output,
                accum_lse=lse,
                forward_batch=forward_batch,
            )

        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
    @staticmethod
    def _get_q_b_proj_quant_config(quant_config):
        if get_bool_env_var("SGLANG_NVFP4_CKPT_FP8_GEMM_IN_ATTN"):
            # refer to real DeepSeek V3 quant config
            return Fp8Config(
                is_checkpoint_fp8_serialized=True,
                weight_block_size=[128, 128],
            )
        else:
            return quant_config

2428

Liangsheng Yin's avatar
Liangsheng Yin committed
2429
2430
2431
2432
2433
2434
2435
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
2436
        moe_quant_config: Optional[QuantizationConfig] = None,
2437
        is_nextn: bool = False,
2438
        prefix: str = "",
2439
        alt_stream: Optional[torch.cuda.Stream] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
2440
2441
2442
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
2443
        self.config = config
Liangsheng Yin's avatar
Liangsheng Yin committed
2444
2445
2446
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
2447
2448
2449
        self.speculative_algorithm = SpeculativeAlgorithm.from_string(
            get_global_server_args().speculative_algorithm
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2450
        self.layer_id = layer_id
2451
        self.is_nextn = is_nextn
Baizhou Zhang's avatar
Baizhou Zhang committed
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
        self.self_attn = DeepseekV2AttentionMLA(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=(
                config.q_lora_rank if hasattr(config, "q_lora_rank") else None
            ),
            kv_lora_rank=config.kv_lora_rank,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            layer_id=layer_id,
            reduce_results=False,
            prefix=add_prefix("self_attn", prefix),
2470
            alt_stream=alt_stream,
Baizhou Zhang's avatar
Baizhou Zhang committed
2471
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2472

2473
2474
2475
2476
2477
        self.is_layer_sparse = self._is_layer_sparse(layer_id, is_nextn=is_nextn)
        is_previous_layer_sparse = self._is_layer_sparse(layer_id - 1, is_nextn=False)

        self.layer_scatter_modes = LayerScatterModes.init_new(
            layer_id=layer_id,
2478
            num_layers=1 if is_nextn else config.num_hidden_layers,
2479
2480
            is_layer_sparse=self.is_layer_sparse,
            is_previous_layer_sparse=is_previous_layer_sparse,
2481
2482
        )

2483
        if self.is_layer_sparse:
2484
2485
            self.mlp = DeepseekV2MoE(
                config=config,
2486
                quant_config=moe_quant_config or quant_config,
2487
                prefix=add_prefix("mlp", prefix),
fzyzcjy's avatar
fzyzcjy committed
2488
                layer_id=self.layer_id,
2489
                alt_stream=alt_stream,
2490
                is_nextn=is_nextn,
2491
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
2492
        else:
2493
            if enable_moe_dense_fully_dp():
2494
2495
2496
                mlp_tp_rank, mlp_tp_size = 0, 1
            else:
                mlp_tp_rank, mlp_tp_size = None, None
Liangsheng Yin's avatar
Liangsheng Yin committed
2497
2498
2499
2500
2501
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
2502
                prefix=add_prefix("mlp", prefix),
2503
2504
                tp_rank=mlp_tp_rank,
                tp_size=mlp_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
2505
            )
2506

Liangsheng Yin's avatar
Liangsheng Yin committed
2507
2508
2509
2510
2511
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

2512
2513
2514
2515
        self.layer_communicator = LayerCommunicator(
            layer_scatter_modes=self.layer_scatter_modes,
            input_layernorm=self.input_layernorm,
            post_attention_layernorm=self.post_attention_layernorm,
2516
            allow_reduce_scatter=True,
2517
2518
2519
            is_last_layer=(
                is_nextn or (self.layer_id == self.config.num_hidden_layers - 1)
            ),
2520
        )
2521
2522
2523
2524
2525
2526

    def _is_layer_sparse(self, layer_id: int, is_nextn: bool) -> bool:
        return is_nextn or (
            self.config.n_routed_experts is not None
            and layer_id >= self.config.first_k_dense_replace
            and layer_id % self.config.moe_layer_freq == 0
2527
2528
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
2529
2530
2531
2532
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
2533
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
2534
        residual: Optional[torch.Tensor],
2535
        zero_allocator: BumpAllocator,
2536
        gemm_output_zero_allocator: BumpAllocator = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
2537
    ) -> torch.Tensor:
2538
2539
2540
        quant_format = (
            "mxfp4"
            if _is_gfx95_supported
2541
2542
2543
2544
            and getattr(self.self_attn, "fused_qkv_a_proj_with_mqa", None) is not None
            and getattr(self.self_attn.fused_qkv_a_proj_with_mqa, "weight", None)
            is not None
            and self.self_attn.fused_qkv_a_proj_with_mqa.weight.dtype == torch.uint8
2545
2546
2547
            else ""
        )

2548
        hidden_states, residual = self.layer_communicator.prepare_attn(
2549
2550
2551
2552
            hidden_states,
            residual,
            forward_batch,
            quant_format,
2553
2554
        )

2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )

        hidden_states, residual = self.layer_communicator.prepare_mlp(
            hidden_states, residual, forward_batch
        )

2566
        should_allreduce_fusion = (
2567
2568
            self.layer_communicator.should_fuse_mlp_allreduce_with_next_layer(
                forward_batch
2569
            )
2570
2571
        )

2572
2573
2574
2575
        # For DP with padding, reduce scatter can be used instead of all-reduce.
        use_reduce_scatter = self.layer_communicator.should_use_reduce_scatter(
            forward_batch
        )
2576
2577
2578
2579

        if isinstance(self.mlp, DeepseekV2MLP):
            gemm_output_zero_allocator = None

2580
        hidden_states = self.mlp(
2581
2582
2583
2584
2585
            hidden_states,
            forward_batch,
            should_allreduce_fusion,
            use_reduce_scatter,
            gemm_output_zero_allocator,
2586
        )
2587

2588
        if should_allreduce_fusion:
2589
2590
            hidden_states._sglang_needs_allreduce_fusion = True

2591
        if not should_allreduce_fusion:
2592
2593
2594
2595
            hidden_states, residual = self.layer_communicator.postprocess_layer(
                hidden_states, residual, forward_batch
            )

2596
2597
        return hidden_states, residual

2598
2599
2600
2601
2602
2603
2604
2605
    def op_comm_prepare_attn(
        self,
        state,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
        zero_allocator: BumpAllocator,
2606
        tbo_subbatch_index: Optional[int] = None,
2607
2608
    ):
        state.hidden_states_after_comm_pre_attn, state.residual_after_input_ln = (
fzyzcjy's avatar
fzyzcjy committed
2609
            self.layer_communicator.prepare_attn(hidden_states, residual, forward_batch)
2610
2611
2612
2613
2614
2615
        )
        state.update(
            dict(
                forward_batch=forward_batch,
                positions=positions,
                zero_allocator=zero_allocator,
2616
                tbo_subbatch_index=tbo_subbatch_index,
2617
            )
2618
        )
2619

2620
2621
2622
2623
2624
2625
2626
    def op_comm_prepare_mlp(self, state):
        state.hidden_states_mlp_input, state.residual_after_comm_pre_mlp = (
            self.layer_communicator.prepare_mlp(
                state.pop("hidden_states_after_attn"),
                state.pop("residual_after_input_ln"),
                state.forward_batch,
            )
2627
        )
2628

2629
2630
2631
2632
2633
2634
2635
2636
    def op_mlp(self, state):
        hidden_states = state.pop("hidden_states_mlp_input")
        if not (
            enable_moe_dense_fully_dp()
            and (not self.is_layer_sparse)
            and hidden_states.shape[0] == 0
        ):
            state.hidden_states_mlp_output = self.mlp(
2637
                hidden_states, state.forward_batch
2638
2639
2640
            )
        else:
            state.hidden_states_mlp_output = hidden_states
2641

2642
    def op_comm_postprocess_layer(self, state):
2643
        hidden_states, residual = self.layer_communicator.postprocess_layer(
2644
2645
2646
            state.pop("hidden_states_mlp_output"),
            state.pop("residual_after_comm_pre_mlp"),
            state.forward_batch,
2647
        )
2648

2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
        output = dict(
            positions=state.positions,
            hidden_states=hidden_states,
            residual=residual,
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
            tbo_subbatch_index=state.tbo_subbatch_index,
        )

        state.clear(
            expect_keys={
                "positions",
                "forward_batch",
                "zero_allocator",
                "tbo_subbatch_index",
            }
        )
        return output
2667

Liangsheng Yin's avatar
Liangsheng Yin committed
2668
2669
2670
2671
2672
2673
2674
2675

class DeepseekV2Model(nn.Module):
    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
2676
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
2677
2678
2679
2680
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size
2681
        self.first_k_dense_replace = config.first_k_dense_replace
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
        self.pp_group = get_pp_group()

        if self.pp_group.is_first_rank:
            self.embed_tokens = VocabParallelEmbedding(
                config.vocab_size,
                config.hidden_size,
                enable_tp=not is_dp_attention_enabled(),
            )
        else:
            self.embed_tokens = PPMissingLayer()
Liangsheng Yin's avatar
Liangsheng Yin committed
2692

2693
        self.alt_stream = torch.cuda.Stream() if _is_cuda else None
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
        self.layers, self.start_layer, self.end_layer = make_layers(
            config.num_hidden_layers,
            lambda idx, prefix: DeepseekV2DecoderLayer(
                config=config,
                layer_id=idx,
                quant_config=quant_config,
                prefix=prefix,
                alt_stream=self.alt_stream,
            ),
            pp_rank=self.pp_group.rank_in_group,
            pp_size=self.pp_group.world_size,
            prefix=add_prefix("layers", prefix),
fzyzcjy's avatar
fzyzcjy committed
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
            offloader_kwargs=dict(
                submodule_accessor=lambda layer: (
                    layer.mlp.experts
                    if isinstance(layer.mlp, DeepseekV2MoE)
                    else layer.mlp
                ),
                whitelist_param_names_creator=lambda module: (
                    [
                        "w13_weight",
                        "w2_weight",
fzyzcjy's avatar
fzyzcjy committed
2716
2717
2718
2719
2720
2721
2722
2723
2724
                        # only for nvfp4
                        *(
                            [
                                "w13_blockscale_swizzled",
                                "w2_blockscale_swizzled",
                            ]
                            if hasattr(module, "w13_blockscale_swizzled")
                            else []
                        ),
fzyzcjy's avatar
fzyzcjy committed
2725
2726
2727
2728
2729
                    ]
                    if isinstance(module, FusedMoE)
                    else []
                ),
            ),
Liangsheng Yin's avatar
Liangsheng Yin committed
2730
        )
2731
2732
2733
2734
        if self.pp_group.is_last_rank:
            self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.norm = PPMissingLayer(return_tuple=True)
Liangsheng Yin's avatar
Liangsheng Yin committed
2735

2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
        self.gemm_output_zero_allocator_size = 0
        if (
            _use_aiter_gfx95
            and config.n_routed_experts == 256
            and self.embed_tokens.embedding_dim == 7168
        ):
            num_moe_layers = sum(
                [
                    1
                    for i in range(len(self.layers))
                    if isinstance(self.layers[i].mlp, DeepseekV2MoE)
                ]
            )

            allocate_size = 0
            for i in range(len(self.layers)):
                if isinstance(self.layers[i].mlp, DeepseekV2MoE):
                    allocate_size = self.layers[
                        i
                    ].mlp.shared_experts.gate_up_proj.output_size_per_partition
                    break

            self.gemm_output_zero_allocator_size = (
                get_dsv3_gemm_output_zero_allocator_size(
                    config.n_routed_experts,
                    num_moe_layers,
                    allocate_size,
                    self.embed_tokens.embedding_dim,
                )
            )

2767
2768
2769
    def get_input_embeddings(self) -> torch.Tensor:
        return self.embed_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
2770
2771
2772
2773
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
2774
        forward_batch: ForwardBatch,
2775
        input_embeds: torch.Tensor = None,
2776
2777
2778
        pp_proxy_tensors: Optional[PPProxyTensors] = None,
    ) -> Union[torch.Tensor, PPProxyTensors]:
        total_num_layers = self.end_layer - self.start_layer
2779
        device = input_embeds.device if input_embeds is not None else input_ids.device
2780
        zero_allocator = BumpAllocator(
2781
            buffer_size=total_num_layers * 2 * (2 if forward_batch.can_run_tbo else 1),
2782
            dtype=torch.float32,
2783
            device=device,
2784
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2785

2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
        has_gemm_output_zero_allocator = hasattr(
            self, "gemm_output_zero_allocator_size"
        )

        gemm_output_zero_allocator = (
            BumpAllocator(
                buffer_size=self.gemm_output_zero_allocator_size,
                dtype=torch.float32,
                device=device,
            )
            if has_gemm_output_zero_allocator
            and self.gemm_output_zero_allocator_size > 0
            else None
        )

2801
2802
2803
2804
2805
2806
        if self.pp_group.is_first_rank:
            if input_embeds is None:
                hidden_states = self.embed_tokens(input_ids)
            else:
                hidden_states = input_embeds
            residual = None
2807
        else:
2808
2809
2810
            assert pp_proxy_tensors is not None
            hidden_states = pp_proxy_tensors["hidden_states"]
            residual = pp_proxy_tensors["residual"]
2811

2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
        normal_start_layer = self.start_layer
        normal_end_layer = self.end_layer
        if forward_batch.can_run_tbo:
            if (
                self.first_k_dense_replace > normal_start_layer
                and self.first_k_dense_replace < normal_end_layer
            ):
                normal_end_layer = self.first_k_dense_replace
            elif self.first_k_dense_replace < normal_start_layer:
                normal_end_layer = normal_start_layer = 0
2822

2823
        for i in range(normal_start_layer, normal_end_layer):
2824
2825
2826
            with get_global_expert_distribution_recorder().with_current_layer(i):
                layer = self.layers[i]
                hidden_states, residual = layer(
2827
2828
2829
2830
2831
2832
                    positions,
                    hidden_states,
                    forward_batch,
                    residual,
                    zero_allocator,
                    gemm_output_zero_allocator,
2833
                )
2834

2835
        if normal_end_layer != self.end_layer:
2836
            hidden_states, residual = model_forward_maybe_tbo(
2837
                layers=self.layers[normal_end_layer : self.end_layer],
2838
2839
2840
2841
2842
                enable_tbo=True,
                positions=positions,
                forward_batch=forward_batch,
                hidden_states=hidden_states,
                residual=residual,
2843
                input_data_scatter_mode=self.layers[
2844
                    normal_end_layer - 1
2845
                ].layer_scatter_modes.layer_output_mode,
2846
2847
2848
                zero_allocator=zero_allocator,
            )

2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
        if not self.pp_group.is_last_rank:
            return PPProxyTensors(
                {
                    "hidden_states": hidden_states,
                    "residual": residual,
                }
            )
        else:
            if not forward_batch.forward_mode.is_idle():
                if residual is None:
                    hidden_states = self.norm(hidden_states)
                else:
                    hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
2862
2863
2864
2865
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):
2866
2867
    # for quark model load
    packed_modules_mapping = {}
Liangsheng Yin's avatar
Liangsheng Yin committed
2868
2869
2870
2871
2872

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
2873
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
2874
2875
    ) -> None:
        super().__init__()
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887

        # for quark model load
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        self.fuse_qkv_a_proj = (
            hasattr(config, "q_lora_rank") and config.q_lora_rank is not None
        )
        if self.fuse_qkv_a_proj:
            self.packed_modules_mapping["fused_qkv_a_proj_with_mqa"] = [
                "q_a_proj",
                "kv_a_proj_with_mqa",
            ]

2888
        self.pp_group = get_pp_group()
Liangsheng Yin's avatar
Liangsheng Yin committed
2889
        self.config = config
2890
        self.tp_size = get_tensor_model_parallel_world_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
2891
        self.quant_config = quant_config
2892
2893
2894
2895
        if envs.SGLANG_KT_MOE_AMX_WEIGHT_PATH.is_set():
            CompressedTensorsConfig.DeepSeekFP8Config = Fp8Config(
                True, "dynamic", None, [128, 128]
            )
2896
        self.determine_num_fused_shared_experts()
2897
2898
2899
2900
2901
2902
2903
2904
        self.model = DeepseekV2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
2905
            use_attn_tp_group=get_global_server_args().enable_dp_lm_head,
2906
2907
2908
        )
        self.logits_processor = LogitsProcessor(config)

2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
        self._routed_experts_weights_of_layer = LazyValue(
            lambda: {
                layer_id: layer.mlp.get_moe_weights()
                for layer_id, layer in enumerate(self.model.layers)
                if isinstance(layer.mlp, DeepseekV2MoE)
            }
        )

    @property
    def routed_experts_weights_of_layer(self):
        return self._routed_experts_weights_of_layer.value

2921
    def determine_num_fused_shared_experts(
2922
2923
        self, architecture: str = "DeepseekV3ForCausalLM"
    ):
2924
        self.num_fused_shared_experts = 0
2925
        if get_global_server_args().disable_shared_experts_fusion:
2926
2927
2928
2929
2930
2931
            return

        # Only Deepseek V3/R1 can use shared experts fusion optimization now.
        disable_reason = None
        if (
            not _is_cuda
2932
            or torch.cuda.get_device_capability("cuda") < (8, 0)
2933
2934
2935
2936
            or self.config.architectures[0] != architecture
            or self.config.n_routed_experts != 256
            or self.config.n_shared_experts != 1
        ):
2937
            disable_reason = "Only Deepseek V3/R1 on NV-platform with capability >= 80 can use shared experts fusion optimization."
2938
2939
        elif get_moe_expert_parallel_world_size() > 1:
            disable_reason = "Deepseek V3/R1 can not use shared experts fusion optimization under expert parallelism."
2940
2941
        elif self.quant_config.get_name() == "w4afp8":
            disable_reason = "Deepseek V3/R1 W4AFP8 model uses different quant method for routed experts and shared experts."
2942
2943

        if disable_reason is not None:
2944
            get_global_server_args().disable_shared_experts_fusion = True
Cheng Wan's avatar
Cheng Wan committed
2945
            self.num_fused_shared_experts = 0
2946
2947
2948
2949
2950
2951
2952
            log_info_on_rank0(
                logger,
                f"{disable_reason} Shared experts fusion optimization is disabled.",
            )
            return

        self.num_fused_shared_experts = self.config.n_shared_experts
2953

Mick's avatar
Mick committed
2954
2955
2956
    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

2957
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
2958
2959
2960
2961
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
2962
        forward_batch: ForwardBatch,
2963
        input_embeds: torch.Tensor = None,
2964
        pp_proxy_tensors: Optional[PPProxyTensors] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
2965
    ) -> torch.Tensor:
2966
2967
        hidden_states = self.model(
            input_ids, positions, forward_batch, input_embeds, pp_proxy_tensors
2968
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
2969

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
        if self.pp_group.is_last_rank:
            return self.logits_processor(
                input_ids, hidden_states, self.lm_head, forward_batch
            )
        else:
            return hidden_states

    @property
    def start_layer(self):
        return self.model.start_layer

    @property
    def end_layer(self):
        return self.model.end_layer

2985
    def post_load_weights(self, is_nextn=False, weight_names=None):
inkcherry's avatar
inkcherry committed
2986
2987

        # Perform post-processing after loading weights
2988
2989
2990
2991
        if is_nextn:
            layer_ids = [self.config.num_hidden_layers]
        else:
            if weight_names is None:
2992
                layer_ids = range(self.model.start_layer, self.model.end_layer)
2993
2994
2995
2996
2997
            else:
                layer_ids = set()
                for name in weight_names:
                    if "kv_b_proj" in name:
                        layer_id = int(name.split(".")[2])
2998
                        if layer_id < self.config.num_hidden_layers:
2999
3000
                            layer_ids.add(layer_id)

3001
3002
3003
3004
3005
3006
        for layer_id in layer_ids:
            self_attn = (
                self.model.layers[layer_id].self_attn
                if not is_nextn
                else self.model.decoder.self_attn
            )
Baizhou Zhang's avatar
Baizhou Zhang committed
3007
3008
            if hasattr(self_attn.kv_b_proj, "qweight"):
                # AWQ compatible
3009
                if _is_cuda or _is_hip or _is_npu:
Baizhou Zhang's avatar
Baizhou Zhang committed
3010
3011
3012
3013
3014
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                    ).T
inkcherry's avatar
inkcherry committed
3015
                else:
Baizhou Zhang's avatar
Baizhou Zhang committed
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                        0,
                        0,
                        0,
                    ).T
            else:
                w = self_attn.kv_b_proj.weight
            # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
            # This may affect the accuracy of fp8 model.
3028
3029
3030
            # Fix deepseek v3 blockwise bmm by using deep_gemm
            use_deep_gemm_bmm = False

Baizhou Zhang's avatar
Baizhou Zhang committed
3031
3032
3033
3034
            if w.dtype in (
                torch.float8_e4m3fn,
                torch.float8_e4m3fnuz,
            ):
3035
3036
3037
3038
3039
3040
3041
                selected_quant_config = getattr(
                    self.quant_config, "DeepSeekFP8Config", self.quant_config
                )
                weight_block_size = getattr(
                    selected_quant_config, "weight_block_size", None
                )
                if weight_block_size is not None:
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
                    assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv

                    if (
                        _is_cuda
                        and weight_block_size[0] == 128
                        and weight_block_size[1] == 128
                    ):
3058
3059
3060
3061
                        if (
                            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
                            and not deep_gemm_wrapper.DEEPGEMM_BLACKWELL
                            and get_bool_env_var("SGL_USE_DEEPGEMM_BMM", "false")
3062
                        ):
3063
3064
                            block_scale = weight_scale
                            use_deep_gemm_bmm = True
3065
                        else:
3066
3067
3068
3069
                            w = block_quant_dequant(
                                weight,
                                weight_scale,
                                weight_block_size,
3070
                                torch.bfloat16,
3071
                            )
3072
3073
3074
3075
3076
                    else:
                        w, scale = block_quant_to_tensor_quant(
                            weight, weight_scale, weight_block_size
                        )
                        self_attn.w_scale = scale
Baizhou Zhang's avatar
Baizhou Zhang committed
3077
                else:
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale

Baizhou Zhang's avatar
Baizhou Zhang committed
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
                    w, scale = channel_quant_to_tensor_quant(weight, weight_scale)
                    self_attn.w_scale = scale

            if w.dtype == torch.int8:
                if hasattr(self.quant_config, "weight_block_size"):
                    # block-wise int8 need it
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv
                        w = int8_block_dequant(
                            weight, weight_scale, weight_block_size
                        ).to(torch.bfloat16)
                else:
                    # channel-wise int8 need it
                    w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
                        torch.bfloat16
                    )
3107

Baizhou Zhang's avatar
Baizhou Zhang committed
3108
3109
3110
            w_kc, w_vc = w.unflatten(
                0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
            ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
3111

3112
3113
3114
3115
3116
            if (
                _use_aiter_gfx95
                and self.quant_config is not None
                and self.quant_config.get_name() == "quark"
            ):
3117
3118
3119
3120
                w_kc, self_attn.w_scale_k, w_vc, self_attn.w_scale_v = (
                    quark_post_load_weights(self_attn, w, "mxfp4")
                )

3121
            if not use_deep_gemm_bmm:
3122
3123
3124
3125
3126
3127
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                )
                self_attn.w_vc = bind_or_assign(
                    self_attn.w_vc, w_vc.contiguous().transpose(1, 2)
                )
3128
3129
3130
3131
                if (
                    hasattr(self_attn.kv_b_proj, "weight_scale")
                    and self_attn.w_scale is None
                ):
3132
3133
3134
                    self_attn.w_scale = bind_or_assign(
                        self_attn.w_scale, self_attn.kv_b_proj.weight_scale
                    )
3135
3136
                    if _is_hip:
                        self_attn.w_scale *= 2.0
3137
3138
3139
3140
3141
3142
3143
3144
                # TODO: remove this after adding FP8 support in bmm cpu kernel
                if _is_cpu and _is_cpu_amx_available and w.dtype == torch.float8_e4m3fn:
                    self_attn.w_kc = (
                        self_attn.w_kc.to(torch.bfloat16) * self_attn.w_scale
                    )
                    self_attn.w_vc = (
                        self_attn.w_vc.to(torch.bfloat16) * self_attn.w_scale
                    )
3145
3146
3147
3148
3149
3150
            else:
                num_tiles_k = self_attn.qk_nope_head_dim // weight_block_size[1]
                num_tiles_n = self_attn.v_head_dim // weight_block_size[0]
                ws_kc, ws_vc = block_scale.unflatten(
                    0, (-1, (num_tiles_k + num_tiles_n))
                ).split([num_tiles_k, num_tiles_n], dim=1)
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
                self_attn.w_scale_k = bind_or_assign(
                    self_attn.w_scale_k, ws_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_scale_v = bind_or_assign(
                    self_attn.w_scale_v, ws_vc.contiguous()
                )
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_vc = bind_or_assign(self_attn.w_vc, w_vc.contiguous())
3161
                self_attn.use_deep_gemm_bmm = True
inkcherry's avatar
inkcherry committed
3162

3163
3164
3165
        if (
            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
            and deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
3166
3167
            and hasattr(self.quant_config, "weight_block_size")
            and self.quant_config.weight_block_size is not None
3168
        ):
3169
            self._weight_requant_ue8m0(is_nextn)
3170

3171
3172
3173
3174
3175
3176
3177
        # TODO can move weight_requant_ue8m0 and transform_scale_ue8m0 into Fp8LinearMethod.process_weights_after_loading
        if (
            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
            and deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
            and get_bool_env_var("SGLANG_NVFP4_CKPT_FP8_GEMM_IN_ATTN")
        ):
            self._transform_scale_ue8m0(is_nextn)
3178
3179
3180
        if is_nextn and enable_nextn_moe_bf16_cast_to_fp8(self.quant_config):
            self._transform_scale_nextn_moe_ue8m0()

3181
    def _weight_requant_ue8m0(self, is_nextn=False):
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
        weight_block_size = self.quant_config.weight_block_size

        moe_layers = list(
            range(
                self.config.first_k_dense_replace,
                self.config.num_hidden_layers,
                self.config.moe_layer_freq,
            )
        )

3192
        num_hidden_layers = 1 if is_nextn else self.config.num_hidden_layers
3193

3194
3195
3196
3197
3198
        for layer_id in range(num_hidden_layers):
            if is_nextn:
                layer = self.model.decoder
            else:
                layer = self.model.layers[layer_id]
3199

3200
            module_list = [
3201
3202
                layer.self_attn.kv_b_proj,
                layer.self_attn.o_proj,
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
            ]

            if self.config.q_lora_rank is not None:
                module_list.append(layer.self_attn.fused_qkv_a_proj_with_mqa)
                module_list.append(layer.self_attn.q_b_proj)
            else:
                module_list.append(layer.self_attn.kv_a_proj_with_mqa)
                module_list.append(layer.self_attn.q_proj)

            for module in module_list:
3213
3214
3215
3216
                requant_weight_ue8m0_inplace(
                    module.weight, module.weight_scale_inv, weight_block_size
                )

3217
            if layer_id in moe_layers or is_nextn:
3218
3219
3220
3221
3222
3223
3224
3225
3226
                shared_experts = getattr(layer.mlp, "shared_experts", None)
                if shared_experts is not None:
                    for module in [
                        shared_experts.gate_up_proj,
                        shared_experts.down_proj,
                    ]:
                        requant_weight_ue8m0_inplace(
                            module.weight, module.weight_scale_inv, weight_block_size
                        )
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245

                experts = layer.mlp.experts
                if isinstance(experts, DeepEPMoE):
                    for w in [
                        experts.w13_weight_fp8,
                        experts.w2_weight_fp8,
                    ]:
                        requant_weight_ue8m0_inplace(w[0], w[1], weight_block_size)
            else:
                mlp = layer.mlp
                assert isinstance(mlp, DeepseekV2MLP)
                for module in [
                    mlp.gate_up_proj,
                    mlp.down_proj,
                ]:
                    requant_weight_ue8m0_inplace(
                        module.weight, module.weight_scale_inv, weight_block_size
                    )

3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
    # TODO can move weight_requant_ue8m0 and transform_scale_ue8m0 into Fp8LinearMethod.process_weights_after_loading
    def _transform_scale_ue8m0(self, is_nextn=False):
        num_hidden_layers = 1 if is_nextn else self.config.num_hidden_layers

        for layer_id in range(num_hidden_layers):
            if is_nextn:
                layer = self.model.decoder
            else:
                layer = self.model.layers[layer_id]

            module_list = []
            if self.config.q_lora_rank is not None:
                module_list.append(layer.self_attn.q_b_proj)

            for module in module_list:
                transform_scale_ue8m0_inplace(
                    module.weight_scale_inv, mn=module.weight.shape[-2]
                )

3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
    # TODO avoid code dup (currently combine from weight_requant_ue8m0 and transform_scale_ue8m0)
    def _transform_scale_nextn_moe_ue8m0(self):
        layer = self.model.decoder

        shared_experts = getattr(layer.mlp, "shared_experts", None)
        if shared_experts is not None:
            for module in [
                shared_experts.gate_up_proj,
                shared_experts.down_proj,
            ]:
                transform_scale_ue8m0_inplace(
                    module.weight_scale_inv, mn=module.weight.shape[-2]
                )

        experts = layer.mlp.experts
        if isinstance(experts, DeepEPMoE):
            for w in [
                experts.w13_weight_fp8,
                experts.w2_weight_fp8,
            ]:
                transform_scale_ue8m0_inplace(w[1], mn=w[0].shape[-2])

3287
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], is_nextn=False):
3288

3289
3290
3291
        if is_nextn:
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
3292
                assert num_nextn_layers == 1, "Only 1 nextn layer is supported"
3293
3294
3295
3296
3297
3298
3299
3300
3301
                # compatible with old design
                nextn_layer_id = (
                    0
                    if self.config.num_hidden_layers == 1
                    else self.config.num_hidden_layers
                )
            else:
                raise ValueError("num_nextn_predict_layers is not in the config")

3302
3303
        if get_bool_env_var("SGLANG_NVFP4_CKPT_FP8_GEMM_IN_ATTN"):
            weights = self._quant_attn_to_fp8_ue8m0(weights, is_nextn=is_nextn)
3304
3305
3306
3307
3308
        if is_nextn and enable_nextn_moe_bf16_cast_to_fp8(self.quant_config):
            weights = self._quant_nextn_moe_to_fp8_ue8m0(
                weights, nextn_layer_id=nextn_layer_id
            )

Liangsheng Yin's avatar
Liangsheng Yin committed
3309
3310
3311
3312
3313
3314
3315
3316
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
3317
        expert_params_mapping = FusedMoE.make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
3318
3319
3320
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
3321
            num_experts=self.config.n_routed_experts + self.num_fused_shared_experts,
Liangsheng Yin's avatar
Liangsheng Yin committed
3322
        )
3323
3324
3325
        # Params for special naming rules in mixed-precision models, for example:
        # model.layers.xx.mlp.experts.xx.w1.input_scale. For details,
        # see https://huggingface.co/Barrrrry/DeepSeek-R1-W4AFP8/blob/main.
3326
        if self.quant_config and self.quant_config.get_name() == "w4afp8":
3327
3328
            expert_params_mapping += FusedMoE.make_expert_input_scale_params_mapping(
                num_experts=self.config.n_routed_experts
3329
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
3330

3331
3332
3333
3334
3335
3336
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        fuse_qkv_a_proj = hasattr(self.config, "q_lora_rank") and (
            self.config.q_lora_rank is not None
        )
        cached_a_proj = {} if fuse_qkv_a_proj else None

3337
3338
3339
3340
3341
3342
3343
3344
3345
        if is_nextn:
            nextn_layer_prefix = f"model.layers.{nextn_layer_id}"
            nextn_spec_weight_names = [
                "shared_head.norm",
                "eh_proj",
                "enorm",
                "hnorm",
            ]

3346
3347
        if self.num_fused_shared_experts > 0:
            assert self.num_fused_shared_experts == 1
3348
            log_info_on_rank0(logger, "Shared experts fusion optimization enabled.")
3349

3350
3351
3352
3353
3354
        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = []
            params_dict = dict(self.named_parameters())
            weight_names = []
            for name, loaded_weight in weights:
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
                layer_id = get_layer_id(name)
                if (
                    layer_id is not None
                    and hasattr(self.model, "start_layer")
                    and (
                        layer_id < self.model.start_layer
                        or layer_id >= self.model.end_layer
                    )
                ):
                    continue
3365
3366
3367
3368
3369
                if self.num_fused_shared_experts > 0 and "mlp.shared_experts" in name:
                    name = name.replace(
                        "mlp.shared_experts",
                        f"mlp.experts.{self.config.n_routed_experts}",
                    )
3370

3371
                weight_names.append(name)
3372

3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
                if not is_nextn:
                    if hasattr(self.config, "num_nextn_predict_layers"):
                        num_nextn_layers = self.config.num_nextn_predict_layers
                        if num_nextn_layers > 0 and name.startswith("model.layers"):
                            name_list = name.split(".")
                            if (
                                len(name_list) >= 3
                                and int(name_list[2]) >= self.config.num_hidden_layers
                            ):
                                continue
                else:
                    if not name.startswith(nextn_layer_prefix):
                        continue
3386

3387
3388
3389
                    # Use shared head and embed weights from target model
                    if "shared_head.head" in name or "embed_tokens" in name:
                        continue
3390

3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
                    is_decoder = True
                    # For nextn specific weights
                    for weight_name in nextn_spec_weight_names:
                        if weight_name in name:
                            name = name.replace(nextn_layer_prefix, "model")
                            is_decoder = False
                            break
                    # For decoder layer weights
                    if is_decoder:
                        name = name.replace(nextn_layer_prefix, "model.decoder")

                if "rotary_emb.inv_freq" in name:
Liangsheng Yin's avatar
Liangsheng Yin committed
3403
                    continue
3404
3405
                for param_name, weight_name, shard_id in stacked_params_mapping:
                    # Skip non-stacked layers and experts (experts handled below).
Liangsheng Yin's avatar
Liangsheng Yin committed
3406
3407
                    if weight_name not in name:
                        continue
3408
3409
3410
3411
3412
3413
3414
3415
                    # We have mlp.experts[0].gate_proj in the checkpoint.
                    # Since we handle the experts below in expert_params_mapping,
                    # we need to skip here BEFORE we update the name, otherwise
                    # name will be updated to mlp.experts[0].gate_up_proj, which
                    # will then be updated below in expert_params_mapping
                    # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                    if ("mlp.experts." in name) and name not in params_dict:
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
3416
                    name = name.replace(weight_name, param_name)
3417
3418
3419
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
3420
3421
                    param = params_dict[name]
                    weight_loader = param.weight_loader
3422
3423
                    futures.append(
                        executor.submit(weight_loader, param, loaded_weight, shard_id)
Liangsheng Yin's avatar
Liangsheng Yin committed
3424
3425
3426
                    )
                    break
                else:
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
                    for mapping in expert_params_mapping:
                        param_name, weight_name, expert_id, shard_id = mapping
                        if weight_name not in name:
                            continue
                        name = name.replace(weight_name, param_name)
                        param = params_dict[name]
                        weight_loader = param.weight_loader
                        futures.append(
                            executor.submit(
                                weight_loader,
                                param,
                                loaded_weight,
                                name,
                                shard_id=shard_id,
                                expert_id=expert_id,
                            )
3443
                        )
3444
3445
3446
3447
3448
                        break
                    else:
                        # Skip loading extra bias for GPTQ models.
                        if name.endswith(".bias") and name not in params_dict:
                            continue
3449
3450
3451
3452
3453
3454
                        # Skip loading embed_tokens if not first rank in pipeline parallelism
                        if ".embed_tokens." in name and not self.pp_group.is_first_rank:
                            continue
                        # Skip loading norm if not last rank in pipeline parallelism
                        if ".norm." in name and not self.pp_group.is_last_rank:
                            continue
3455
3456
                        if fuse_qkv_a_proj and (
                            "q_a_proj" in name or "kv_a_proj_with_mqa" in name
3457
                        ):
3458
3459
3460
                            cached_a_proj[name] = loaded_weight
                            q_a_proj_name = (
                                name
3461
                                if "q_a_proj" in name
3462
3463
3464
3465
3466
3467
                                else name.replace("kv_a_proj_with_mqa", "q_a_proj")
                            )
                            kv_a_proj_name = (
                                name
                                if "kv_a_proj_with_mqa" in name
                                else name.replace("q_a_proj", "kv_a_proj_with_mqa")
3468
3469
                            )

3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
                            # When both q_a_proj and kv_a_proj_with_mqa has been cached, load the fused weight to parameter
                            if (
                                q_a_proj_name in cached_a_proj
                                and kv_a_proj_name in cached_a_proj
                            ):
                                q_a_proj_weight = cached_a_proj[q_a_proj_name]
                                kv_a_proj_weight = cached_a_proj[kv_a_proj_name]
                                cat_dim = 0
                                if self.quant_config is not None and (
                                    self.quant_config.get_name() == "awq"
3480
                                    or self.quant_config.get_name() == "awq_marlin"
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
                                    or self.quant_config.get_name() == "moe_wna16"
                                ):
                                    cat_dim = 1
                                fused_weight = torch.cat(
                                    [q_a_proj_weight, kv_a_proj_weight], dim=cat_dim
                                )
                                param_name = (
                                    name.replace(
                                        "q_a_proj", "fused_qkv_a_proj_with_mqa"
                                    )
                                    if "q_a_proj" in name
                                    else name.replace(
                                        "kv_a_proj_with_mqa",
                                        "fused_qkv_a_proj_with_mqa",
                                    )
                                )
                                param = params_dict[param_name]

                                weight_loader = getattr(
                                    param, "weight_loader", default_weight_loader
                                )
                                futures.append(
                                    executor.submit(weight_loader, param, fused_weight)
                                )
                                cached_a_proj.pop(q_a_proj_name)
                                cached_a_proj.pop(kv_a_proj_name)
                        else:
                            if (
                                "k_scale" in name or "v_scale" in name
                            ) and name not in params_dict:
                                # modelopt attn kv scale is named differently
                                for scale in ["k_scale", "v_scale"]:
                                    if scale in name:
                                        name = name.replace(
                                            f"{scale[0]}_proj", "attn_mqa"
                                        )
                                        break
                            if name not in params_dict:
                                # modelopt ckpt contains not needed weights for MTP module:
                                # model.decoder.self_attn.attn_mqa.v_scale and
                                # model.decoder.self_attn.attn_mqa.k_scale
                                logger.warning(f"{name} not found in params_dict.")
                                continue
                            param = params_dict[name]
3525
3526
3527
                            weight_loader = getattr(
                                param, "weight_loader", default_weight_loader
                            )
3528
3529
3530
3531
3532
3533
3534
                            futures.append(
                                executor.submit(weight_loader, param, loaded_weight)
                            )

            # Wait for all tasks to complete and raise any exceptions.
            for future in concurrent.futures.as_completed(futures):
                future.result()
Liangsheng Yin's avatar
Liangsheng Yin committed
3535

3536
        self.post_load_weights(is_nextn=is_nextn, weight_names=weight_names)
Ke Bao's avatar
Ke Bao committed
3537

3538
3539
3540
3541
3542
3543
    def _quant_attn_to_fp8_ue8m0(self, weights, is_nextn):
        weights_dict = dict(weights)

        # temporarily only support DeepSeek V3/R1
        weight_block_size = [128, 128]

3544
        for layer_id in tqdm.trange(
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
            self.config.num_hidden_layers + int(is_nextn),
            desc="quant attn to fp8 ue8m0",
        ):
            for stem in [
                # may put tensors like `o_proj` here for DeepSeek FP4 ckpt v1
                "q_b_proj",
            ]:
                partial_name = f"model.layers.{layer_id}.self_attn.{stem}"
                original_weight = weights_dict[f"{partial_name}.weight"]
                out_w, out_s = quant_weight_ue8m0(
                    original_weight, weight_block_size=weight_block_size
                )
                weights_dict[f"{partial_name}.weight"] = out_w
                weights_dict[f"{partial_name}.weight_scale_inv"] = out_s

        return list(weights_dict.items())

3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
    # TODO avoid code dup
    def _quant_nextn_moe_to_fp8_ue8m0(self, weights, nextn_layer_id: int):
        weights_dict = dict(weights)

        # temporarily only support DeepSeek V3/R1
        weight_block_size = [128, 128]

        for layer_id in [nextn_layer_id]:
            for expert_sub_name in [
                "shared_experts",
                *[
                    f"experts.{expert_id}"
                    for expert_id in range(self.config.n_routed_experts)
                ],
            ]:
                for stem in [
                    "gate_proj",
                    "up_proj",
                    "down_proj",
                ]:
                    partial_name = (
                        f"model.layers.{layer_id}.mlp.{expert_sub_name}.{stem}"
                    )
                    original_weight = weights_dict[f"{partial_name}.weight"]
                    out_w, out_s = quant_weight_ue8m0(
                        original_weight, weight_block_size=weight_block_size
                    )
                    weights_dict[f"{partial_name}.weight"] = out_w
                    weights_dict[f"{partial_name}.weight_scale_inv"] = out_s

        return list(weights_dict.items())

3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

3605
3606
3607
3608
3609
3610
3611
3612
    @classmethod
    def get_model_config_for_expert_location(cls, config):
        return ModelConfigForExpertLocation(
            num_layers=config.num_hidden_layers,
            num_logical_experts=config.n_routed_experts,
            num_groups=config.n_group,
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
3613

fzyzcjy's avatar
fzyzcjy committed
3614
3615
3616
3617
AttentionBackendRegistry.register("ascend", handle_attention_ascend)
AttentionBackendRegistry.register("flashinfer", handle_attention_flashinfer)
AttentionBackendRegistry.register("fa3", handle_attention_fa3)
AttentionBackendRegistry.register("flashmla", handle_attention_flashmla)
linhai1's avatar
linhai1 committed
3618
AttentionBackendRegistry.register("dcu_mla", handle_attention_dcu_mla)
fzyzcjy's avatar
fzyzcjy committed
3619
3620
3621
3622
AttentionBackendRegistry.register("cutlass_mla", handle_attention_cutlass_mla)
AttentionBackendRegistry.register("fa4", handle_attention_fa4)
AttentionBackendRegistry.register("trtllm_mla", handle_attention_trtllm_mla)
AttentionBackendRegistry.register("aiter", handle_attention_aiter)
fzyzcjy's avatar
fzyzcjy committed
3623
AttentionBackendRegistry.register("nsa", handle_attention_nsa)
fzyzcjy's avatar
fzyzcjy committed
3624
AttentionBackendRegistry.register("triton", handle_attention_triton)
3625
3626


HandH1998's avatar
HandH1998 committed
3627
3628
3629
3630
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


fzyzcjy's avatar
fzyzcjy committed
3631
3632
3633
3634
3635
class DeepseekV32ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM, DeepseekV32ForCausalLM]